JPH01236525A - Manufacture of transparent conductive film - Google Patents
Manufacture of transparent conductive filmInfo
- Publication number
- JPH01236525A JPH01236525A JP63064389A JP6438988A JPH01236525A JP H01236525 A JPH01236525 A JP H01236525A JP 63064389 A JP63064389 A JP 63064389A JP 6438988 A JP6438988 A JP 6438988A JP H01236525 A JPH01236525 A JP H01236525A
- Authority
- JP
- Japan
- Prior art keywords
- tin
- tin oxide
- film
- conductive film
- transparent conductive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims abstract description 42
- 229910001887 tin oxide Inorganic materials 0.000 claims abstract description 34
- 238000000034 method Methods 0.000 claims abstract description 16
- YMLFYGFCXGNERH-UHFFFAOYSA-K butyltin trichloride Chemical compound CCCC[Sn](Cl)(Cl)Cl YMLFYGFCXGNERH-UHFFFAOYSA-K 0.000 claims abstract description 15
- 150000003606 tin compounds Chemical class 0.000 claims abstract description 12
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 8
- 239000011737 fluorine Substances 0.000 claims abstract description 8
- 229910021627 Tin(IV) chloride Inorganic materials 0.000 claims abstract description 6
- 238000005979 thermal decomposition reaction Methods 0.000 claims abstract description 6
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 claims abstract description 6
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 5
- 239000000758 substrate Substances 0.000 claims description 17
- 239000002994 raw material Substances 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims 1
- 229910052801 chlorine Inorganic materials 0.000 claims 1
- 239000000460 chlorine Substances 0.000 claims 1
- 239000013078 crystal Substances 0.000 abstract description 18
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 abstract description 7
- 150000001875 compounds Chemical class 0.000 abstract description 6
- 239000000126 substance Substances 0.000 abstract description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 abstract 1
- 239000000463 material Substances 0.000 abstract 1
- KPZGRMZPZLOPBS-UHFFFAOYSA-N 1,3-dichloro-2,2-bis(chloromethyl)propane Chemical compound ClCC(CCl)(CCl)CCl KPZGRMZPZLOPBS-UHFFFAOYSA-N 0.000 description 8
- 238000000635 electron micrograph Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 229910021417 amorphous silicon Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- NPNPZTNLOVBDOC-UHFFFAOYSA-N 1,1-difluoroethane Chemical compound CC(F)F NPNPZTNLOVBDOC-UHFFFAOYSA-N 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 102100030500 Heparin cofactor 2 Human genes 0.000 description 1
- 101001082432 Homo sapiens Heparin cofactor 2 Proteins 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- LDDQLRUQCUTJBB-UHFFFAOYSA-N ammonium fluoride Chemical compound [NH4+].[F-] LDDQLRUQCUTJBB-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- GYOLCDNHOFVAAM-UHFFFAOYSA-N bromo(difluoro)methane Chemical compound F[C](F)Br GYOLCDNHOFVAAM-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
- Non-Insulated Conductors (AREA)
- Manufacturing Of Electric Cables (AREA)
- Chemical Vapour Deposition (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は低抵抗かつ高透過性を有する透明導電膜、更に
詳しくは酸化錫を主成分とする透明導電膜で、主に、太
陽電池の透明電極として有効な酸化錫透明導電膜の製造
方法に関するものである。Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a transparent conductive film having low resistance and high transparency, more specifically, a transparent conductive film containing tin oxide as a main component, which is mainly used in solar cells. The present invention relates to a method for manufacturing a tin oxide transparent conductive film that is effective as a transparent electrode.
[従来の技術]
近年、太陽電池、液晶デイスプレー、プラズマデイスプ
レー等の透明電極として耐薬品性に優れ安価な原料を用
いる酸化錫膜が利用されている。[Prior Art] In recent years, tin oxide films, which have excellent chemical resistance and are made from inexpensive raw materials, have been used as transparent electrodes for solar cells, liquid crystal displays, plasma displays, and the like.
中でも、太陽電池に用いられる透明電極は太陽電池の特
性に透明電極の特性の優劣が直接反映するために、低抵
抗かつ高透過性を有することが必須の条件とされるのが
現状である。In particular, the current situation is that transparent electrodes used in solar cells must have low resistance and high transparency, since the characteristics of the transparent electrode are directly reflected in the characteristics of the solar cell.
また、透過率抵抗といった因子以外にも酸化錫膜の結晶
粒径や結晶の表面形態もまた太陽電池の特性を左右する
重要な因子である。In addition to factors such as transmittance resistance, the crystal grain size and crystal surface morphology of the tin oxide film are also important factors that influence the characteristics of solar cells.
この点に関して、例えば、5n02膜表面を凹凸化し入
射光を散乱させて光閉じ込め効果を生み出すことにより
太陽電池の交換効率を向上させることがなされている。In this regard, for example, the exchange efficiency of solar cells has been improved by making the surface of the 5n02 film uneven to scatter incident light and create a light confinement effect.
以上のように、酸化錫透明導電膜が太陽電池特性に影響
を与える因子を列挙したが、これら事項を満足する酸化
錫を得るための製造方法として、CVD法もしくは、ス
プレー法などのいわゆる熱分解酸化反応を利用する方法
が一般に良く知られている。これら製造方法においては
原料として5ncL4、(CnH2n+1 ) 4S
n (但し5.、−1〜4 ) C4Hg5 ncL
3、(C4H9) 2S n CL 2、(C4Hg)
3SnH1(CH3)2Sn82 等の錫化合物を単
独で使用し、成膜時の透明基体の温度を調整することに
より適当な透過率、抵抗、結晶粒径、結晶の表面形態を
得ることが最も良く知られている。As mentioned above, the factors that influence the solar cell characteristics of the tin oxide transparent conductive film have been listed.As a manufacturing method to obtain tin oxide that satisfies these matters, there are two methods for producing tin oxide, such as the CVD method or the so-called thermal decomposition method such as the spray method. Generally, methods using oxidation reactions are well known. In these production methods, 5ncL4, (CnH2n+1)4S are used as raw materials.
n (5., -1 to 4) C4Hg5 ncL
3, (C4H9) 2S n CL 2, (C4Hg)
The best known method is to use a tin compound such as 3SnH1(CH3)2Sn82 alone and obtain appropriate transmittance, resistance, crystal grain size, and crystal surface morphology by adjusting the temperature of the transparent substrate during film formation. It is being
こうして得られた酸化錫膜を用い、特に酸化錫膜の結晶
粒径並びに慧晶の表面形態の太陽電池特性への影響を調
べ最適な特性を持つ酸化錫膜を選択するのが現状である
。The current practice is to use the tin oxide film obtained in this way and to select a tin oxide film with optimal characteristics by examining the effects of the crystal grain size and surface morphology of the tin oxide film on the solar cell characteristics.
[発明が解決しようとする問題点]
しかしながら、成膜時の透明基体の温度を変えて結晶粒
径、ならびに結晶表面の形態を制御性良く系統的に調整
することは、多くのパラメータを持つ上記方法において
困難を要する。[Problems to be Solved by the Invention] However, it is difficult to systematically adjust the crystal grain size and crystal surface morphology with good controllability by changing the temperature of the transparent substrate during film formation. The method is difficult.
[問題点を解決するための手段]
本発明は前記問題点を解決するためになされたものであ
って低抵抗、高透過率を有する酸化錫透明導電膜におい
て酸化錫の結晶粒径と結晶形態を段階的に変え、その副
次的効果として酸化錫透明導電膜のヘイズ率を容易に制
御することが可能であり、太陽電池に好適で安価な透明
電極の製造方法を提供するものである。[Means for Solving the Problems] The present invention has been made to solve the above-mentioned problems, and is to improve the crystal grain size and crystal morphology of tin oxide in a tin oxide transparent conductive film having low resistance and high transmittance. As a side effect, it is possible to easily control the haze rate of the tin oxide transparent conductive film by changing stepwise, thereby providing an inexpensive method for manufacturing a transparent electrode suitable for solar cells.
即ち、本発明は錫化合物とフッ素を含む化合物を高温に
加熱した透明基体に接触させ、熱分解酸化反応によりフ
ッ素ドープ酸化錫膜(以下5n02:F と記す)を
形成する過程において、錫化合物として四塩化錫とモノ
ブチル錫トリクロライドの2種の原料を使い、酸化錫膜
を形成するものである。That is, in the present invention, a tin compound and a fluorine-containing compound are brought into contact with a transparent substrate heated to high temperature, and in the process of forming a fluorine-doped tin oxide film (hereinafter referred to as 5n02:F) through a thermal decomposition oxidation reaction. It uses two raw materials, tin tetrachloride and monobutyltin trichloride, to form a tin oxide film.
また、本発明に用いることができるフッ素を含む化合物
としては、NH4F、HF、CF3Co。Furthermore, examples of compounds containing fluorine that can be used in the present invention include NH4F, HF, and CF3Co.
H,CC,22F2、CCj!、F3、CBrF2、C
HCF2、CH3CCj! F 2、CH1CHF2な
と゛がある。H, CC, 22F2, CCj! ,F3,CBrF2,C
HCF2, CH3CCj! There are F2, CH1CHF2, etc.
本発明において、これらの錫化合物とフッ素を含む化合
物との混合物を加熱した透明基体上に接触させて熱分解
酸化反応をさせるためには、錫化合物蒸気とフッ素を含
む化合物蒸気及び酸化性ガスを高温の透明基体に接触さ
せる気相化学反応法(CVD法)か、あるいは錫化合物
フッ素を含む化合物からなる溶液をスプレーで加熱され
た基体に吹き付けるスプレー法等により行うことができ
る。中でも400〜650℃に加熱された透明基体に錫
化合物の蒸気およびフレオンガスと酸化性ガスを接触さ
せて5n02:F 膜を形成するCVD法が好んで用い
られる。In the present invention, in order to cause a thermal decomposition oxidation reaction by bringing a mixture of these tin compounds and fluorine-containing compounds into contact on a heated transparent substrate, a tin compound vapor, a fluorine-containing compound vapor, and an oxidizing gas are mixed. This can be carried out by a vapor phase chemical reaction method (CVD method) in which the transparent substrate is brought into contact with a high temperature transparent substrate, or by a spray method in which a solution consisting of a compound containing a tin compound or fluorine is sprayed onto the heated substrate. Among these, a CVD method is preferably used in which a transparent substrate heated to 400 to 650° C. is brought into contact with tin compound vapor, Freon gas, and an oxidizing gas to form a 5n02:F film.
[作 用]
錫化合物として 5nC1a(無水)とモノブチル錫ト
リクロライドを混合し、熱分解反応により基体上にSn
O□二F膜を形成する工程において、上記2種の錫化合
物の混合割合を変えることにより、5n02:F[の結
晶粒径および形態の変化の程度により、5n02:F
膜のヘイズ率を制御することができ太陽電池に好適な透
明電極を得ることができる。[Function] As a tin compound, 5nC1a (anhydrous) and monobutyltin trichloride are mixed, and Sn is formed on the substrate by thermal decomposition reaction.
In the process of forming the O□2F film, by changing the mixing ratio of the above two types of tin compounds, 5n02:F
The haze rate of the film can be controlled and a transparent electrode suitable for solar cells can be obtained.
実施例1
大きさが、100X100 (mm)、厘み1゜9(m
m>の酸化珪素被M付ソーダライムガラスを十分に洗浄
、乾燥しガラス基板とした。このガラス基板上に以下の
ようにして透明導電膜を形成した。Example 1 Size: 100 x 100 (mm), width: 1°9 (m
M> silicon oxide-coated soda lime glass was thoroughly washed and dried to obtain a glass substrate. A transparent conductive film was formed on this glass substrate in the following manner.
四塩化錫(無水)とモノブチル錫トリクロライドの蒸気
を、0:1. 0.33:0.67.0゜5:0.5.
0.67+0.33. 1:Oの流量比で混合し、そ
の各々に対して水蒸気、酸素ガス、1.1−ジフルオロ
エタンガス及び窒素ガスの調整された混合気体を用いC
VD法により550℃に加熱されたガラス基板上に5n
02:F膜を形成した。得られた試料の膜厚は6000
Åであった。Steam of tin tetrachloride (anhydrous) and monobutyltin trichloride was mixed in a ratio of 0:1. 0.33:0.67.0゜5:0.5.
0.67+0.33. Mix at a flow rate ratio of 1:O, and use an adjusted mixed gas of water vapor, oxygen gas, 1,1-difluoroethane gas, and nitrogen gas for each of them.
5n on a glass substrate heated to 550°C by VD method.
02: F film was formed. The film thickness of the obtained sample was 6000
It was Å.
以上得られた膜に関する電子顕微鏡による表面観察の結
果を図1.2,3.4に示す0図より明らかなように、
四塩化錫の流量が増加しているにしたがい結晶粒径と表
面が徐々に変化していることがわかる。As is clear from the results of surface observation using an electron microscope for the membrane obtained above, as shown in Figures 1.2 and 3.4,
It can be seen that the grain size and surface gradually change as the flow rate of tin tetrachloride increases.
またこれらの酸化錫膜について面積抵抗とヘイズ率の測
定を行った。結果を第1表に示す。Furthermore, the sheet resistance and haze rate of these tin oxide films were measured. The results are shown in Table 1.
第1表
表より明らかなように、モノブチル錫トリクロライドの
流量比を減少し、四塩化外の流量比を増加させるにした
がいヘイズ率は増加していくことがわかる。As is clear from Table 1, it can be seen that the haze rate increases as the flow rate ratio of monobutyltin trichloride is decreased and the flow rate ratio of other than tetrachloride is increased.
これら5n02:F 上にp型非晶質シリコンカーバイ
ドとi型、n型の非晶質シリコン膜をグロー放電CVD
法により形成した。こうして得られた非晶質シリコン上
に、真空蒸着法を用いてALの裏面電極を蒸着し、非晶
質シリコン太陽電池を形成した。太陽電池特性をAMI
(100mw/cm”)の光を照射し調べた。四塩化
n:モノブチル錫トリクロライド−2:1の場合、モノ
ブチル錫トリクロライド単独の場合よりも短絡電流■s
cで約3%向上した。効率は約2%の向上を示した。P-type amorphous silicon carbide, i-type, and n-type amorphous silicon films were deposited on these 5n02:F by glow discharge CVD.
Formed by law. On the thus obtained amorphous silicon, an AL back electrode was deposited using a vacuum evaporation method to form an amorphous silicon solar cell. AMI solar cell characteristics
(100 mw/cm") of light. In the case of tetrachloride n: monobutyltin trichloride - 2:1, the short circuit current s was higher than that of monobutyltin trichloride alone.
It improved by about 3% in c. The efficiency showed an improvement of about 2%.
[発明の効果]
絹原料として四塩化外とモノブチル錫トリクロライドを
混合することにより酸化錫膜を成膜した場合、四塩化外
もしくはモノブチル錫トリクロライドを単独で成膜しに
場合とは結晶粒径及び結晶表面の形態の点において異な
る酸化錫膜を得ることができる。[Effect of the invention] When a tin oxide film is formed by mixing tetrachloride and monobutyltin trichloride as a silk raw material, the crystal grains are different from those formed when tetrachloride or monobutyltin trichloride is used alone. Tin oxide films that differ in diameter and crystal surface morphology can be obtained.
このとき、四塩化外とモノブチル錫トリクロライドの混
合割合を変えることにより、容易に酸化錫膜の結晶粒径
及び結晶表面の形態を制御性良く連続的に調節すること
が可能となった。At this time, by changing the mixing ratio of tetrachloride and monobutyltin trichloride, it became possible to easily and continuously adjust the crystal grain size and crystal surface morphology of the tin oxide film with good control.
実施例では、モノブチル錫トリクロライドと四塩化外の
混合流量比が0.33:0.67の時、太陽電池の効率
が最大となっているがこれはあくまでも一例に過ぎない
のであって、最適混合値は太陽電池の作製条件によって
大きく左右されるのが常である。In the example, the efficiency of the solar cell is maximized when the mixing flow ratio of monobutyltin trichloride and tetrachloride is 0.33:0.67, but this is just an example, and the optimum The mixing value is usually greatly influenced by the manufacturing conditions of the solar cell.
従って本発明の主旨はあくまでも上述のように酸化錫膜
の結晶粒径及びまたは結晶表面の形態を制御性良く連続
的に調整することが可能になったことにあり、混合比の
値を特定するものではないと考える。Therefore, the gist of the present invention is to make it possible to continuously adjust the crystal grain size and/or crystal surface morphology of the tin oxide film with good control as described above, and to specify the value of the mixing ratio. I think it's not a thing.
これにより、太陽電池の透明電極として好適な結晶粒径
及び結晶表面の形態を持つ酸化錫膜の成膜が可能となり
、太陽電池の交換効率を向上させることができる。This makes it possible to form a tin oxide film having a crystal grain size and crystal surface morphology suitable for a transparent electrode of a solar cell, and improves the exchange efficiency of the solar cell.
第1図はモノブチル錫トリクロライドのみを原料として
基板温度550°C″c#1.化錫膜を成膜した場合の
酸化錫表面の粒子構造を示す電子顕微鏡写真(5万倍)
第2図はモノブチル錫トリクロライドと四基(ヒ錫を2
=1の割合で混合し基板温度550℃で酸化錫膜を成膜
した場合の酸化錫表面の粒子構造を示す電子顕微鏡写真
(5万倍)
第3図はモノブチル錫トリクロライドと四塩化外を1:
1の割合で混合し基板温度550℃で酸化膜を成膜した
場合の酸化錫表面の粒子構造を示す電子顕微鏡写真(5
万倍)
第4図はモノブチル錫トリクロライドと四塩化外を1:
2の割合で混合し基板温度550℃で酸化錫膜を成膜し
た場合の酸化錫表面の粒子構造を示す電子顕微鏡写真(
5万倍)
第5図は四塩化外のみを原料として基板温度550℃で
酸化錫膜を成膜した場合の酸化錫表面の粒子構造を示す
電子顕微鏡写真(5万倍)特許出願人 日本板硝子株
式会社Figure 1 is an electron micrograph (50,000x magnification) showing the particle structure of the tin oxide surface when a tin oxide film is formed using only monobutyltin trichloride as a raw material at a substrate temperature of 550°C''c#1. is monobutyltin trichloride and four groups (arsenic and two
Electron micrograph (50,000x) showing the particle structure of the tin oxide surface when a tin oxide film was formed at a substrate temperature of 550°C by mixing at a ratio of 1. 1:
Electron micrograph (5
Figure 4 shows monobutyltin trichloride and tetrachloride.
Electron micrograph showing the particle structure of the tin oxide surface when a tin oxide film was formed at a substrate temperature of 550°C by mixing at a ratio of 2:
(50,000x) Figure 5 is an electron micrograph (50,000x) showing the particle structure of the tin oxide surface when a tin oxide film was formed using only tetrachloride as a raw material at a substrate temperature of 550°C (50,000x) Patent applicant: Nippon Sheet Glass Co., Ltd. Co., Ltd.
Claims (3)
する工程において、原料として四塩化錫及びモノブチル
錫トリクロライドの二種の錫化合物を混合したものを用
いることを特徴とする透明電導膜の製造方法。(1) A transparent film characterized by using a mixture of two types of tin compounds, tin tetrachloride and monobutyltin trichloride, as a raw material in the step of forming a transparent conductive film containing tin oxide as a main component on a substrate. Method for manufacturing a conductive film.
ものである特許請求の範囲第1項に記載の透明導電膜の
製造方法。(2) The method for producing a transparent conductive film according to claim 1, wherein the transparent conductive film is formed by a thermal decomposition oxidation reaction.
主成分とする透明導電膜であることを特徴とする特許請
求の範囲第1項に記載の透明導電膜の製造方法。(3) The method for producing a transparent conductive film according to claim 1, wherein the transparent conductive film is a transparent conductive film whose main component is tin oxide containing fluorine and chlorine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63064389A JP2853125B2 (en) | 1988-03-17 | 1988-03-17 | Method for producing transparent conductive film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63064389A JP2853125B2 (en) | 1988-03-17 | 1988-03-17 | Method for producing transparent conductive film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01236525A true JPH01236525A (en) | 1989-09-21 |
JP2853125B2 JP2853125B2 (en) | 1999-02-03 |
Family
ID=13256917
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63064389A Expired - Fee Related JP2853125B2 (en) | 1988-03-17 | 1988-03-17 | Method for producing transparent conductive film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2853125B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001057933A1 (en) * | 2000-02-04 | 2001-08-09 | Kaneka Corporation | Hybrid thin-film photoelectric transducer and transparent laminate for the transducer |
JP2002237610A (en) * | 2001-02-08 | 2002-08-23 | Nippon Sheet Glass Co Ltd | Photoelectric converter and its manufacturing method |
KR101021141B1 (en) * | 2007-08-22 | 2011-03-14 | 한국세라믹기술원 | Fluorine-containing tin oxide (FTO) transparent conductive film glass for moisture removal and manufacturing method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61586A (en) * | 1984-04-10 | 1986-01-06 | エム アンド テイ− ケミカルズ,インコ−ポレイテイド | Liquid coating composition for manufacturing high quality high efficiency fluorine dope tin oxide coating |
JPS6264004A (en) * | 1985-09-17 | 1987-03-20 | 松下電器産業株式会社 | Transparent conducting film and formation thereof |
JPS6269405A (en) * | 1985-09-20 | 1987-03-30 | 日本板硝子株式会社 | Transparent conductive substrate for photoelectric devices |
-
1988
- 1988-03-17 JP JP63064389A patent/JP2853125B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61586A (en) * | 1984-04-10 | 1986-01-06 | エム アンド テイ− ケミカルズ,インコ−ポレイテイド | Liquid coating composition for manufacturing high quality high efficiency fluorine dope tin oxide coating |
JPS6264004A (en) * | 1985-09-17 | 1987-03-20 | 松下電器産業株式会社 | Transparent conducting film and formation thereof |
JPS6269405A (en) * | 1985-09-20 | 1987-03-30 | 日本板硝子株式会社 | Transparent conductive substrate for photoelectric devices |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001057933A1 (en) * | 2000-02-04 | 2001-08-09 | Kaneka Corporation | Hybrid thin-film photoelectric transducer and transparent laminate for the transducer |
JP2001217440A (en) * | 2000-02-04 | 2001-08-10 | Kanegafuchi Chem Ind Co Ltd | Hybrid thin-film photoelectric conversion device and translucent laminate used for the device |
US6759645B2 (en) | 2000-02-04 | 2004-07-06 | Kaneka Corporation | Hybrid thin-film photoelectric transducer and transparent laminate for the transducer |
JP2002237610A (en) * | 2001-02-08 | 2002-08-23 | Nippon Sheet Glass Co Ltd | Photoelectric converter and its manufacturing method |
KR101021141B1 (en) * | 2007-08-22 | 2011-03-14 | 한국세라믹기술원 | Fluorine-containing tin oxide (FTO) transparent conductive film glass for moisture removal and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2853125B2 (en) | 1999-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kane et al. | Chemical vapor deposition of transparent electrically conducting layers of indium oxide doped with tin | |
JP3366046B2 (en) | Amorphous transparent conductive film | |
JPS61227946A (en) | Electroconductive glass | |
JPH02197014A (en) | Manufacturing method of conductive tin oxide powder | |
JPH02168507A (en) | Fluorine doped tin oxide film and method of reducing resistance thereof | |
JPH01236525A (en) | Manufacture of transparent conductive film | |
JPH0784654B2 (en) | Method for manufacturing sputtering target for ITO transparent conductive film | |
JPH01227307A (en) | Transparent electric conductor | |
Murty et al. | Effect of deposition parameters on the microstructure of chemically vapour-deposited SnO2 films | |
JPH02210715A (en) | Transparent conductive base member with two-layer structure | |
JP4170507B2 (en) | Method for producing transparent conductive film | |
KR20190138051A (en) | Fluorine-doped tin oxide transparent conducting electrodes and method for manufacturing the same | |
JPS62213281A (en) | Transparent conductive film | |
JPS62211966A (en) | Transparent conductive film | |
JPS6269405A (en) | Transparent conductive substrate for photoelectric devices | |
JPH0586605B2 (en) | ||
JP2759998B2 (en) | Amorphous solar cell | |
JPH04341707A (en) | Transparent conductive film | |
JPS5925278A (en) | Amorphous solar cell and its manufacturing method | |
JPH0734329B2 (en) | Transparent conductor | |
JPH0510835B2 (en) | ||
JPH01259572A (en) | Amorphous solar cell | |
JPS5916326A (en) | Manufacture of thin film | |
JPH0267720A (en) | Formation of silicon crystallite thin film containing carbon | |
CN116801645A (en) | An inverted perovskite solar cell and its preparation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |