JPH01178151A - Magneto-optical recording medium - Google Patents

Magneto-optical recording medium

Info

Publication number
JPH01178151A
JPH01178151A JP127888A JP127888A JPH01178151A JP H01178151 A JPH01178151 A JP H01178151A JP 127888 A JP127888 A JP 127888A JP 127888 A JP127888 A JP 127888A JP H01178151 A JPH01178151 A JP H01178151A
Authority
JP
Japan
Prior art keywords
layer
magnetic
coercive force
magnetic layer
recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP127888A
Other languages
Japanese (ja)
Inventor
Yoichi Osato
陽一 大里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP127888A priority Critical patent/JPH01178151A/en
Publication of JPH01178151A publication Critical patent/JPH01178151A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To decrease noises at the time of recording by forming a magnetic recording layer of a magnetic layer having relatively small coercive force and high Curie temp. and a magnetic layer having relatively large coercive force and low Curie temp. adjacently thereto and providing a reflecting layer on the side of the recording layer opposite to a light incident layer. CONSTITUTION:The magnetic layer 2 having the relatively small coercive force and the high Curie temp. and the magnetic layer 3 having the relatively large coercive force and the low Curie temp. are laminated on a light transparent substrate 1 and an reflecting layer 4 is further laminated thereon. Amorphous magnetic alloys which exhibit perpendicular magnetic anisotropy and magneto- optical effect, i.e., amorphous magnetic alloys of rare earth elements and transition metal elements such as GdCo, GdFe, TbFe and DyFe are usable for the material of the respective magnetic layers 2, 3. The apparent coercive force is thereby increased and the noises at the time of recording are decreased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、キュリー点書込みタイプの光磁気記録媒体に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a Curie point writing type magneto-optical recording medium.

(従来の技術) 消去可能な光メモリーとして、光磁気ディスクが知られ
ている。記録信号は、光磁気効果を用いて再生されるが
、反射率の変化を用いた光ディスクに比べて、大きな信
号変調度が得られないという欠点がある。
(Prior Art) Magneto-optical disks are known as erasable optical memories. Recorded signals are reproduced using magneto-optical effects, but they have the disadvantage that a large degree of signal modulation cannot be obtained compared to optical discs that use changes in reflectance.

そこで、特開昭55−87332号、特開昭54−84
702号等に開示されているように、入射光の光透過の
大きい薄膜の磁気記録層に対して、入射光と反対側に新
たに反射層を設け、カー効果とさらに反射層からの反射
光によるファラデー効果を併用して、大きな再生信号を
得る工夫がなされている。
Therefore, JP-A-55-87332, JP-A-54-84
As disclosed in No. 702, a new reflective layer is provided on the opposite side of the thin magnetic recording layer to which the incident light transmits, and the Kerr effect and the reflected light from the reflective layer are reduced. Efforts have been made to obtain a large reproduction signal by using the Faraday effect.

また、光磁気ディスクは、反転磁区を記録ビットとして
利用するため、光ディスクに比べて、高温で磁界の存在
する環境に放置されると、再生信号に誤りが増加したり
、記録信号が消去されてしまうという恐れがある。この
ため、通常は、磁気記録層の保磁力は、5〜15kOe
程度の大きな値に設定されている。
Furthermore, since magneto-optical disks use inverted magnetic domains as recording bits, compared to optical disks, if they are left in an environment with high temperatures and a magnetic field, errors may increase in the reproduced signal or the recorded signal may be erased. There is a fear that it will get lost. Therefore, the coercive force of the magnetic recording layer is usually 5 to 15 kOe.
It is set to a relatively large value.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、保磁力の大きな磁気記録層を用いると、特に
その膜厚を400Å以下に設定した場合に著しく、記録
時にノイズが増加するという不都合がある。
However, when a magnetic recording layer with a large coercive force is used, there is a problem in that noise increases significantly during recording, especially when the film thickness is set to 400 Å or less.

本発明の目的は、入射光と反対側に反射層を設け、大き
な再生信号を得られる薄膜磁性層を用いた光磁気記録媒
体において、膜厚が400Å以下で、見かけの保磁力が
大きく記録信号が消去されてしまうという恐れが少なく
、また記録時のノイズも低い光磁気記録媒体を提供する
ことにある。
The object of the present invention is to provide a magneto-optical recording medium using a thin film magnetic layer, which has a reflective layer on the opposite side to the incident light and can obtain a large reproduction signal, with a film thickness of 400 Å or less, and a large apparent coercive force. It is an object of the present invention to provide a magneto-optical recording medium in which there is less fear that information will be erased and noise during recording is also low.

(問題点を解決するための手段) 上記目的達成可能な本発明は、透明基板上に、膜厚が4
00Å以下である、希土類元素と遷移金属との合金の磁
気記録層が設けられた光磁気記録媒体において、前記磁
気記録層が、相対的に保磁力が小さくキュリー温度の高
い磁性層と、これに隣接する相対的に保磁力が大きくキ
ュリー温度が低い磁性層とからなり、かつ前記磁気記録
層の光入射側と反対側には反射層が設けられていること
を特徴とする光磁気記録媒体である。
(Means for Solving the Problems) The present invention, which can achieve the above object, has a film thickness of 4 mm on a transparent substrate.
In a magneto-optical recording medium provided with a magnetic recording layer made of an alloy of a rare earth element and a transition metal with a thickness of 00 Å or less, the magnetic recording layer comprises a magnetic layer having a relatively small coercive force and a high Curie temperature, and a magnetic layer having a relatively small coercive force and a high Curie temperature. A magneto-optical recording medium comprising an adjacent magnetic layer having a relatively large coercive force and a low Curie temperature, and a reflective layer is provided on the side opposite to the light incident side of the magnetic recording layer. be.

以下、図面を参照して本発明の詳細な説明する。まず、
本発明の光磁気記録媒体の構成、材料等について言及す
る。
Hereinafter, the present invention will be described in detail with reference to the drawings. first,
The structure, materials, etc. of the magneto-optical recording medium of the present invention will be mentioned.

第1図(a) 、 (b)は各々、当該光磁気記録媒体
の一実施例を示す模式断面図である。第1図(a)の光
磁気記録媒体では、゛プリグループが設けられた透光性
の基板1上に、相対的に保磁力が小さくキュリー温度の
高い磁性層2と、相対的に保磁力が大きくキュリー温度
は低い磁性層3が積層されたものである。さらに、その
上に、反射層3が積層されている。
FIGS. 1(a) and 1(b) are each a schematic cross-sectional view showing an example of the magneto-optical recording medium. In the magneto-optical recording medium shown in FIG. 1(a), a magnetic layer 2 with a relatively low coercive force and a high Curie temperature is formed on a transparent substrate 1 provided with pre-groups, and a magnetic layer 2 with a relatively low coercive force and a high Curie temperature. The magnetic layer 3 has a high Curie temperature and a low Curie temperature. Furthermore, a reflective layer 3 is laminated thereon.

通常、磁性層2の保磁力は1〜4にOe 、キュリー温
度は100〜250℃の範囲、磁性層3の保磁力は5〜
15KOe、キュリー温度は100〜250℃程度の範
囲内から選択するとよい。また、内磁性層のキュリー温
度の差は10〜50℃程度の範囲内とするとよい。
Usually, the coercive force of the magnetic layer 2 is in the range of 1 to 4 Oe, the Curie temperature is in the range of 100 to 250°C, and the coercive force of the magnetic layer 3 is in the range of 5 to 4 Oe.
15 KOe, and the Curie temperature is preferably selected from a range of about 100 to 250°C. Further, the difference in Curie temperature of the inner magnetic layers is preferably within a range of about 10 to 50°C.

各磁性層の材料には、垂直磁気異方性を示し且つ磁気光
学効果を呈する非晶質磁性合金、即ち、GdCo、 G
dFe 、 TbFe、 DyFe、 GdTbFe、
 TbDyFe、GdTbFe (:o、 GdTb(
:o等の希土類元素と遷移金属元素との非晶質磁性合金
が使用できる。
The material of each magnetic layer includes an amorphous magnetic alloy that exhibits perpendicular magnetic anisotropy and magneto-optic effect, namely GdCo, G
dFe, TbFe, DyFe, GdTbFe,
TbDyFe, GdTbFe (:o, GdTb(
An amorphous magnetic alloy of a rare earth element and a transition metal element such as :o can be used.

なお、磁性層2と磁性層3はどちらが基板に近くなるよ
うに積層されてもよい。
Note that the magnetic layer 2 and the magnetic layer 3 may be stacked such that either one is closer to the substrate.

反射層4の材料としては、A〕、Ag、 Cu、 Ti
、pt等の金属材料を用いることができる。
Materials for the reflective layer 4 include A], Ag, Cu, Ti
, PT, or other metal materials can be used.

第1図(b)において、5.6.7は磁性層2の耐久性
を向上させるためのあるいは光磁気効果を向上させるた
めの保護膜である。SiO、Sin、、TiO2、Si
3N4、へAN%ZnS等の酸化物、窒化物、硫化物な
どから成る緻密な膜が利用される。
In FIG. 1(b), 5.6.7 is a protective film for improving the durability of the magnetic layer 2 or for improving the magneto-optical effect. SiO, Sin, , TiO2, Si
A dense film made of oxide, nitride, sulfide, etc. such as 3N4, AN%ZnS, etc. is used.

8は、貼り合わせ用基板9を貼り合わすための接着層で
ある。
8 is an adhesive layer for bonding the bonding substrate 9 together.

なお、貼り合わせ用基板9にも、2から7までの層を積
層し、これを接着すれば表裏で記録・再生が可能となる
Note that if layers 2 to 7 are laminated on the bonding substrate 9 and these are adhered, recording and reproduction can be performed on the front and back sides.

次に、本発明により、記録ノイズが減少する理由を説明
する。そのために、まず、第2図(a)に、本発明の構
成でなく、基板1上に単層の磁性層3を設けた、複数の
サンプル(つまり、ポリカ一基板−ト製基板に保護膜と
して、700人の5t3N、層、磁性層3として、Tb
x (Fe9z(:oa) + oo−xを400人、
保護層として500人のSi3N4層、反射層4として
A1を500人、さらに保護層として700人のSi3
N+層を設けた光磁気ディスクであって、Xを変えるこ
とによって磁性層の組成を種々変化させたもの)の記録
時のノイズレベルを測定した結果を示す。
Next, the reason why recording noise is reduced according to the present invention will be explained. For this purpose, first, FIG. 2(a) shows a plurality of samples in which a single magnetic layer 3 is provided on a substrate 1 instead of the configuration of the present invention (that is, a polycarbonate substrate with a protective film on it). As, 700 5t3N layers, magnetic layer 3 as Tb
x (Fe9z(:oa) + oo-x for 400 people,
500 layers of Si3N4 as a protective layer, 500 layers of A1 as a reflective layer 4, and 700 layers of Si3 as a protective layer.
The results of measuring the noise level during recording of a magneto-optical disk provided with an N+ layer, in which the composition of the magnetic layer is varied in various ways by changing X, are shown.

横軸は、Tb原子の組成比X(原子%)を示し、縦軸は
各ディスクの記録時のノイズレベルと、磁性層3の保磁
力の値(koe )を示す。ここで、Tb約20原子%
のとき、補償組成になっている。このように、保磁力の
値が最大になる組成(補償組成)に近づくと、記録時の
ノイズが増大する。
The horizontal axis shows the composition ratio X (atomic %) of Tb atoms, and the vertical axis shows the noise level during recording of each disk and the coercive force value (koe) of the magnetic layer 3. Here, Tb is about 20 atomic %
When , the compensation composition is established. As described above, as the composition approaches the composition where the coercive force value is maximum (compensation composition), the noise during recording increases.

一方、第2図(C)に示すように、!fi性層のTbF
eCo層の膜厚を、800人にした以外は、同様にして
作製した光磁気ディスクについては、記録時のノイズレ
ベルはTb原子の組成比に依存せず、低いレベルで一定
である(800Å以上ならば他の膜厚でもほぼ同様)。
On the other hand, as shown in Figure 2 (C),! TbF in fi layer
Regarding magneto-optical disks manufactured in the same manner except that the thickness of the eCo layer was changed to 800 nm, the noise level during recording did not depend on the composition ratio of Tb atoms and remained constant at a low level (more than 800 Å). If so, it is almost the same for other film thicknesses).

この相違の理由としては、磁性層の飽和磁化の大きさ(
膜厚)の違い、磁性層の界面の影響などが挙げられるが
、例えば、磁性層の膜厚の小さい場合、界面付近での組
成の不均一性、記録時に磁化反転を補助する反磁界が小
さいことなどが影響していると考えられる。
The reason for this difference is the magnitude of saturation magnetization of the magnetic layer (
For example, when the thickness of the magnetic layer is small, the composition is non-uniform near the interface, and the demagnetizing field that assists magnetization reversal during recording is small. It is thought that this may be influenced by the following.

一方、第2図(b)に、基板上に、磁性層2と磁性層3
の薄膜磁性層を設け、さらに前述のようにカー効果、フ
ァラデー効果を生じ再生信号を増大させるための反射層
を設けた、本発明に係るサンプル(つまり、ポリカーボ
ネート基板に保護層2として、700人のSi3N4層
、磁性層2として、TbFe(:o層を200人、磁性
層3としてTbFeCo層を200A、保護層として5
00人のSi3N4層、反射層4として500人のA1
層を、さらに保護層として、700人のSi、N4層を
設けた光磁気ディスク)での記録時のノイズレベルを測
定した結果を示す。
On the other hand, in FIG. 2(b), a magnetic layer 2 and a magnetic layer 3 are formed on the substrate.
A sample according to the present invention, which was provided with a thin film magnetic layer of Si3N4 layer, magnetic layer 2: TbFe(:o layer: 200A, magnetic layer 3: TbFeCo layer: 200A, protective layer: 5
00 Si3N4 layer, 500 A1 as reflective layer 4
The results of measuring the noise level during recording on a magneto-optical disk (with 700 Si and N4 layers provided as a protective layer) are shown below.

ここで、磁性層2はTI)+ 5Fl17acO7の原
子組成比であった。副格子磁化は、遷移金属優位で、磁
性層単層での保磁力は〜IKOe、キュリー温度は20
0℃であった。第2図(b)で、横軸は、磁性層3Tb
x (Fes□(:oa) too−XのTb原子の組
成比X(原子%)を示し、縦軸は各ディスクの記録時の
ノイズレベルと、磁性層3の保磁力(KOe )の値を
示す。
Here, the magnetic layer 2 had an atomic composition ratio of TI)+5Fl17acO7. The sublattice magnetization is dominated by transition metals, the coercive force in a single magnetic layer is ~IKOe, and the Curie temperature is 20
It was 0°C. In FIG. 2(b), the horizontal axis represents the magnetic layer 3Tb.
x (Fes□(:oa) too-X indicates the composition ratio X (atomic %) of Tb atoms, and the vertical axis indicates the noise level during recording of each disk and the value of the coercive force (KOe) of the magnetic layer 3. show.

磁性層3 TbFeCoは、FeとGoの組成比が原子
数比で92二8であり、各組成のものでキュリー温度は
約180℃であった。
The magnetic layer 3 TbFeCo had an atomic ratio of Fe to Go of 9228, and the Curie temperature of each composition was about 180°C.

第2図(b)では、(a)と異なり、保磁力の値が最大
になる組成(磁性層3の補償組成)に近づいても、記録
時のノイズの増大は見られなかった。
In FIG. 2(b), unlike in FIG. 2(a), no increase in noise during recording was observed even when the composition approached the maximum coercive force value (compensation composition of the magnetic layer 3).

この理由は次のように考えられる。The reason for this is thought to be as follows.

すなわち、磁性層2 (Tb+5Fe76Co7 )の
組成の単層の記録膜では、記録時のノイズ増加が見られ
ないことから、Tb+5Fe76CO7の磁性層2と磁
性層3とを積層したものは、記録時に磁性層2の磁化に
常に安定な方向に磁性層3が磁化反転をするため(内磁
性層に慟〈交換力の補助により)と考えられる。
That is, since a single-layer recording film having the composition of magnetic layer 2 (Tb+5Fe76Co7) does not show any increase in noise during recording, a stacked layer of magnetic layer 2 and magnetic layer 3 of Tb+5Fe76CO7 has a structure in which the magnetic layer is This is thought to be because the magnetic layer 3 always reverses its magnetization in a direction that is stable for the magnetization of the inner magnetic layer (with the aid of an exchange force).

一般的にも、保磁力を大きくするために飽和磁化の大き
さを小さく設定しである磁性層に接して飽和磁化を大き
くするような組成をもった層を積層すると次の点が改善
される。
In general, in order to increase the coercive force, the magnitude of saturation magnetization is set small, and if a layer with a composition that increases the saturation magnetization is laminated in contact with a magnetic layer, the following points will be improved. .

(1)記録時の磁化反転は、この飽和磁化を大きくする
ような組成の積層した層から起こり、未記録部とのコン
トラストの高い記録ビットが形成される。
(1) Magnetization reversal during recording occurs from laminated layers with compositions that increase the saturation magnetization, forming recorded bits with high contrast with unrecorded areas.

(2)記録時に磁化反転を補助する(保磁力の小さな層
の磁化による)反磁界が大きくなり、未記録部とのコン
トラストの高い記録ビットが形成される。
(2) The demagnetizing field that assists magnetization reversal during recording (due to the magnetization of a layer with a small coercive force) increases, and recorded bits with high contrast with unrecorded areas are formed.

〔実施例〕〔Example〕

以下、実施例により本発明を具体的に説明する。 Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例1 まず、プリグループ、プリフォーマット信号の刻まれた
ポリカーボネート族のディスク状基板に、スパッタリン
グにより、保護膜Si3N4膜を700人、磁性層TJ
5FeyaCOy  (保磁力I KOe、キュリー温
度は200℃)を200人、磁性層TbFeCoを20
0人、保護層Si3N4を300人、反射層A!を50
0人、さらに保護層Si3N4を700人、この順に積
層成膜した。なお、磁性層TbFeC。
Example 1 First, a protective film Si3N4 film was applied by sputtering to a polycarbonate disk-shaped substrate in which pregroup and preformat signals were engraved, and a magnetic layer TJ was applied.
5 FeyaCOy (coercive force I KOe, Curie temperature is 200°C) for 200 people, magnetic layer TbFeCo for 20 people
0 people, protective layer Si3N4 300 people, reflective layer A! 50
0 person, and then a protective layer of Si3N4 was formed by 700 people in this order. Note that the magnetic layer is TbFeC.

の組成を種々変化させることにより、6種の積層体を形
成した。
Six types of laminates were formed by varying the composition of the laminates.

6種の磁性層TbFeCoそれぞれの組成、保磁力を次
の表1に示す。
The composition and coercive force of each of the six types of TbFeCo magnetic layers are shown in Table 1 below.

表−1 次に膜形成を終えた上記各基板をホットメルト接着剤を
用いてポリカーボネートの貼り合わせ用基板と貼り合わ
せ、光磁気ディスクを作成した。
Table 1 Next, each of the above-mentioned substrates on which film formation had been completed was bonded to a polycarbonate bonding substrate using a hot melt adhesive to create a magneto-optical disk.

これらの光磁気ディスクのそれぞれを、記録再生装置に
セットして、線速度的8m/sec、で、約1鱗に集光
した830nlの波長レーザービームにより、消去バイ
アス磁界4000e、61IIwのレーザーパワーで消
去後、記録バイアス(消去時を逆極性にして)2000
e、4.5mWのレーザーパワーを2 MHzの周波数
で変調して記録を行った。記録信号の再生は、1.0m
Wの連続ビームを用いて行なった。結果を次の表2に示
す。
Each of these magneto-optical disks was set in a recording/reproducing device, and a laser beam with a wavelength of 830 nl focused on approximately one scale was used at a linear velocity of 8 m/sec, an erase bias magnetic field of 4000e, and a laser power of 61IIw. After erasing, write bias (reverse polarity during erasing) 2000
e, recordings were performed with a laser power of 4.5 mW modulated at a frequency of 2 MHz. Recorded signal playback is 1.0m
This was carried out using a continuous beam of W. The results are shown in Table 2 below.

表−2 比較例1 磁性層TbFeCoを表−3に示すように変化さ′せた
以外は、実施例1と同じ構成、材料、条件で光磁気ディ
スクを作成した(ただし磁性層TbFeCoは単層)。
Table 2 Comparative Example 1 A magneto-optical disk was manufactured using the same configuration, materials, and conditions as in Example 1, except that the magnetic layer TbFeCo was changed as shown in Table 3 (however, the magnetic layer TbFeCo was a single layer). ).

これらの各サンプルについて、実施例1と同じように記
録再生の評価を行なった。結果を表−3に併わせで示す
For each of these samples, recording and reproduction evaluation was performed in the same manner as in Example 1. The results are also shown in Table 3.

実施例1および比較例の結果から保磁力がIKOe程度
の小さな磁性層と保磁力の大きな磁性層を積層した光磁
気ディスクでは、見かけの(積層したときの)保磁力が
大きく、記録ノイズが小さく再生C/N値の大きなもの
が得られることが分フた。
The results of Example 1 and Comparative Example show that in a magneto-optical disk in which a magnetic layer with a small coercive force of about IKOe and a magnetic layer with a large coercive force are laminated, the apparent coercive force (when laminated) is large and the recording noise is small. It was found that a large reproduction C/N value could be obtained.

光磁気ディスクは、同一トラックの連続再生の場合など
のように、高温で、磁界の存在する環境下に放置される
ことがあり、例えば、室温で8KOe以上の保磁力であ
ることが望ましい。
Magneto-optical disks are sometimes left in an environment at high temperatures and in the presence of a magnetic field, such as during continuous reproduction of the same track, so it is desirable that the disk has a coercive force of 8 KOe or more at room temperature, for example.

実施例1と比較例それぞれのサンプルを記録ヘッド部で
2000eのバイアス磁界を印加しながら、同一トラッ
クを百万回繰り返し、再生したところ、再生信号の劣化
を生じなかったのは、保磁力が7 XOe以上である実
施例1−3.1−4.1−5と比較例!−3、!−4,
1−5,1−7,1−8だけであった。
When the samples of Example 1 and Comparative Example were reproduced by repeating the same track 1 million times while applying a bias magnetic field of 2000e at the recording head, the reason why the reproduced signal did not deteriorate was because the coercive force was 7. Examples 1-3.1-4.1-5 and comparative examples with XOe or more! -3,! -4,
There were only 1-5, 1-7, and 1-8.

また、比較例1−8の結果から保磁力の大きな磁性層単
層を用いても、800人程度の厚さにすれば記録ノイズ
は大きくならないことも確かめられた。
Further, from the results of Comparative Examples 1-8, it was confirmed that even if a single magnetic layer with a large coercive force is used, recording noise does not become large if the thickness is about 800 mm.

また、表−2の積層したときの見かけの保磁力の値を、
表−1に示される保磁力の値と比較すると、両磁性層の
組成が補償組成に対して、共にFeGo元素に富んでい
る場合は表−2の見かけの保磁力は表−1の値に対して
、小さくなるように変化し、両磁性層の組成が補償組成
に対して一方がTb元素に富んでいて、他方がTb、 
Go元素に対して富んでいる場合には、表−2の見かけ
の保磁力は、表−1の値に対して大きくなるように変化
している。
In addition, the value of the apparent coercive force when stacked in Table 2 is
Comparing with the coercive force values shown in Table 1, if the compositions of both magnetic layers are rich in FeGo elements with respect to the compensation composition, the apparent coercive forces in Table 2 will be the values shown in Table 1. On the other hand, the composition of both magnetic layers changes to become smaller, and the composition of both magnetic layers is rich in Tb element with respect to the compensation composition, and the other is Tb,
When the Go element is enriched, the apparent coercive force shown in Table 2 changes to become larger than the value shown in Table 1.

つまり、補償組成に対して、一方の磁性層が希土類元素
に富んで、他方の磁性層が遷移金属に富んだ組成の組み
合わせのものを用いることにより、見かけの保磁力が大
きくなり、記録ビットの安定性が向上する。
In other words, by using a compensation composition in which one magnetic layer is rich in rare earth elements and the other magnetic layer is rich in transition metals, the apparent coercive force becomes large and the recording bits are Improved stability.

実施例2 保磁力の大きな磁性層と保磁力の小さな磁性層の組成と
、基板に成膜する順番を変化させた以外は、実施例1と
同じ構成、材料、条件で光磁気を作成した。各サンプル
の磁性層の性質を表−4に新す。
Example 2 A magneto-optical device was created using the same configuration, materials, and conditions as in Example 1, except that the composition of the magnetic layer with a large coercive force and the magnetic layer with a small coercive force and the order in which the films were formed on the substrate were changed. The properties of the magnetic layer of each sample are shown in Table 4.

なお、磁性層の厚さはそれぞれ200人であった。The thickness of each magnetic layer was 200.

表−4に示す組成の項において、TM側は補償組成に対
して遷移金属元素に富んだ組成であることを示し、RE
側は補償組成に対して、希土類元素に富んだ組成である
ことを示す。
In the composition section shown in Table 4, the TM side shows a composition rich in transition metal elements compared to the compensation composition, and the RE
The side indicates that the composition is rich in rare earth elements compared to the compensation composition.

実施例−1と同様の記録再生の実験を行なったところ、
実施例のすべてのサンプルについて、低い記録ノイズ(
−56〜−57dBm)と良好なC/N(54〜55d
B)を示した。
When the same recording and reproducing experiment as in Example 1 was conducted,
For all samples in the example, low recording noise (
-56~-57dBm) and good C/N (54~55dBm)
B) was shown.

次に、記録再生装置の機内温度を60℃に設定して、記
録信号の繰り返し再生を百方回行なったところ、保磁力
の大きな磁性層が補償温度に対して希土類元素に富んだ
組成で、補償温度が室温とキュリー温度の間にあるサン
プル(実施例2−1.2−2)だけが信号の劣化が見ら
れなかった。これは、再生中に磁性層の温度が上昇した
ときに、室温とキュリー温度の間に補償温度があるもの
は、さらに保磁力が大きくなるように変化し、記録ビッ
トがより安定化するためと考えられる。
Next, we set the internal temperature of the recording/reproducing device to 60°C and repeatedly reproduced the recorded signal 100 times, and found that the magnetic layer with a large coercive force has a composition rich in rare earth elements relative to the compensation temperature. Only the sample (Example 2-1.2-2) in which the compensation temperature was between room temperature and the Curie temperature showed no signal deterioration. This is because when the temperature of the magnetic layer rises during playback, the coercive force changes even further for those with a compensation temperature between room temperature and the Curie temperature, making the recorded bits more stable. Conceivable.

[発明の効果] 以上詳細に説明したように、透明基板上に、膜厚が40
0Å以下である、希土類元素と遷移金属との合金の磁気
記録層が設けられた光磁気記録媒体において、前記磁気
記録層を、相対的に保磁力が小さくキュリー温度の高い
磁性層と、これに隣接する相対的に保磁力が大きくキュ
リー温度が低い磁性層とし、かつ前記磁気記録層の光入
射側と反対側には反射層を設けることにより、記録ビッ
トの安定性の高い大きな見かけの保磁力と、記録ノイズ
の低い高いCAN値特性を両立させることが可能になっ
た。
[Effects of the Invention] As explained in detail above, a film with a thickness of 40 mm is formed on a transparent substrate.
In a magneto-optical recording medium provided with a magnetic recording layer of an alloy of a rare earth element and a transition metal with a thickness of 0 Å or less, the magnetic recording layer is composed of a magnetic layer having a relatively small coercive force and a high Curie temperature; By using an adjacent magnetic layer with a relatively large coercive force and a low Curie temperature, and by providing a reflective layer on the side opposite to the light incident side of the magnetic recording layer, a large apparent coercive force with high stability of recording bits can be achieved. It has now become possible to achieve both high CAN value characteristics with low recording noise.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) 、 (b)は各々本発明の光磁気媒体の
一例の構成を示す図、第2図(a)は、400人の厚さ
のTbFeCo11i性層の組成と、作成した光磁気媒
体の記録ノイズとの関係を示す図、第2図(b)は本発
明のTbl5Fe76Coy層に積層されたTbFeC
o磁性層の組成と作成した光磁気媒体の記録ノイズとの
関係を示す図、第2図(C)は800人の厚さのTbF
eCo磁性層の組成と、作成した光磁気媒体の記録ノイ
ズとの関係を示す図である。 1ニブリグルーブ付の透光性基板、 2.3:磁性層、 4:反射層、 5.6,7:保護膜、 8:接着層、 9:貼り合わせ用基板。 特許出願人  キャノン株式会社
FIGS. 1(a) and 1(b) each show the structure of an example of the magneto-optical medium of the present invention, and FIG. 2(a) shows the composition of the TbFeCo11i layer with a thickness of 400 mm and the created optical A diagram showing the relationship with recording noise of a magnetic medium, FIG. 2(b) shows the TbFeC laminated on the Tbl5Fe76Coy layer of the present invention
o A diagram showing the relationship between the composition of the magnetic layer and the recording noise of the prepared magneto-optical medium. Figure 2 (C) is a TbF film with a thickness of 800 mm.
FIG. 3 is a diagram showing the relationship between the composition of an eCo magnetic layer and the recording noise of the produced magneto-optical medium. 1: Transparent substrate with nibli groove, 2.3: Magnetic layer, 4: Reflective layer, 5.6, 7: Protective film, 8: Adhesive layer, 9: Bonding substrate. Patent applicant Canon Co., Ltd.

Claims (1)

【特許請求の範囲】 1)透明基板上に、膜厚が400Å以下である、希土類
元素と遷移金属との合金の磁気記録層が設けられた光磁
気記録媒体において、前記磁気記録層が、相対的に保磁
力が小さくキュリー温度の高い磁性層と、これに隣接す
る相対的に保磁力が大きくキュリー温度が低い磁性層と
からなり、かつ前記磁気記録層の光入射側と反対側には
反射層が設けられていることを特徴とする光磁気記録媒
体。 2)相対的に保磁力が小さくキュリー温度の高い磁性層
は、遷移金属の副格子磁化優位の組成であり、相対的に
保磁力が大きくキュリー温度が低い磁性層は希土類元素
の副格子磁化優位の組成である特許請求の範囲第1項記
載の光磁気記録媒体。
[Claims] 1) A magneto-optical recording medium in which a magnetic recording layer of an alloy of a rare earth element and a transition metal is provided on a transparent substrate and has a film thickness of 400 Å or less, wherein the magnetic recording layer is It consists of a magnetic layer with a relatively small coercive force and a high Curie temperature, and an adjacent magnetic layer with a relatively large coercive force and a low Curie temperature, and a reflective layer on the side opposite to the light incident side of the magnetic recording layer. A magneto-optical recording medium characterized by being provided with a layer. 2) A magnetic layer with a relatively small coercive force and a high Curie temperature has a composition in which the sublattice magnetization is dominated by transition metals, and a magnetic layer with a relatively large coercive force and a low Curie temperature has a composition in which the sublattice magnetization is dominated by rare earth elements. 2. The magneto-optical recording medium according to claim 1, which has a composition of:
JP127888A 1988-01-08 1988-01-08 Magneto-optical recording medium Pending JPH01178151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP127888A JPH01178151A (en) 1988-01-08 1988-01-08 Magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP127888A JPH01178151A (en) 1988-01-08 1988-01-08 Magneto-optical recording medium

Publications (1)

Publication Number Publication Date
JPH01178151A true JPH01178151A (en) 1989-07-14

Family

ID=11496984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP127888A Pending JPH01178151A (en) 1988-01-08 1988-01-08 Magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JPH01178151A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0380448A (en) * 1989-08-22 1991-04-05 Nec Corp Magneto-optical recording medium
JPH0380447A (en) * 1989-08-22 1991-04-05 Nec Corp Magneto-optical recording medium
JPH03154241A (en) * 1989-11-13 1991-07-02 Hitachi Ltd Magnet-optical recording medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0380448A (en) * 1989-08-22 1991-04-05 Nec Corp Magneto-optical recording medium
JPH0380447A (en) * 1989-08-22 1991-04-05 Nec Corp Magneto-optical recording medium
JPH03154241A (en) * 1989-11-13 1991-07-02 Hitachi Ltd Magnet-optical recording medium

Similar Documents

Publication Publication Date Title
JPH06180874A (en) Magneto-optical recording medium
JP3568787B2 (en) Magneto-optical recording medium and reproducing apparatus
JP2703587B2 (en) Magneto-optical recording medium and recording method
JPH01178151A (en) Magneto-optical recording medium
JPH0395745A (en) Magneto-optical recording method and recording device
JPH0550400B2 (en)
JPH07230637A (en) Magneto-optical recording medium and information recording and reproducing method using this medium
JPH0350344B2 (en)
JPH0350343B2 (en)
JP2957260B2 (en) Magneto-optical recording medium
JPH0528555A (en) Magneto-optical recording medium
JPH0535498B2 (en)
JPS5960745A (en) Photomagnetic recording medium
JP2647958B2 (en) Magneto-optical recording medium
JP3218735B2 (en) Magneto-optical recording medium
JPH01146145A (en) Magneto-optical recording medium and its production
JP2869449B2 (en) Magneto-optical recording method and magneto-optical recording medium
KR100209584B1 (en) Magneto-optical disk
JP3592399B2 (en) Magneto-optical recording medium
JP3443410B2 (en) Magneto-optical recording medium and reproducing method thereof
JPS62114134A (en) Optical information recording medium
JP2674815B2 (en) Magneto-optical recording method
JPH06325418A (en) Magneto-optical recording medium
JPH03119540A (en) Magneto-optical recording medium
JPH05182267A (en) Magneto-optical recording medium and recording method thereof