JPH01236444A - Magneto-optical disk - Google Patents

Magneto-optical disk

Info

Publication number
JPH01236444A
JPH01236444A JP6229688A JP6229688A JPH01236444A JP H01236444 A JPH01236444 A JP H01236444A JP 6229688 A JP6229688 A JP 6229688A JP 6229688 A JP6229688 A JP 6229688A JP H01236444 A JPH01236444 A JP H01236444A
Authority
JP
Japan
Prior art keywords
silicon nitride
film
magneto
optical disk
nitridation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6229688A
Other languages
Japanese (ja)
Other versions
JP2551620B2 (en
Inventor
Kiyohide Ogasawara
清秀 小笠原
Takamasa Yoshikawa
高正 吉川
Kiyoo Fujii
藤井 清郎
Nobuaki Onaki
伸晃 小名木
Saburo Aso
三郎 麻生
Takahiro Kobayashi
高広 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Electronic Corp filed Critical Pioneer Electronic Corp
Priority to JP63062296A priority Critical patent/JP2551620B2/en
Publication of JPH01236444A publication Critical patent/JPH01236444A/en
Application granted granted Critical
Publication of JP2551620B2 publication Critical patent/JP2551620B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the corrosion of a thin magnetic material film and to improve durability by forming 1st and 2nd silicon nitride films in such a manner that the degrees of nitridation vary from each other. CONSTITUTION:The 1st silicon nitride film film 2a, the thin magnetic material film 3 and the 2nd silicon nitride film 2b are successively laminated on a transparent substrate 1 in such a manner that the light is irradiated thereon from the transparent substrate side. Further, a supporting substrate 5 is stuck via a adhesive agent film 4 on the 2nd silicon nitride film 2b to obtain the magneto- optical disk. The degrees of nitridation of the 1st and 2nd silicon nitride films 2a, 2b vary from each other. The corrosion of the thin magnetic material film 3 is prevented and the durability is improved by providing a pair of the protective films 2a, 2b consisting of the silicon nitride varied in the degrees of nitridation between the protective film 2a on the incident side in the light incident direction and the protective film 2b on the other side with respect to the two thin protective films 2a, 2b sandwiching the thin magnetic material film 3 in such a manner.

Description

【発明の詳細な説明】 技術分野 本発明は、希土類金属元素と遷移金属元素とを主成分と
するアモルファス合金薄膜を磁気記録膜とした光磁気記
録担体に関し、特に情報の記録・再生・消去可能なE 
−D RAW (Erasable−Dlrect R
eadAfter  Vrlte)型の光磁気ディスク
に関する。
[Detailed Description of the Invention] Technical Field The present invention relates to a magneto-optical recording carrier in which a magnetic recording film is an amorphous alloy thin film mainly composed of rare earth metal elements and transition metal elements, and in particular, it is capable of recording, reproducing and erasing information. Na E
-D RAW (Erasable-Dlrect R
The present invention relates to a magneto-optical disk of the eadAfter Vrlte) type.

背景技術 一定の条件下で成膜される希土類金属−遷移金属合金薄
膜は、その膜面に垂直な一軸磁気異方性(磁化容易軸)
を有することが知られている。この性質を利用し多層合
金薄膜からなる光磁気ディスクが開発されている。
Background Art Rare earth metal-transition metal alloy thin films formed under certain conditions exhibit uniaxial magnetic anisotropy (easy axis of magnetization) perpendicular to the film surface.
It is known to have Taking advantage of this property, magneto-optical disks made of multilayer alloy thin films have been developed.

光磁気ディスクの情報の記録再生の原理は、先ず、かか
る合金薄膜にレーザービームを焦光することによって合
金薄膜をそのキューリー温度又は補償温度付近の温度ま
で局部的に加熱せしめる。
The principle of recording and reproducing information on a magneto-optical disk is to first locally heat the alloy thin film to a temperature near its Curie temperature or compensation temperature by focusing a laser beam on the alloy thin film.

この時、合金薄膜の昇温部分に記録すべき情報に対応し
て膜面垂直方向に一様に磁界を印加し、熱消磁又は磁極
の反転の熱的効果を利用して、一方向に一様に磁化され
た膜面内に小さな反転磁区を任意に形成する。しかる後
に、この反転磁区に偏軸の回転と楕円率との変化から、
反転磁区の有無を信号として検出できる。このようにし
て光磁気ディスクにおいて反転磁区の有無を′1”、“
Omに対応させることによって記録情報の記録再生が可
能となる。 ′ 従来からの希土類金属−遷移金属合金、例えばTbFe
、GdTbFe、TbFeCo、GdC0等は、比較的
、キニーリー点、補償温度が低くかつ保磁力がありかつ
光磁気効果及び磁気特性が光磁気記録材料として適して
いるため光磁気ディスクの記録膜材として注目され、そ
の実用化が進んでいる。
At this time, a magnetic field is applied uniformly in the direction perpendicular to the film surface in accordance with the information to be recorded in the heated portion of the alloy thin film, and by utilizing the thermal effect of thermal demagnetization or reversal of magnetic poles, the magnetic field is uniformly applied in one direction. A small reversal magnetic domain is arbitrarily formed within the plane of a film that is magnetized in a similar manner. After that, from the rotation of the eccentric axis and the change in ellipticity of this inverted magnetic domain,
The presence or absence of reversed magnetic domains can be detected as a signal. In this way, the presence or absence of reversed magnetic domains in the magneto-optical disk can be determined by '1', '
By making it compatible with Om, it becomes possible to record and reproduce recorded information. ' Conventional rare earth metal-transition metal alloys, e.g. TbFe
, GdTbFe, TbFeCo, GdC0, etc. are attracting attention as recording film materials for magneto-optical disks because they have a relatively low Keneally point, a low compensation temperature, a high coercive force, and their magneto-optical effect and magnetic properties are suitable as magneto-optical recording materials. and its practical application is progressing.

しかしながら、これら合金は酸化され易い故に、レーザ
光照射時の高温、湿度雰囲気中では経時変化が生じてそ
の特性が劣化するので、長期の信頼性に欠は安定性に問
題を有していた。そこで、合金の酸化を防ぐために、基
板と記録膜との間に保護膜を設けて、基板に含まれる腐
蝕性物質あるいぼ大気中から基板を透過してきた酸素、
水分等の腐蝕性物質を遮断する構成が採用されている。
However, since these alloys are easily oxidized, their properties change over time and deteriorate in a high-temperature, humid atmosphere during laser beam irradiation, resulting in a lack of long-term reliability and stability problems. Therefore, in order to prevent oxidation of the alloy, a protective film is provided between the substrate and the recording film to prevent corrosive substances contained in the substrate and oxygen that has passed through the substrate from the atmosphere.
A structure is adopted that blocks corrosive substances such as moisture.

例えば、従来の光磁気ディスクの構造として、特公昭6
2−27458号公報に開示されているように、第3図
の拡大部分断面図に示す如き光磁気ディスクが知られて
いる。かかる光磁気ディスクは、ガラス、合成樹脂等か
らなる透明基板11の主面上に、透明体である窒化シリ
コンの保護膜12と、TbDyFe、GdTbFe等の
磁性体薄膜13とを順に積層しており、磁性体薄膜13
上に接着剤膜14を介して支持基板15を貼着した構造
である。このように、希土類−遷移金属系の磁性体薄膜
はサビ易く耐久性に問題がある故に、保護膜を必要とし
ている。第3図に示すように一般にはレーザ光8は基板
11、保護膜12を通して入射し、磁性体薄膜13で反
射する。よって、保護膜12は透明体とし、Si3N4
の他に5iQ2.S10.ZnS等が使用されている。
For example, the structure of the conventional magneto-optical disk is
As disclosed in Japanese Patent No. 2-27458, a magneto-optical disk as shown in the enlarged partial sectional view of FIG. 3 is known. Such a magneto-optical disk has a protective film 12 made of transparent silicon nitride and a thin magnetic film 13 made of TbDyFe, GdTbFe, etc. stacked in this order on the main surface of a transparent substrate 11 made of glass, synthetic resin, etc. , magnetic thin film 13
It has a structure in which a support substrate 15 is attached thereon via an adhesive film 14. As described above, rare earth-transition metal-based magnetic thin films are susceptible to rust and have durability problems, and therefore require a protective film. As shown in FIG. 3, laser light 8 generally enters through a substrate 11 and a protective film 12 and is reflected by a magnetic thin film 13. Therefore, the protective film 12 is made of a transparent material and made of Si3N4.
In addition to 5iQ2. S10. ZnS etc. are used.

しかしながら、保護膜として窒化シリコンSi3 NJ
を使用する場合、基板−保護膜および保護膜−磁性体薄
膜との密着性が弱く、機械的結合のバランスが悪い。そ
れゆえ、成膜時にピンホールが発生し易く基板と保護膜
が剥離したり磁性体薄膜が割れたりする。また、光磁気
ディスクとした場合、長期の記録再生におけるレーザ光
等の照射によりエラーレートが極端に悪化し、耐久性が
低下する欠点がある。
However, silicon nitride Si3 NJ is used as a protective film.
When using , the adhesion between the substrate and the protective film and between the protective film and the magnetic thin film is weak and the mechanical bond is unbalanced. Therefore, pinholes are likely to occur during film formation, resulting in peeling of the substrate and protective film or cracking of the magnetic thin film. Further, when used as a magneto-optical disk, there is a drawback that the error rate is extremely deteriorated by irradiation with laser light or the like during long-term recording and reproduction, and durability is reduced.

発明の概要 本発明の目的は、かかる欠点を解消すべく、再生時のカ
ー回転角を維持しつつ特性の経時変化の少ない長期保存
のきく耐久性、信頼性を有する希土類−遷移金属系光磁
気ディスクを提供することである。
SUMMARY OF THE INVENTION In order to eliminate such drawbacks, the purpose of the present invention is to provide a rare earth-transition metal magneto-optical material that maintains the Kerr rotation angle during playback and has durability and reliability for long-term storage with little change in characteristics over time. The goal is to provide discs.

本発明の光磁気ディスクは、透明基板上において、第1
窒化シリコン膜と、非晶質希土類金属−遷移金属合金か
らなる膜面に垂直な磁化容易軸を有する磁性体薄膜と、
第2窒化シリコン膜とが順に積層されてなる光磁気ディ
スクであって、第1及び第2窒化シリコン膜の窒化度が
互いに異なることを特徴とする。
The magneto-optical disk of the present invention has a first disk on a transparent substrate.
a silicon nitride film, a magnetic thin film having an axis of easy magnetization perpendicular to the film surface made of an amorphous rare earth metal-transition metal alloy;
The magneto-optical disk is formed by sequentially stacking a second silicon nitride film, and is characterized in that the degrees of nitridation of the first and second silicon nitride films are different from each other.

実施例 以下、本発明の実施例を図面を参照しつつ説明する。Example Embodiments of the present invention will be described below with reference to the drawings.

第1図は本実施例の光磁気ディスクの拡大部分断面図で
ある。かかる光磁気ディスクは、透明基板側から光が照
射されるように透明基板1上において、第1窒化シリコ
ン膜2aと、磁性体薄膜3と、第2窒化シリコン膜2b
とが順に積層された構成を有している。さらに、第2窒
化シリコン膜2b上に接着剤膜4を介して支持基板5を
貼着して光磁気ディスクを得る。第1及び第2窒化シリ
コン膜2m、2bの窒化度は互いに異なっている。
FIG. 1 is an enlarged partial sectional view of the magneto-optical disk of this embodiment. Such a magneto-optical disk includes a first silicon nitride film 2a, a magnetic thin film 3, and a second silicon nitride film 2b on a transparent substrate 1 so that light is irradiated from the transparent substrate side.
It has a structure in which these are laminated in order. Further, a support substrate 5 is attached onto the second silicon nitride film 2b via an adhesive film 4 to obtain a magneto-optical disk. The degrees of nitridation of the first and second silicon nitride films 2m and 2b are different from each other.

窒化シリコンは、単体ではS LN、S i3 NJ、
5i2N2であるが、スパッタリング等による薄膜形態
では5iNx(窒化度:x)としてシリコン及び窒素の
存在剤、合で表すことができる。
Silicon nitride alone is S LN, S i3 NJ,
5i2N2, but in the form of a thin film formed by sputtering or the like, it can be expressed as 5iNx (degree of nitridation: x) by the presence of silicon and nitrogen.

かかる実施例の光磁気ディスクにおいては、基板1.支
持基板5ともポリカーボネートのインジェクション基板
を用い、接着剤4は有機接着剤を用いている。基板1の
材質は、透明で平坦な円板であればガラス、合成樹脂を
問わない。基板の主面においては、レーザ光8を案内す
るための案内溝を予め形成してもよい。
In the magneto-optical disk of this embodiment, the substrate 1. A polycarbonate injection substrate is used as the support substrate 5, and an organic adhesive is used as the adhesive 4. The material of the substrate 1 may be glass or synthetic resin as long as it is a transparent and flat disk. A guide groove for guiding the laser beam 8 may be formed in advance on the main surface of the substrate.

本実施例では、基板、窒化シリコン、希土類−遷移金属
合金の熱膨張の差が大である故に、レーザ光による再生
記録時に発生する基板−保護膜および保護膜−゛磁性体
薄膜の界面方向の部分的歪みの繰返しにより各薄膜の劣
化が早まることに鑑み、第1及び第2窒化シリコン膜の
間に磁性体薄膜を挾みさらに、これら窒化シリコン膜の
窒化度を異ならしめることとした。そこで、磁性体薄膜
3を挾む第1保護膜2aと第2保護膜2bの窒化度の違
いに重点をおいて、これら第1及び′!J2窒化シリコ
ン膜の窒化度を種々変化させて公知の薄膜積膜方法によ
り、第1表の如き実施例及び比較例として4種類の光磁
気ディスクを作成した。
In this example, since the difference in thermal expansion between the substrate, silicon nitride, and rare earth-transition metal alloy is large, the interface direction of the substrate-protective film and protective film-magnetic thin film that occurs during reproduction and recording using laser light. In view of the fact that repeated partial strain accelerates the deterioration of each thin film, it was decided to sandwich a magnetic thin film between the first and second silicon nitride films and to make these silicon nitride films have different degrees of nitridation. Therefore, we focused on the difference in the degree of nitridation between the first protective film 2a and the second protective film 2b that sandwich the magnetic thin film 3. Four types of magneto-optical disks were prepared as Examples and Comparative Examples as shown in Table 1 by varying the degree of nitridation of the J2 silicon nitride film and using a known thin film deposition method.

尚、表中の値は、X P S (Xray Photo
electronSpectroscopy : AI
K a −X線光電子分光法)により窒化シリコンの内
殻電子の結合エネルギー強度を測定した場合において、
窒素の光電子スペクトルN15(結合エネルギー397
eV±2eV)とシリコンの光電子スペクトル5i2p
(結合エネルギー101eV±2eV)とのピーク積分
強度比Nls/5L2pであって、SiNxの窒化度X
を相対的に表わしている。
In addition, the values in the table are XPS (Xray Photo
electron spectroscopy: AI
When the binding energy intensity of the core electrons of silicon nitride was measured by Ka-X-ray photoelectron spectroscopy),
Photoelectron spectrum of nitrogen N15 (binding energy 397
eV±2eV) and photoelectron spectrum of silicon 5i2p
(bonding energy 101eV±2eV) and the peak integrated intensity ratio Nls/5L2p, which is the nitridation degree X of SiNx
is expressed relatively.

第2図に、得られた光磁気ディスク各々の70’C−9
0%の恒温恒湿試験におけるビットエラーレートの経時
変化をグラフに示す。縦軸にビットエラーレートをとり
、横軸に光磁気ディスク製造時からの経過時間を示して
いる。グラフにおいて、◇は比較例1の、◎は比較例2
の、Oは実施例1の、Δは実施例2の各ビットエラーレ
ートのプロットを示している。
Figure 2 shows the 70'C-9 of each of the obtained magneto-optical disks.
The graph shows the change in bit error rate over time in a constant temperature and humidity test at 0%. The vertical axis shows the bit error rate, and the horizontal axis shows the elapsed time since the magneto-optical disk was manufactured. In the graph, ◇ is for Comparative Example 1, ◎ is for Comparative Example 2
, O indicates a plot of each bit error rate of the first embodiment, and Δ indicates a plot of each bit error rate of the second embodiment.

第2図に示されているように、実施例1及び2がエラー
レートの劣化が少なく、特に実施例1は殆ど劣化しない
。また、成膜後、目視できるピンホールも他の比較例と
比べ非常に少ない。従来の窒化シリコン保護膜において
はSiNxのX(窒化度)が限定されていないが、本実
施例1によれば第1保護膜のピーク強度比が1.9±0
.2の範囲で、かつ第2保護膜のピーク強度比が1.3
±0.2の範囲である時が最も好ましい光磁気ディスク
の耐久性が得られることが分った。
As shown in FIG. 2, Examples 1 and 2 have little deterioration in error rate, and in particular, Example 1 shows almost no deterioration. Further, the number of visually visible pinholes after film formation is also very small compared to other comparative examples. In the conventional silicon nitride protective film, the X (nitridation degree) of SiNx is not limited, but according to Example 1, the peak intensity ratio of the first protective film is 1.9±0.
.. 2, and the peak intensity ratio of the second protective film is 1.3.
It has been found that the most preferable durability of the magneto-optical disk can be obtained when the value is within the range of ±0.2.

発明の効果 以上の如く、本発明によれば、磁性体薄膜を挾む二つの
保護薄膜について、光入射方向における入射側の保護膜
と他の側の保護膜との窒化度を異ならしめた窒化シリコ
ンによる一対の保護膜を設けた故に、磁性体薄膜の腐食
を防ぎ耐久性を向上させた光磁気ディスクを得ることが
できる。
Effects of the Invention As described above, according to the present invention, two protective thin films sandwiching a magnetic thin film are nitrided so that the degree of nitridation is different between the protective film on the incident side and the protective film on the other side in the direction of light incidence. Since the pair of protective films made of silicon is provided, it is possible to obtain a magneto-optical disk in which corrosion of the magnetic thin film is prevented and durability is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による希土類−遷移金属系光磁気ディス
クの拡大部分断面図、第2図は恒温恒湿試験における本
発明による光ディスクのビットエラーレートの経時変化
を示すグラフ、第3図は従来の光ディスクの拡大部分断
面図である。 主要部分の符号の説明 1・・・・・・基板 2a・・・・・・第1保護膜 3・・・・・・磁性体薄膜 2b・・・・・・第2保護膜 4・・・・・・接着剤層 5・・・・・・支持基板 出願人   パイオニア株式会社
FIG. 1 is an enlarged partial cross-sectional view of a rare earth-transition metal-based magneto-optical disk according to the present invention, FIG. 2 is a graph showing changes over time in the bit error rate of the optical disk according to the present invention in a constant temperature and humidity test, and FIG. 3 is a conventional FIG. 2 is an enlarged partial cross-sectional view of the optical disc of FIG. Explanation of symbols of main parts 1...Substrate 2a...First protective film 3...Magnetic thin film 2b...Second protective film 4... ... Adhesive layer 5 ... Support substrate applicant Pioneer Corporation

Claims (3)

【特許請求の範囲】[Claims] (1)透明基板上において、第1窒化シリコン膜と、非
晶質希土類金属−遷移金属合金からなり膜面に垂直な磁
化容易軸を有する磁性体薄膜と、第2窒化シリコン膜と
が順に積層されてなる光磁気ディスクであって、前記第
1及び第2窒化シリコン膜の窒化度が互いに異なること
を特徴とする光磁気ディスク。
(1) On a transparent substrate, a first silicon nitride film, a magnetic thin film made of an amorphous rare earth metal-transition metal alloy and having an axis of easy magnetization perpendicular to the film surface, and a second silicon nitride film are laminated in order. 1. A magneto-optical disk comprising: a magneto-optical disk, wherein the first and second silicon nitride films have different degrees of nitridation.
(2)前記第1窒化シリコン膜の窒化度が前記第2窒化
シリコン膜の窒化度よりも大であることを特徴とする請
求項1記載の光磁気ディスク。
(2) The magneto-optical disk according to claim 1, wherein the degree of nitridation of the first silicon nitride film is greater than the degree of nitridation of the second silicon nitride film.
(3)窒化シリコン膜の窒化度を示すAlKα−X線光
電子分光法による内殻電子の結合エネルギーにおける前
記第1窒化シリコン膜のピーク積分強度比Nls/Si
2pが1.9±0.2の範囲であり、かつ第2窒化シリ
コン膜のピーク強度比Nls/Si2pが1.3±0.
2であることを特徴とする請求項2記載の光磁気ディス
ク。
(3) Peak integrated intensity ratio Nls/Si of the first silicon nitride film at the binding energy of core electrons measured by AlKα-X-ray photoelectron spectroscopy, which indicates the degree of nitridation of the silicon nitride film
2p is in the range of 1.9±0.2, and the peak intensity ratio Nls/Si2p of the second silicon nitride film is 1.3±0.
3. The magneto-optical disk according to claim 2, wherein the magneto-optical disk is 2.
JP63062296A 1988-03-16 1988-03-16 Magneto-optical disk Expired - Fee Related JP2551620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63062296A JP2551620B2 (en) 1988-03-16 1988-03-16 Magneto-optical disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63062296A JP2551620B2 (en) 1988-03-16 1988-03-16 Magneto-optical disk

Publications (2)

Publication Number Publication Date
JPH01236444A true JPH01236444A (en) 1989-09-21
JP2551620B2 JP2551620B2 (en) 1996-11-06

Family

ID=13196013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63062296A Expired - Fee Related JP2551620B2 (en) 1988-03-16 1988-03-16 Magneto-optical disk

Country Status (1)

Country Link
JP (1) JP2551620B2 (en)

Also Published As

Publication number Publication date
JP2551620B2 (en) 1996-11-06

Similar Documents

Publication Publication Date Title
US5783320A (en) Magneto-optical recording medium and process for producing the same
JPH0350341B2 (en)
JPS6148148A (en) Thermooptical magnetic recording medium
US4777082A (en) Optical magnetic recording medium
JPH01236444A (en) Magneto-optical disk
US4999260A (en) Magneto-optical recording medium comprising a rare-earth-transition metal dispersed in a dielectric
JPH04353641A (en) Optomagnetic recording single plate optical disk
JPH0350344B2 (en)
JPH04335231A (en) Single plate optical disk for magneto-optical recording
JPH0350343B2 (en)
JPH0442452A (en) Magneto-optical disk and production thereof
JP2817505B2 (en) Single-plate optical disk for magneto-optical recording and its recording / reproducing method
JP2740814B2 (en) Magneto-optical recording medium
JPS62121943A (en) Optical recording medium
JPH0660458A (en) Single plate optical disk and recording and reproducing method for the same
KR100225108B1 (en) Optic-magneto recording medium
JPH01178151A (en) Magneto-optical recording medium
JPS5960745A (en) Photomagnetic recording medium
JPH04335233A (en) Magneto-optical recording medium
JPS61208650A (en) Photomagnetic recording medium
JPH0461646A (en) Magneto-optical disk
JPH04356742A (en) Optical recording disk
JPH05166233A (en) Veneer optical disk for magneto-optical recording
JPH05144102A (en) Magneto-optical disk medium
JPS62121944A (en) Optical recording medium

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees