JPH0123416B2 - - Google Patents

Info

Publication number
JPH0123416B2
JPH0123416B2 JP58093453A JP9345383A JPH0123416B2 JP H0123416 B2 JPH0123416 B2 JP H0123416B2 JP 58093453 A JP58093453 A JP 58093453A JP 9345383 A JP9345383 A JP 9345383A JP H0123416 B2 JPH0123416 B2 JP H0123416B2
Authority
JP
Japan
Prior art keywords
aqueous solution
acid
particle size
alumina sol
colloidal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58093453A
Other languages
Japanese (ja)
Other versions
JPS59223223A (en
Inventor
Akio Manba
Hiroyuki Nagamori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP58093453A priority Critical patent/JPS59223223A/en
Publication of JPS59223223A publication Critical patent/JPS59223223A/en
Publication of JPH0123416B2 publication Critical patent/JPH0123416B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/04Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom
    • C01F7/14Aluminium oxide or hydroxide from alkali metal aluminates
    • C01F7/141Aluminium oxide or hydroxide from alkali metal aluminates from aqueous aluminate solutions by neutralisation with an acidic agent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

【発明の詳細な説明】 本発明はアルミナゾルの新規な製造法、更に詳
細にはアルミン酸アルカリ金属塩の水溶液と分子
中に少なくとも1個以上の水酸基を有する有機ヒ
ドロキシル酸の水溶液とを中和反応せしめて、粒
子や微細で、広いPH範囲において凝集を惹起する
ことなく長期間安定に保持できるアルミナゾルを
製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a novel method for producing alumina sol, more specifically, a neutralization reaction between an aqueous solution of an alkali metal salt of aluminate and an aqueous solution of an organic hydroxyl acid having at least one hydroxyl group in the molecule. At least, it relates to a method for producing an alumina sol that is particulate or fine and can be stably maintained for a long period of time without causing agglomeration in a wide pH range.

アルミナゾルは、電気、電子工業及び陶磁器、
鋳物工業における耐熱性バインダー、化粧品、医
薬品における軟膏類の配合ベース、エアゾール製
品、繊維工業における風合改良、毛玉防止、ペイ
ント、顔料、印刷インクの乳化剤、安定剤、接着
性向上剤、樹脂、紙類の表面コーテイング剤、サ
イズ剤、石油工業における触媒担体等として有用
なものである。
Alumina sol is used in electrical, electronic industry and ceramics,
Heat-resistant binders in the foundry industry, formulation bases for ointments in cosmetics and pharmaceuticals, aerosol products, texture improvement in the textile industry, anti-pilling, emulsifiers, stabilizers, adhesion improvers for paints, pigments, and printing inks, resins, It is useful as a surface coating agent for paper, a sizing agent, a catalyst carrier in the petroleum industry, etc.

従来、アルミナゾルを製造する方法としては次
のものが知られている。
Conventionally, the following methods are known as methods for producing alumina sol.

アルミン酸水溶液中に炭酸ガスを吹き込み、
生成したアルミナ水和物スラリーを酸根/Al
(モル比)が0.05〜0.2の一価無機強酸中に分散
させる方法(英国特許第1440194号)。
Blow carbon dioxide gas into an aluminic acid aqueous solution,
The generated alumina hydrate slurry is
(British Patent No. 1440194).

塩化アルミニウム、硝酸アルミニウムのよう
な酸性で水溶性のアルミニウム正塩と炭酸ナト
リウム、水酸化ナトリウム等のアルカリ物質と
を中和反応せしめて得られるアルミナゲルを酸
根/Al(モル比)が0.001〜0.12の一価無機酸又
は有機酸の存在下水熱処理する方法(特開昭5
−112299号、同54−116398号、同55−23034号、
同55−27824号)。
Alumina gel obtained by neutralizing acidic, water-soluble aluminum normal salts such as aluminum chloride and aluminum nitrate with alkaline substances such as sodium carbonate and sodium hydroxide, and having an acid radical/Al (molar ratio) of 0.001 to 0.12. A method of hydrothermal treatment in the presence of a monovalent inorganic acid or an organic acid (JP-A-5
−112299, No. 54-116398, No. 55-23034,
No. 55-27824).

アルミン酸ナトリウム水溶液と酸性の水溶性
アルミニウム塩溶液とをPH9〜10になるように
中和反応させ、生成したアルミナゲルに一価無
機酸又は有機酸を酸根/Al(モル比)が0.15以
上になるように添加して水熱処理する方法(特
公昭40−8409号)。
A sodium aluminate aqueous solution and an acidic water-soluble aluminum salt solution are neutralized to a pH of 9 to 10, and a monovalent inorganic acid or an organic acid is added to the resulting alumina gel so that the acid group/Al (molar ratio) is 0.15 or more. (Special Publication No. 1984-8409).

塩酸、酢酸の希薄水溶液中に金属アルミニウ
ム粉末を加えて加熱下反応させ、粗大粒子を
別後、液を濃縮してアルミナゾルを得る方法
(特許第439196号、特公昭45−3658号)。
A method of obtaining alumina sol by adding metallic aluminum powder to a dilute aqueous solution of hydrochloric acid and acetic acid, reacting under heating, separating coarse particles, and concentrating the liquid (Patent No. 439196, Japanese Patent Publication No. 45-3658).

アルミニウムは両性金属であり、酸及びアルカ
リ溶液に可溶であるため、アルカリ性を示す水溶
性アルミニウム塩に酸性物質を、また酸性を示す
水溶性アルミニウム塩にアルカリ性物質を作用せ
しめて中和反応を行えばアルミナ水和物(水酸化
アルミニウム)が生成される。しかしながら上記
〜の中和反応により生成されるアルミナ水和
物は一次粒子は微細でも二次粒子は粗大であるた
め、酸を添加して水熱下解膠処理を施してコロイ
ド状のアルミナゾルを得ている。またの方法で
得られるアルミナゾルは低PHではゲル化を生起す
ることなく流動安定性を保持できるが、中性〜ア
ルカリ性領域では凝集してしまう。
Aluminum is an amphoteric metal and is soluble in acid and alkaline solutions. Therefore, a neutralization reaction is performed by allowing an acidic substance to act on an alkaline water-soluble aluminum salt and an alkaline substance acting on an acidic water-soluble aluminum salt. For example, alumina hydrate (aluminum hydroxide) is produced. However, the alumina hydrate produced by the above neutralization reaction has fine primary particles but coarse secondary particles, so a colloidal alumina sol is obtained by adding an acid and performing hydrothermal peptization treatment. ing. The alumina sol obtained by the above method can maintain fluidity stability without gelation at low pH, but it aggregates in the neutral to alkaline range.

しかしながら、従来公知の方法では、経時安定
性の優れたアルミナゾル、また再分散性の優れた
アルミナ粉末を与えるアルミナゾルを得ることが
できなかつた。
However, with conventionally known methods, it has not been possible to obtain an alumina sol with excellent stability over time or an alumina sol that provides alumina powder with excellent redispersibility.

そこで、本発明者は、コロイド粒子径が微細
で、かつ経時的に凝集、ゲル化を惹起することが
できないアルミナゾルを提供すべく鋭意研究を行
つた結果、アルミン酸アルカリ金属塩の水溶液
と、次の一般式()又は() R(OH)m(COOH)n () R(OH)m(PO3H2)n () (式中、m及びnは1以上の数を示し、Rは炭素
数1〜10の飽和又は不飽和の脂肪族基を示し、酸
基1個当たりの分子量が200以下であるものとす
る) で表わされる有機ヒドロキシル酸の水溶液とを中
和反応せしめると、従来法のような水熱下解膠処
理を行うことなく、透明性に優れ、コロイド粒子
径が超微細で、しかもPH4〜11の広い範囲で凝集
を生起することなく長期間安定なアルミナゾルを
得ることができることを見出し、本発明を完成し
た。
Therefore, the present inventor conducted intensive research to provide an alumina sol that has a fine colloidal particle size and does not cause aggregation or gelation over time. General formula () or () R(OH)m(COOH)n () R(OH)m(PO 3 H 2 )n () (In the formula, m and n represent a number of 1 or more, and R is A saturated or unsaturated aliphatic group having 1 to 10 carbon atoms and a molecular weight of 200 or less per acid group) is subjected to a neutralization reaction with an aqueous solution of an organic hydroxyl acid represented by To obtain an alumina sol that has excellent transparency, ultra-fine colloid particle size, and is stable for a long period of time without causing aggregation in a wide pH range of 4 to 11 without performing hydrothermal peptization treatment as in the method. They discovered that it is possible to do this, and completed the present invention.

本発明において、アルミン酸アルカリ金属塩と
しては、アルミン酸ナトリウム、アルミン酸カリ
ウムあるいはこれらの混合物を挙げることがで
き、その組成は、M2O/Al2O3=1.0〜1.7(モル
比)(Mはアルカリ金属を示す)の範囲のものが
好ましい。
In the present invention, examples of the alkali metal aluminate include sodium aluminate, potassium aluminate, or a mixture thereof, and the composition thereof is M 2 O/Al 2 O 3 = 1.0 to 1.7 (molar ratio) ( M represents an alkali metal).

一般式()及び()で表わされる有機ヒド
ロキシル酸において、Rが炭素数10を超える脂肪
族基で表わされるものは一般的でなく入手が困難
であり、また酸基1個当りの分子量が200を超え
るものは使用するヒドロキシル酸量が多くなり、
経済的に好ましくない。実際には、当該分子量が
100以下のものが好適である。有機ヒドロキシル
酸の好ましい具体例としては、例えばグリコール
酸、乳酸、グリセリン酸、ヒドロアクリル酸、オ
キシ酪酸、酒石酸、リンゴ酸、アラボン酸、グル
コン酸、クエン酸等のオキシカルボン酸;1−ヒ
ドロキシエチリデン−1,1−ジホスホン酸、2
−ヒドロキシプロピルホスホン酸等のオキシホス
ホン酸が挙げられる。
Among the organic hydroxyl acids represented by the general formulas () and (), those in which R is an aliphatic group having more than 10 carbon atoms are uncommon and difficult to obtain, and the molecular weight per acid group is 200. If it exceeds , the amount of hydroxyl acid used will be large,
Economically unfavorable. In reality, the molecular weight is
A value of 100 or less is preferred. Preferred specific examples of organic hydroxyl acids include oxycarboxylic acids such as glycolic acid, lactic acid, glyceric acid, hydroacrylic acid, oxybutyric acid, tartaric acid, malic acid, arabonic acid, gluconic acid, and citric acid; 1-hydroxyethylidene- 1,1-diphosphonic acid, 2
-oxyphosphonic acids such as hydroxypropylphosphonic acid.

本発明の中和方法は特に制限されないが、アル
ミン酸アルカリ金属塩の水溶液中に有機ヒドロキ
シル酸の水溶液を滴下するのが好ましい。アルミ
ン酸アルカリ金属塩の水溶液の濃度は2〜40重量
%、また有機ヒドロキシル酸の水溶液の濃度は5
〜50重量%のものが好ましい。
Although the neutralization method of the present invention is not particularly limited, it is preferable to drop an aqueous solution of an organic hydroxyl acid into an aqueous solution of an alkali metal aluminate. The concentration of the aqueous solution of alkali metal aluminate is 2 to 40% by weight, and the concentration of the aqueous solution of organic hydroxyl acid is 5% by weight.
~50% by weight is preferred.

アルミン酸アルカリ金属塩水溶液に有機ヒドロ
キシル酸水溶液を滴下して中和反応を行う場合、
生成するアルミナゾルのコロイド粒子径は、使用
する酸の種類、濃度、添加方法、撹拌方法、中和
温度等によつて異なるが、就中特に中和温度が大
きな影響を与える。例えば、10重量%のアルミン
酸カリウム塩水溶液(1.6K2O・Al2O3として10重
量%)中に、10重量%のグルコース酸水溶液を滴
下して中和する場合、中和温度が30℃で0.05μm
45℃で0.18μm、60℃で0.48μmの粒子径のものが
得られる。従つて、本発明方法においては中和温
度を一定に保つて行うのが好ましい。また、この
ようにして得られたコロイド粒子はその後PHを変
化させてもその粒径に影響を与えないと共に、広
いPH範囲で安定であるので、コロイド粒子生成後
はリン酸等の適当な酸でPHを調整することができ
る。
When performing a neutralization reaction by dropping an organic hydroxyl acid aqueous solution into an alkali metal aluminate salt aqueous solution,
The colloidal particle size of the alumina sol produced varies depending on the type and concentration of the acid used, the addition method, the stirring method, the neutralization temperature, etc., but the neutralization temperature has a particularly large influence. For example, when neutralizing a 10% by weight aqueous solution of glucose acid into a 10% by weight aqueous solution of potassium aluminate salt (10% by weight as 1.6K 2 O・Al 2 O 3 ), the neutralization temperature is 30% by weight. 0.05μm at °C
A particle size of 0.18 μm at 45°C and 0.48 μm at 60°C is obtained. Therefore, in the method of the present invention, it is preferable to maintain the neutralization temperature constant. In addition, the colloidal particles obtained in this way have no effect on their particle size even if the pH is subsequently changed, and they are stable over a wide pH range, so after colloidal particle generation, an appropriate acid such as phosphoric acid is used. PH can be adjusted with.

斯くの如く、本発明方法によれば、中和時の条
件、特に中和温度を適宜調節することにより0.1μ
m以下の微細な粒径から1μmを超える粒径のも
のまでの任意の粒径をもつたアルミナゾルを得る
ことができ、かつPH4〜11の広い範囲で凝集を惹
起しないアルミナゾルとすることができる。
As described above, according to the method of the present invention, by appropriately adjusting the conditions during neutralization, especially the neutralization temperature,
It is possible to obtain an alumina sol having any particle size from a fine particle size of 1 μm or less to a particle size of more than 1 μm, and it is possible to obtain an alumina sol that does not cause agglomeration in a wide range of pH from 4 to 11.

アルミナゾルの微粒子化に有機ヒドロキシル酸
が特異的であることの作用機構は必ずしも明確で
ないが、次のように考えられる。すなわち、アル
ミン酸アルカリ金属塩の水溶液中に有機ヒドロキ
シル酸の水溶液を添加してPHを徐々に下げて行く
とこれにつれてアルミナ水和物が析出して一次粒
子が形成するが、この際有機ヒドロキシル酸が強
く水和した層に何らかの形で関与し、一次粒子の
核としての成長及び一次粒子から二次粒子への凝
集がある程度抑制されること、また有機ヒドロキ
シル酸はAl3+とキレートを生成し得るので、ア
ルミナ水和物から溶出してくるAl3+を捕捉し、
コロイド粒子の高次な凝集を防止すること等によ
るものと思われる。
Although the mechanism of action of the specificity of organic hydroxyl acids in making alumina sol into fine particles is not necessarily clear, it is thought to be as follows. That is, when an aqueous solution of an organic hydroxyl acid is added to an aqueous solution of an alkali metal aluminate and the pH is gradually lowered, alumina hydrate precipitates and primary particles are formed. is somehow involved in the strongly hydrated layer, suppressing the growth of primary particles as nuclei and aggregation of primary particles into secondary particles to some extent, and that organic hydroxyl acids form chelates with Al 3+ . Therefore, the Al 3+ eluted from the alumina hydrate is captured,
This seems to be due to the prevention of high-order aggregation of colloidal particles.

而して、有機ヒドロキシル酸以外のキレート化
剤、例えばポリリン酸、アミノトリ(メチレンホ
スホン酸)等のアルコール性水酸基を有さないキ
レート化剤を用いてアルミン酸アルカリ金属塩水
溶液を中和反応せしめて、粒子径が粗大で、保存
中に凝集、沈降を惹起する不安定なアルミナゾル
が得られるにすぎない。
Then, the aqueous solution of alkali metal aluminate is subjected to a neutralization reaction using a chelating agent other than organic hydroxyl acid, for example, a chelating agent having no alcoholic hydroxyl group such as polyphosphoric acid or aminotri(methylenephosphonic acid). However, only an unstable alumina sol is obtained which has a coarse particle size and causes aggregation and sedimentation during storage.

次に本発明の実施例及び比較例を挙げて説明す
る。
Next, examples and comparative examples of the present invention will be described.

尚、コロイド粒子の粒径は、実施例については
コールターサブミクロンアナライザーモデルN4
(コールター社)を、また比較例については遠心
式自動粒度分布測定装置CAPA−500(堀場製作
所)を用いて測定した。このように測定装置を変
えた理由は、実施例のごとく粒径が0.1μ以下のア
ルミナゾルは透明度が高く、遠心式測定装置では
原理上測定不可能であるからである。
In addition, the particle size of the colloidal particles was determined using Coulter Submicron Analyzer Model N4 in the examples.
(Coulter), and comparative examples were measured using a centrifugal automatic particle size distribution analyzer CAPA-500 (Horiba, Ltd.). The reason for changing the measuring device in this way is that alumina sol with a particle size of 0.1 μm or less, as in the example, has high transparency and cannot be measured using a centrifugal measuring device in principle.

実施例 1 アルミン酸カリウム水溶液(Al2O316%、
K2O/Al2O3モル比1.63)100gを300mlビーカー
にとり、ホモミキサーで撹拌しながら30℃に保つ
た。次に、このアルミン酸カリウム水溶液中に40
%クエン酸水溶液100gを徐々に滴下しながら添
加し、PH10.0とした。得られた液は無色透明であ
るが、赤色レーザー光を照射するとチンダル光が
観察されることから、コロイド溶液であることが
確認された。このコロイド溶液(Al2O38%)は
粒径0.015μであり、5ケ月間静置しておいても粒
径、性状ともに変化はなかつた。
Example 1 Potassium aluminate aqueous solution (Al 2 O 3 16%,
100 g of K 2 O/Al 2 O 3 molar ratio 1.63) was placed in a 300 ml beaker and kept at 30° C. while stirring with a homomixer. Next, in this potassium aluminate aqueous solution, 40
% citric acid aqueous solution was gradually added dropwise to adjust the pH to 10.0. The obtained liquid was clear and colorless, but Tyndall light was observed when irradiated with red laser light, confirming that it was a colloidal solution. This colloidal solution (Al 2 O 3 8%) had a particle size of 0.015μ, and there was no change in particle size or properties even after it was left standing for 5 months.

実施例 2 アルミン酸ナトリウム水溶液(Al2O316.7%、
Na2O/Al2O3モル比1.30)100gを30mlビーカー
にとり、ホモミキサーで撹拌しながら、20℃に保
つた。次にこのアルミン酸ナトリウム水溶液中に
30%グリコール酸水溶液125gを徐々に滴下しな
がら添加し、PH7.5とした。得られた液は無色透
明であるが、赤色レーザー光を照射するとチンダ
ル光が観察されることから、コロイド溶液である
ことが確認された。このコロイド溶液(Al2O37.4
%)は粒径0.010μであり、5ケ月間静置しておい
ても粒径、性状ともに変化はなかつた。
Example 2 Sodium aluminate aqueous solution (Al 2 O 3 16.7%,
100 g of Na 2 O/Al 2 O 3 molar ratio 1.30) was placed in a 30 ml beaker and kept at 20° C. while stirring with a homomixer. Next, in this sodium aluminate aqueous solution
125 g of a 30% aqueous glycolic acid solution was gradually added dropwise to adjust the pH to 7.5. The obtained liquid was clear and colorless, but Tyndall light was observed when irradiated with red laser light, confirming that it was a colloidal solution. This colloidal solution (Al 2 O 3 7.4
%) had a particle size of 0.010μ, and there was no change in particle size or properties even after it was left standing for 5 months.

実施例 3 アルミン酸ナトリウム水溶液(Al2O32.8%、
Na2O/Al2O3モル比1.30)100gを300mlビーカー
にとり、ホモミキサーで撹拌しながら20℃に保つ
た。次にこのアルミン酸ナトリウム水溶液中に5
%1−ヒドロキシエチリデン−1,1−ジホスホ
ン酸水溶液160gを徐々に滴下しながら添加し、
PH7.3とした。得られた液は青味を帯びた乳光色
透明であつた。このコロイド溶液(Al2O31.1%)
は粒径0.050μであり、5ケ月間静置しておいても
粒径、性状ともに変化はなかつた。
Example 3 Sodium aluminate aqueous solution (Al 2 O 3 2.8%,
100 g of Na 2 O/Al 2 O 3 molar ratio 1.30) was placed in a 300 ml beaker and kept at 20° C. while stirring with a homomixer. Next, in this sodium aluminate aqueous solution, 5
% 1-hydroxyethylidene-1,1-diphosphonic acid aqueous solution was gradually added dropwise,
The pH was set to 7.3. The resulting liquid was clear and opalescent with a bluish tinge. This colloidal solution (Al 2 O 3 1.1%)
The particle size was 0.050μ, and there was no change in particle size or properties even after it was left standing for 5 months.

実施例 4 アルミン酸カリウム水溶液(Al2O38.0%、
K2O/Al2O3モル比1.63)100gを300mlビーカー
にとり、ホモミキサーで撹拌しながら30℃に保つ
た。次にこのアルミン酸カリウム水溶液中に20%
乳酸水溶液130gを従々に滴下しながら添加し、
PH8.0とした。得られた液は乳光色透明であつた。
このコロイド溶液(Al2O33.5%)は粒径0.040μで
あり、5ケ月間静置しておいても粒径、性状とも
に変化はなかつた。
Example 4 Potassium aluminate aqueous solution (Al 2 O 3 8.0%,
100 g of K 2 O/Al 2 O 3 molar ratio 1.63) was placed in a 300 ml beaker and kept at 30° C. while stirring with a homomixer. Next, add 20% to this potassium aluminate aqueous solution.
Add 130g of lactic acid aqueous solution dropwise,
The pH was set to 8.0. The resulting liquid was transparent and opalescent.
This colloidal solution (3.5% Al 2 O 3 ) had a particle size of 0.040 μm, and there was no change in particle size or properties even after it was allowed to stand for 5 months.

実施例 5 アルミン酸ナトリウム水溶液(Al2O322.2%、
Na2O/Al2O3モル比1.30)100gを300mlビーカー
にとり、ホモミキサーで撹拌しながら30℃に保つ
た。次にこのアルミン酸ナトリウム水溶液中に40
%グルコン酸水溶液300gを徐々に滴下しながら
添加し、PH8.0とした。得られた液は透明である
が赤色レーザー光を照射するとチンダル光が観察
されることから、コロイド溶液であることが確認
された。このコロイド溶液(Al2O35.6%)は粒径
0.010μであり、5ケ月間静置しておいても粒径、
性状ともに変化はなかつた。
Example 5 Sodium aluminate aqueous solution (Al 2 O 3 22.2%,
100g of Na2O / Al2O3 molar ratio 1.30) was placed in a 300ml beaker and kept at 30°C while stirring with a homomixer. Next, in this sodium aluminate aqueous solution, 40
% gluconic acid aqueous solution was gradually added dropwise to adjust the pH to 8.0. Although the obtained liquid was transparent, Tyndall light was observed when irradiated with red laser light, which confirmed that it was a colloidal solution. This colloidal solution (Al 2 O 3 5.6%) has a particle size of
The particle size is 0.010μ, and the particle size remains unchanged even after being left standing for 5 months.
There was no change in properties.

実施例 6 アルミン酸カリウム水溶液(Al2O312.0%、
K2O/Al2O3モル比1.63)100gを300mlビーカー
にとり、ホモミキサーで撹拌しながら30℃に保つ
た。次にこのアルミン酸カリウム水溶液中に30%
クエン酸水溶液75gを徐々に滴下しながら添加し
たところ、反応系全体が乳光色を帯び、コロイド
粒子が発生してきた。(粒径0.025μ)。次にこのア
ルミナゾルコロイド溶液に30%リン酸水溶液30g
を添加し、PHを7.8に調整した。得られた液は乳
光色透明であつた。このコロイド溶液(Al2O35.9
%)は粒径0.028μであり、5ケ月間静置しておい
ても粒径、性状ともに変化はなかつた。
Example 6 Potassium aluminate aqueous solution (Al 2 O 3 12.0%,
100 g of K 2 O/Al 2 O 3 molar ratio 1.63) was placed in a 300 ml beaker and kept at 30° C. while stirring with a homomixer. Next, add 30% to this potassium aluminate aqueous solution.
When 75 g of citric acid aqueous solution was gradually added dropwise, the entire reaction system became opalescent and colloidal particles were generated. (particle size 0.025μ). Next, add 30g of 30% phosphoric acid aqueous solution to this alumina sol colloid solution.
was added to adjust the pH to 7.8. The resulting liquid was transparent and opalescent. This colloidal solution (Al 2 O 3 5.9
%) had a particle size of 0.028μ, and there was no change in particle size or properties even after it was left standing for 5 months.

比較例 1 アルミン酸カリウム水溶液(Al2O34.0%、
K2O/Al2O3、モル比1.63)100gを300mlビーカ
ーにとり、ホモミキサーで撹拌しながら30℃に保
つた。次にこのアルミン酸カリウム水溶液中に10
%リン酸水溶液82gを滴下しながら添加し、PH
7.8とした。得られた液は白濁していた。
Comparative Example 1 Potassium aluminate aqueous solution (Al 2 O 3 4.0%,
100 g of K 2 O/Al 2 O 3 (molar ratio 1.63) was placed in a 300 ml beaker and kept at 30° C. while stirring with a homomixer. Next, in this potassium aluminate aqueous solution, 10
% phosphoric acid aqueous solution was added dropwise, and the pH
It was set at 7.8. The resulting liquid was cloudy.

この溶液(Al2O32.2%)のアルミナゾルの粒径
は2.5μであり、不安定で1週間以内に凝集固化し
た。
The alumina sol of this solution (2.2% Al 2 O 3 ) had a particle size of 2.5 μm and was unstable and coagulated and solidified within one week.

比較例 2 アルミン酸ナトリウム水溶液(Al2O311.1%、
Na2O/Al2O3モル比1.30)100gを300mlビーカー
にとり、ホモミキサーで撹拌しながら30℃に保つ
た。次にこのアルミン酸ナトリウム水溶液中に30
%アミノトリ(メチレンホルホン酸)95gを徐々
に滴下しながら添加し、PH7.5とした。得られた
液は白濁していた。この溶液(Al2O35.7%)のア
ルミナゾルの粒径は1.4μであり、静置すると数時
間でアルミナゾルが底部に沈降し分層した。
Comparative Example 2 Sodium aluminate aqueous solution (Al 2 O 3 11.1%,
100g of Na2O / Al2O3 molar ratio 1.30) was placed in a 300ml beaker and kept at 30°C while stirring with a homomixer. Next, in this sodium aluminate aqueous solution, 30
% aminotri(methylene phosphonic acid) was gradually added dropwise to adjust the pH to 7.5. The resulting liquid was cloudy. The particle size of the alumina sol in this solution (5.7% Al 2 O 3 ) was 1.4 μ, and when it was allowed to stand still, the alumina sol settled to the bottom and separated into layers within several hours.

Claims (1)

【特許請求の範囲】 1 アルミン酸アルカリ金属塩の水溶液と、次の
一般式()又は() R(OH)m(COOH)n () R(OH)m(PO3H2)n () (式中、m及びnは1以上の数を示し、Rは炭素
数1〜10の飽和又は不飽和の脂肪族基を示し、酸
基1個当たりの分子量が200以下であるものとす
る) で表わされる有機ヒドロキシル酸の水溶液とを中
和反応せしめることを特徴とするアルミナゾルの
製造法。
[Claims] 1. An aqueous solution of alkali metal aluminate and the following general formula () or () R(OH)m(COOH)n () R(OH)m(PO 3 H 2 )n () (In the formula, m and n represent numbers of 1 or more, R represents a saturated or unsaturated aliphatic group having 1 to 10 carbon atoms, and the molecular weight per acid group is 200 or less) 1. A method for producing alumina sol, which comprises carrying out a neutralization reaction with an aqueous solution of an organic hydroxyl acid represented by:
JP58093453A 1983-05-27 1983-05-27 Manufacture of alumina sol Granted JPS59223223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58093453A JPS59223223A (en) 1983-05-27 1983-05-27 Manufacture of alumina sol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58093453A JPS59223223A (en) 1983-05-27 1983-05-27 Manufacture of alumina sol

Publications (2)

Publication Number Publication Date
JPS59223223A JPS59223223A (en) 1984-12-15
JPH0123416B2 true JPH0123416B2 (en) 1989-05-02

Family

ID=14082741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58093453A Granted JPS59223223A (en) 1983-05-27 1983-05-27 Manufacture of alumina sol

Country Status (1)

Country Link
JP (1) JPS59223223A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005032427A1 (en) * 2005-07-12 2007-01-18 Degussa Ag Aluminum oxide dispersion
JP5733758B2 (en) * 2011-12-27 2015-06-10 多木化学株式会社 Binding method of inorganic material
CN110015674B (en) * 2019-02-03 2021-05-28 中海油天津化工研究设计院有限公司 Preparation method of pure beta-type aluminum hydroxide
JPWO2022123979A1 (en) 2020-12-09 2022-06-16

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5213800A (en) * 1975-07-22 1977-02-02 Shigeki Yamada Method to be used for pasting shrink-film made label
JPS5213799A (en) * 1975-07-23 1977-02-02 Hochiki Corp Disconnection detection method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5213800A (en) * 1975-07-22 1977-02-02 Shigeki Yamada Method to be used for pasting shrink-film made label
JPS5213799A (en) * 1975-07-23 1977-02-02 Hochiki Corp Disconnection detection method

Also Published As

Publication number Publication date
JPS59223223A (en) 1984-12-15

Similar Documents

Publication Publication Date Title
US5597512A (en) Method for preparing elongated-shaped silica sol
US3745126A (en) Stable positively charged alumina coated silica sols
US5221497A (en) Elongated-shaped silica sol and method for preparing the same
JP5035545B2 (en) Method for producing alkaline zirconia sol
TWI436947B (en) Colloidal silica and process for producing the same
US7674834B2 (en) Colloidal dispersion of particles of a rare-earth vanadate or phosphovanadate
FI98510C (en) Vaterit and procedure for its preparation
JPH07500379A (en) Method for producing fine silver metal particles
US3433593A (en) Process for producing finely-divided precipitated silica
JPH0123416B2 (en)
TW575458B (en) Aqueous dispersion of a rare earth phosphate, and a process for its preparation
JPH06254383A (en) Production of metal oxide particulate
JP3758391B2 (en) High-purity silica aqueous sol and method for producing the same
JP3950691B2 (en) Colloidal dispersion of cerium compound containing cerium III, process for its production and use thereof
JP3013445B2 (en) Method for producing spherical calcium carbonate
JPH0761864B2 (en) Process for producing aqueous colloidal dispersion of rare earth element compound and product thereof
JPS6034496B2 (en) Manufacturing method of alumina sol
JPH0524824A (en) Alumina sol and production thereof
JP3123652B2 (en) Method for producing spherical silica
JPS6116809A (en) Method of adjusting grain size of ceramic raw material
JPH0217932A (en) Modified inorganic particle and preparation thereof
US3711419A (en) Process for preparing silica aquasols
JPH0725549B2 (en) Silica antimony oxide composite sol, method for producing the same and flame retardant comprising the same
JP2722627B2 (en) Method for growing silica core particles
US3592832A (en) Preparation of amorphous guanidine silicate powders