JPH01233328A - Photometric apparatus - Google Patents

Photometric apparatus

Info

Publication number
JPH01233328A
JPH01233328A JP5973688A JP5973688A JPH01233328A JP H01233328 A JPH01233328 A JP H01233328A JP 5973688 A JP5973688 A JP 5973688A JP 5973688 A JP5973688 A JP 5973688A JP H01233328 A JPH01233328 A JP H01233328A
Authority
JP
Japan
Prior art keywords
lbp
lbs
luminance
calculation unit
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5973688A
Other languages
Japanese (ja)
Inventor
Masaru Sagawa
賢 佐川
Keijirou Takechi
武市 啓司郎
Hiroshi Arai
荒居 廣
Shigeru Horii
滋 堀井
Yoshiharu Osaki
吉晴 大崎
Hideo Nishiyama
西山 英夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Panasonic Holdings Corp
Original Assignee
Agency of Industrial Science and Technology
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Matsushita Electric Industrial Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP5973688A priority Critical patent/JPH01233328A/en
Publication of JPH01233328A publication Critical patent/JPH01233328A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE:To measure accurately the brightness which a man senses, by determining an equivalent luminance in a mesopic vision region from a scotopic vision luminance, a photopic vision luminance and an adaptation coefficient determined from the two luminances. CONSTITUTION:A luminance information, a color information and a scotopic vision luminance value of an object of measurement are measured by four kinds of photosensors 1-4. A chromaticity (x, y) of the object of measurement is determined by a chromaticity computing element 5 from an output of the photosensor among them which corresponds to color matching functions X, Y and Z. From this chromaticity a correction coefficient C is determined for brightness/luminance conversion by a correction coefficient C calculating element 6. From this correction coefficient C and a luminance LP, an equivalent luminance Lbp in a photopic vision region is determined by an equivalent luminance Lbp calculating element 7. An equivalent luminance Lbs in a scotopic vision region is determined from a scotopic vision luminance Ls by an equivalent luminance Lbs calculating element 8. An adaptation coefficient (a) in a mesopic vision region is determined from Lbs and Lbp by an adaptation coefficient (a) calculating element 9, and an equivalent luminance Lbm in the mesopic vision region is determined from the coefficient (a), Lbp and Lbs by an equivalent luminance Lbm calculating element 10.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、薄明視領域において、人間が感ずる明るさを
正確に測定する測光装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a photometric device that accurately measures the brightness perceived by humans in the mesopic vision region.

従来の技術 従来、測光系では反射体あるいは発光体の明るさを表わ
すのに標準比視感度Vλに合致した感度特性をもつ受光
器で測定した値(輝度)が用いられてきた。このVλは
、明所視領域における人間の眼の分光感度特性の代表値
として決定されたものである。
BACKGROUND OF THE INVENTION Conventionally, photometric systems have used values (luminance) measured by a light receiver having sensitivity characteristics matching the standard luminous efficiency Vλ to express the brightness of a reflector or a light emitter. This Vλ is determined as a representative value of the spectral sensitivity characteristics of the human eye in the photopic region.

近年、照明分野では、種々の視環境に対応した測光が必
要となってきた。このうち、暗所視領域では暗所視視感
度関数V′λが定められており、標準比視感度Vλと暗
所視視感度関数V′λは、555n1mの波長で関連づ
けられ、定量的に定められている。
In recent years, in the field of lighting, there has been a need for photometry that is compatible with various visual environments. Among these, the scotopic luminosity function V'λ is determined in the scotopic vision region, and the standard ratio luminous efficiency Vλ and the scotopic luminosity function V'λ are related at a wavelength of 555n1m, and quantitatively It is determined.

薄明視領域は、明所視領域と暗所視領域の中間に位置し
、明るさのレベルによって人間の眼の分光感度特性が変
化し、暗所視領域に近づくにしたがって最大感度を示す
波長が短波長側ヘシフトしてゆく。このため、色光に対
する人間の感ずる明るさがVλやV′λの分光感度特性
を持つ受光器で測定した値(測光量)に一致しない。
The mesopic vision region is located between the photopic vision region and the scotopic vision region, and the spectral sensitivity characteristics of the human eye change depending on the brightness level. Shifting towards shorter wavelengths. For this reason, the brightness perceived by humans with respect to colored light does not match the value (photometric amount) measured by a light receiver having spectral sensitivity characteristics of Vλ and V'λ.

薄明視領域での明るさを計測する1つの方法として、第
8図に示すように、標準比視感度Vλと暗所視視感度関
数V′λの分光感度特性を持つ受光器の測定結果を薄明
視における明るさレベル(輝度レベル)に応じて重みを
つけて加算し、薄明視領域における明るさを計測する方
法がある。第8図で、11は第9図に示す標準比視感度
Vλの分光感度特性をもつVλ受光器、12は第9図に
示す暗所視視感度関数V′λの分光感度特性をもつV′
λ受光器、13は薄明視レベル検出部、14は演算部で
ある。第8図でVλ受光器11の出力をり、、V’λ受
光器12の出力をL2 とすると、演算部14では、薄
明視領域での明るさLmを次式を用いて求める。
One method for measuring brightness in the mesopic region is to use the measurement results of a photodetector with spectral sensitivity characteristics of standard luminous efficiency Vλ and scotopic luminous efficiency function V′λ, as shown in Figure 8. There is a method of adding weights according to the brightness level (luminance level) in mesopic vision and measuring the brightness in the mesopic vision region. In FIG. 8, 11 is a Vλ receiver having a spectral sensitivity characteristic of the standard luminous efficiency Vλ shown in FIG. ′
13 is a mesopic level detection section, and 14 is a calculation section. In FIG. 8, when the output of the Vλ photodetector 11 is expressed as L2, and the output of the V'λ photodetector 12 is expressed as L2, the arithmetic unit 14 calculates the brightness Lm in the mesopic vision region using the following equation.

Lm=nL、 + (1−n )拳L2   −・・−
(1)ここでnは薄明視における明るさレベルにより決
まる係数で薄明視レベル検出部13で算出される。
Lm=nL, + (1-n) fist L2 -・・-
(1) Here, n is a coefficient determined by the brightness level in mesopic vision and is calculated by the mesopic vision level detection unit 13.

一般的には、Vλ受光器11の出力値、すなわち輝度値
が用いられる。
Generally, the output value of the Vλ photodetector 11, that is, the brightness value is used.

発明が解決しようとする課題 第8図に示す方法では、従来の測光量にくらべ人間が感
ずる明るさに近づいた値を計測するととができるが、標
準比視感度Vλも暗所視視感度関数V′λも、測定対象
の色彩に対する人間の感度特性が考慮されていないので
、色光に対しては測定値と人間の感ずる明るさにずれが
生ずる。さらに、色光が複合光(単色光が合成された光
)の場合、人間の目の色光に対する感度が単色光に対す
る人間の眼の感度の合成として表わせないこと、すなわ
ち、色光に対し人間の目の感度には加法性が成立しない
ことが明らかにされている。
Problems to be Solved by the Invention The method shown in FIG. 8 can measure values closer to the brightness perceived by humans than conventional photometric quantities, but the standard relative luminous efficiency Vλ is also a scotopic luminous efficiency function. V'λ also does not take into account the sensitivity characteristics of humans to the colors of the object to be measured, so there is a discrepancy between the measured value and the brightness perceived by humans for colored light. Furthermore, when colored light is composite light (light that is a combination of monochromatic lights), the sensitivity of the human eye to colored light cannot be expressed as a composite of the sensitivity of the human eye to monochromatic light. It has been shown that additivity does not hold for sensitivity.

このように、薄明視領域では、従来の測光量や、視感度
関数の合成方法では、一般の視環境下に存在する複合光
に対して、人間の感ずる明るさを正確に計測することが
できない。
In this way, in the mesopic vision region, it is not possible to accurately measure the brightness perceived by humans in the complex light that exists in general visual environments using conventional photometric quantities and methods of synthesizing visibility functions. .

課題を解決するだめの手段 本発明は上記課題を解決するもので、薄明視領域で人間
が感ずる明るさを正確に測定する実用的な測光装置を提
供することを目的とする。
Means for Solving the Problems The present invention solves the above problems and aims to provide a practical photometric device that accurately measures the brightness perceived by humans in the mesopic vision region.

本発明は、等色関数” + 3’ r ”と暗所視視感
度関数V′λに対応した分光感度を有する4種類の受y
tS器と、x+ L ”父尤岳yt候枕3nた已農頂昇
郡と、色度演算部に接続された補正係数G演出部と、補
正係数C算出部と前記y受光器に接続されたLbp算出
部と、前記V′λ受光器に接続されたLbs算出部と、
Lbp算出部とLbs算出部に接続され順応係数a算出
部と、順応係数a算出部とLbp算出部、Lbs算出部
に接続されたLbm算出部とから構成される装置であり
、測定対象の色彩情報を考慮して薄明視領域における人
間の感ずる明るさを等価輝度として計測するものである
The present invention uses four types of receivers having spectral sensitivities corresponding to the color matching function "+3'r" and the scotopic luminosity function V'λ.
The tS device, the x+L "father yutake yt indicator 3n, the correction coefficient G production section connected to the chromaticity calculation section, the correction coefficient C calculation section and the y light receiver connected an Lbp calculation unit connected to the V′λ light receiver;
This device is composed of an adaptation coefficient a calculation section connected to the Lbp calculation section and the Lbs calculation section, and an Lbm calculation section connected to the adaptation coefficient a calculation section, the Lbp calculation section, and the Lbs calculation section, and the device calculates the color of the object to be measured. The brightness perceived by humans in the mesopic vision area is measured as equivalent brightness, taking information into consideration.

作用 本発明は、4種類の受光器で測定対象の輝度情報8色彩
情報および暗所視輝度値を測定する。このうち、等色関
数’s 7 * ”に対応する受光器の出力から測定対
象の色度(x、y)を求める。色度(x、y)から明る
さ/輝度変換のため補正係数Cを求める。この補正係数
Cと輝度とから明所視領域における等価輝度Lbpを求
める。暗所視輝度から暗所視領域における等価輝度Lb
sを求める。
Function The present invention measures luminance information, 8 color information, and scotopic luminance values of a measurement object using four types of light receivers. Among these, the chromaticity (x, y) of the measurement target is determined from the output of the light receiver corresponding to the color matching function 's 7 *''.The correction coefficient C is used for brightness/luminance conversion from the chromaticity (x, y). Calculate the equivalent brightness Lbp in the photopic region from this correction coefficient C and the brightness. From the scotopic brightness, calculate the equivalent brightness Lb in the scotopic region.
Find s.

LbsとLbpとから薄明視領域における順応係°数a
を求め、順応係数aとLbp 、 Lbsとから薄明視
領域における等価輝度Lbmを求める。
Adaptation coefficient a in the mesopic region from Lbs and Lbp
is obtained, and the equivalent luminance Lbm in the mesopic region is obtained from the adaptation coefficient a, Lbp, and Lbs.

実施例 第1図は本発明の実施例における測光装置の構成図を示
すものである。第1図において、1はX受光器、2は7
受光器、3はi受光器、4はV′λ受光器、6は色度演
算部、6は補正係数C算出部、。
Embodiment FIG. 1 shows a configuration diagram of a photometric device in an embodiment of the present invention. In Figure 1, 1 is the X receiver, 2 is 7
3 is an i-receiver, 4 is a V'λ receiver, 6 is a chromaticity calculation section, and 6 is a correction coefficient C calculation section.

7はLbp算出部、8はLbs算出部、9は順応係数a
算出部、10はLbm算出部である。第2図は第1図に
おけるi受光器の具体的な構成を示したもので、1!L
はx1受光器、1bはx2受光器、1Cは加算回路であ
る。さらにi1受光器11Lは感度特性補正フィルタ1
fLj、受光素子11L2と演算増幅器1a3の電流−
電圧変換増幅回路で構成する。なおx2受光器’ bJ
 受光器2、” 受光器3、v′λ受光器4は分光特性
補正フィルタの特性が異なるだけで、構成は11  受
光器1aと同一である。第3図は第1図に示す補正係数
C算出部6の具体的な構成を示すもので、コード化回路
(1)eaとコード化回路?)6bおよび補正係数Cテ
ーブルメモ1J5Qとから構成する。第4図は第1図に
おける順応係数a算出部9の具体的な構成を示すもので
、t、bp範囲制限部9 a 、 Lbs範囲制限部9
 b 、 Lbpコード化回路90 、 Lbsコード
化回路9d、順応係数aテーブルメモIJ 96から構
成する。第7図は第1図におけるLbm算出部10の具
体的な構成を示すもので、Lbp信号系に対応した指数
分離部(1)10a、対数変換部(1)10C1加算部
(1)101と、Lbs信号系に対応した指数分離部(
2)10b、対数変換部(2)10d、加算部(2)1
0fと、(1−a )算出部1o1、乗算部(1)10
g、乗算部(2)1oh、加算部(3)10j、指数分
離部(3)10h、逆対数変換部1olと合成部10m
とから構成する。以上のように構成された本実施例の測
光装置について以下その動作を説明する。
7 is the Lbp calculation section, 8 is the Lbs calculation section, and 9 is the adaptation coefficient a.
The calculation unit 10 is an Lbm calculation unit. Figure 2 shows the specific configuration of the i-receiver in Figure 1.1! L
is an x1 photoreceiver, 1b is an x2 photoreceiver, and 1C is an adder circuit. Furthermore, the i1 receiver 11L has a sensitivity characteristic correction filter 1.
fLj, current of light receiving element 11L2 and operational amplifier 1a3 -
Consists of a voltage conversion amplifier circuit. In addition, x2 receiver' bJ
The photoreceiver 2, the photoreceiver 3, and the v'λ photoreceiver 4 have the same configuration as the photoreceiver 1a, except for the characteristics of the spectral characteristic correction filter. This shows the specific configuration of the calculation unit 6, which is composed of an encoding circuit (1) ea, an encoding circuit (?) 6b, and a correction coefficient C table memo 1J5Q. This shows the specific configuration of the calculation unit 9, which includes a t, bp range restriction unit 9a, and an Lbs range restriction unit 9.
b, an Lbp encoding circuit 90, an Lbs encoding circuit 9d, and an adaptation coefficient a table memo IJ 96. FIG. 7 shows a specific configuration of the Lbm calculation unit 10 in FIG. , an exponential separation unit corresponding to the Lbs signal system (
2) 10b, logarithmic conversion section (2) 10d, addition section (2) 1
0f, (1-a) calculation unit 1o1, multiplication unit (1) 10
g, multiplication section (2) 1oh, addition section (3) 10j, exponent separation section (3) 10h, anti-logarithmic transformation section 1ol and synthesis section 10m
It consists of The operation of the photometric device of this embodiment configured as described above will be described below.

測定対象からの入射光を第9図に示すような分光感度特
性を持つ4種類の受光器(i受光器、7受光器、i受光
器、V′λ受光器)で受光する。測定対象の輝度を測定
するには、レンズ系あるいは遮光筒で測定範囲を限定し
、受光器へ入射する光を制限することで実現できる。こ
のうち、i受光器は第9図に示すように、波長6001
mを境界として、短波長側と長波長側に分離し、短波長
側をi、受光器、長波長側を12受光器で受光する、i
受光器では、i、受光器1aの出力と12受光器1bか
らの出力を第9図で示す相対感度で重み付けし、加算回
路1Cで加算する。各受光器では第9図に示す分光感度
特性を感度補正フィルタの透過特性と、受光素子の分光
感度特性とを組合せて実現し、演算増幅器の電流−電圧
変換増幅回路で電圧値に変換する。
Incident light from the object to be measured is received by four types of light receivers (i-receiver, 7-receiver, i-receiver, and V'λ receiver) having spectral sensitivity characteristics as shown in FIG. The brightness of the object to be measured can be measured by limiting the measurement range using a lens system or a light-shielding tube, and by limiting the amount of light that enters the light receiver. Among these, the i-receiver has a wavelength of 6001 as shown in FIG.
The light is separated into short wavelength side and long wavelength side with m as the boundary, and the short wavelength side is received by i and 12 photoreceivers, and the long wavelength side is received by 12 photoreceivers, i.
In the light receiver, the outputs of the light receivers 1a and 12 are weighted by relative sensitivities shown in FIG. 9, and added by an adding circuit 1C. In each photoreceiver, the spectral sensitivity characteristic shown in FIG. 9 is realized by combining the transmission characteristic of the sensitivity correction filter and the spectral sensitivity characteristic of the light receiving element, and is converted into a voltage value by a current-voltage conversion amplifier circuit of an operational amplifier.

i受光器1からの出力X、7受光器2からの出力Y、i
受光器3からの出力Zは色度演算部6に供給される。色
度演算部6では色度(x、y)を次式から求める。
i Output X from receiver 1, 7 Output Y from receiver 2, i
The output Z from the light receiver 3 is supplied to the chromaticity calculation section 6. The chromaticity calculation unit 6 calculates the chromaticity (x, y) from the following equation.

x=X/(X+Y+Z)   ・・・・・・・・・@)
y = Y / (X + Y + Z )   ・・
・・・・・・・(3)さらに、色度演算部6の出力(x
、y)は補正係数G算出部6に供給される。補正係数C
算出部6では、色彩情報の生理的効果により、測定値を
人間の感ずる明るさに変換するための補正係数を求める
。この補正係数としては、カナダ国立研究所(NRC)
のWareとCowan (以下W&Cと略す)が提案
している係数が一般的である。本実施例では、WAC式
より算出される補正係数を用いた。補正係数Cは測定対
象からの色彩情報により、人間の感ずる明るさと輝度と
の補正値を求めるものであり、(4)式で求める。なお
、(4)式は570nl11で規格化したものである。
x=X/(X+Y+Z) ・・・・・・・・・@)
y = Y / (X + Y + Z)...
(3) Furthermore, the output of the chromaticity calculation section 6 (x
, y) are supplied to the correction coefficient G calculation section 6. Correction coefficient C
The calculation unit 6 calculates a correction coefficient for converting the measured value into brightness perceived by humans based on the physiological effect of the color information. This correction factor is based on the National Research Institute of Canada (NRC).
The coefficients proposed by Ware and Cowan (hereinafter referred to as W&C) are common. In this embodiment, a correction coefficient calculated from the WAC formula was used. The correction coefficient C is used to obtain a correction value for brightness and luminance perceived by humans based on color information from the measurement object, and is obtained using equation (4). Note that equation (4) is normalized to 570nl11.

補正係数G算出部6では、(4)式の演算を短時間で実
施するため、補正係数(テーブルメモIJ 80を有す
る。色度演算部6からの出力(色度) ” + yは、
0〜1の範囲の数値のみをとる。そこで、色度Xは補正
係数算出部6のコード化回路(1)6&に供給され、1
00ステップ以上に分割しコード化する。たとえば、1
00ステツプに分割したとすると、0〜o、olを1つ
のグループとし代表値をXQl 0.01〜0.02を
次のグループとし、代表値をXO2として取り扱う。同
様に、色度yもコード化回路(2)6bでコード化し、
各グループごとに1つの代表値Xci + 3’ciを
定めておく。コード化された色度の代表値xc:t l
 ’lclにより(4)式を用いてあらかじめ補正係数
Cを算出し、補正係数Gテーブルメモリに記憶させてお
く。計測時は、測定値(x、y)でコード化しテーブル
メモリをアクセスし、補正係数Cを読み出す。この結果
、測定値(x、y)を補正係数G算出部6に入力すれば
、計測時に(4)式の演算を実施することなく短時間に
補正係数Gを求めることができる。コード化回路am、
abの分割数は、求めようとする補正係数Cの精度に合
わせ設定すればよい。分割数を多くすると補正係数Cの
算出精度は向上するが、一般的に100分割以上あれば
算出精度は十分である。
The correction coefficient G calculation unit 6 has a correction coefficient (table memo IJ 80) in order to perform the calculation of equation (4) in a short time.The output (chromaticity) from the chromaticity calculation unit 6 is
Only values in the range 0 to 1 are accepted. Therefore, the chromaticity X is supplied to the encoding circuit (1) 6 & of the correction coefficient calculation unit 6,
Divide into 00 steps or more and code. For example, 1
If it is divided into 00 steps, 0 to o and ol are treated as one group, and the representative value is XQl. 0.01 to 0.02 is treated as the next group, and the representative value is treated as XO2. Similarly, the chromaticity y is also encoded by the encoding circuit (2) 6b,
One representative value Xci + 3'ci is determined for each group. Representative value of coded chromaticity xc: t l
The correction coefficient C is calculated in advance using equation (4) using 'lcl, and is stored in the correction coefficient G table memory. At the time of measurement, the measured values (x, y) are coded, the table memory is accessed, and the correction coefficient C is read out. As a result, by inputting the measured values (x, y) to the correction coefficient G calculating section 6, the correction coefficient G can be calculated in a short time without performing the calculation of equation (4) during measurement. encoding circuit am,
The number of divisions of ab may be set according to the accuracy of the correction coefficient C to be obtained. The calculation accuracy of the correction coefficient C improves as the number of divisions increases, but generally, the calculation accuracy is sufficient if there are 100 or more divisions.

次に、補正係数C算出部6の出力Cと7受光器2の出力
YはLbp算出部7に供給される。y受光器は第9図に
示す標準比視感度Vλの分光感度特性をもっているので
y受光器2の出力Yは輝度値Lpを表わす。Lbp算出
部7ではくに)式にもとづいて明所視における等価輝度
Lbpを求める。
Next, the output C of the correction coefficient C calculation section 6 and the output Y of the seven light receivers 2 are supplied to the Lbp calculation section 7. Since the Y light receiver has a spectral sensitivity characteristic of the standard luminous efficiency Vλ shown in FIG. 9, the output Y of the Y light receiver 2 represents the luminance value Lp. The Lbp calculation unit 7 calculates the equivalent luminance Lbp in photopic vision based on the following formula.

Lbp = Lp −G       ・・・・川・・
(6)一方、V′λ受光器4からの出力LstはLbs
算出部8に供給される。暗所視視感度関数は、明るさレ
ベルの低い領域に対応した人間の眼の分光感度特性で、
色彩情報は少ない。このため、暗所視領域における等価
輝度Lbsは(6)式を用いて算出する。
Lbp = Lp -G ・・・River...
(6) On the other hand, the output Lst from the V'λ photodetector 4 is Lbs
It is supplied to the calculation unit 8. The scotopic luminosity function is the spectral sensitivity characteristic of the human eye that corresponds to areas with low brightness levels.
There is little color information. Therefore, the equivalent luminance Lbs in the scotopic region is calculated using equation (6).

Lbs=に*Ls  (K:定数)  −−−−・−(
6)次に、Lbp算出部7の出力Lbpと、Lbs算出
部8の出力Lbsは順応係数a算出部9に供給される。
Lbs=to*Ls (K: constant) −−−−・−(
6) Next, the output Lbp of the Lbp calculation unit 7 and the output Lbs of the Lbs calculation unit 8 are supplied to the adaptation coefficient a calculation unit 9.

順応係数1算出部では、Lbp範囲限定部9!LとLb
s範囲限定部9bでLbp値とLbg値の取りうる範囲
を限定する。LbpおよびLbsの対数値はLbpコー
ド化回路9CとLbgコード化回路9dでコード化し、
コード化された値で順応係数aテーブルメモリを読み出
す。順応係数a算出部9における順応係数&の算出方法
について、第6図、第6図を用いて説明する。第6図は
順応係数aと等価輝度(Lb)の関係を示す曲線で20
数名の薄明視レベルの色光における観測実験により求め
たものであり、横軸が等価輝度、縦軸が順応係数aであ
る。
In the adaptation coefficient 1 calculating section, the Lbp range limiting section 9! L and Lb
The range limiter 9b limits the range that the Lbp value and Lbg value can take. The logarithmic values of Lbp and Lbs are encoded by an Lbp encoding circuit 9C and an Lbg encoding circuit 9d,
Read the adaptation coefficient a table memory with the encoded value. A method of calculating the adaptation coefficient & in the adaptation coefficient a calculation section 9 will be explained using FIGS. Figure 6 is a curve showing the relationship between adaptation coefficient a and equivalent luminance (Lb).
This was obtained through observation experiments conducted by several people using colored light at the level of mesopic vision, with the horizontal axis representing the equivalent luminance and the vertical axis representing the adaptation coefficient a.

順応係数&は、明所視領域における等価輝度の測定値L
bpiの対数値log Lbpiと、暗所視における等
価輝度の測定値Lbsiの対数値log Lbsiを直
線で結び、順応係数aの曲線との交点ムに対する値ai
として求めることができる。順応係数aは第6図に示す
ように、図式的に簡単に求めることができるが、計算に
よシ求めるには、複雑な計算を実施する必要がある。さ
らに、LbpiとLbsiとも原理的には0〜o:1の
数値を取り得るため、計算対象範囲が広く計算が複雑と
なる。そこで、Lbs 、 Lbpの取り得る範囲を薄
明視領域を中心に限定する。Lbsの計算対象範囲をL
bs範囲限定部9 b テO0OO30d/m”≦Lb
s≦300cd7/iに限定し、Lbp範囲限定部9a
でLbpの計算対象範囲を、0.000141 cd/
’irr≦Lbp≦14.I Cd/rn”に限定し、
10の変化範囲とした。一般に薄明視領域となる範囲は
、0.003 cd/rn” 〜14,1 cd/in
”の変化範囲であるので、1o5の変化範囲を十分カバ
ーできる範囲である。LbpおよびLbgの範囲を上記
に限定しても測定上大きな影響のないことを第6図をも
とに説明する。
The adaptation coefficient & is the measured value L of the equivalent luminance in the photopic region
Logarithmic value of bpi Lbpi and logarithmic value log of the measured value of equivalent luminance in scotopic vision Lbsi Connect Lbsi with a straight line, and the value ai for the intersection point m with the curve of adaptation coefficient a
It can be found as The adaptation coefficient a can be easily obtained graphically as shown in FIG. 6, but it is necessary to perform complicated calculations to obtain it by calculation. Furthermore, since both Lbpi and Lbsi can take numerical values from 0 to o:1 in principle, the calculation target range is wide and calculation becomes complicated. Therefore, the possible range of Lbs and Lbp is limited to the mesopic region. The calculation range of Lbs is L
bs range limited part 9 b TeO0OO30d/m”≦Lb
Limited to s≦300cd7/i, Lbp range limiting part 9a
The calculation range of Lbp is set to 0.000141 cd/
'irr≦Lbp≦14. I Cd/rn”,
There were 10 change ranges. Generally, the range of mesopic vision is 0.003 cd/rn" to 14.1 cd/in
Since the range of change is ``, it is a range that can sufficiently cover the range of change of 1o5.It will be explained with reference to FIG. 6 that even if the ranges of Lbp and Lbg are limited to the above, there is no major influence on measurement.

第6図はLbp 、 Lbsに対し順応係数aがどのよ
うな値をとるかを示したものである。第6図で横軸はL
bs、縦軸はLbpである。第6図において、0.00
3cd/iy≦Lbg≦3000 d/m” テ、0、
oo0141Cd/rrf≦Lbp≦14.1 cd/
iの場合(領域イ)は、順応係数aを第6図に示す曲線
a=&1に従って求める0 0.0030(1/rm≦
LbsでLbp ) 14.10(!/rn’の場合(
領域口)は、順応係数亀の曲線とLbpiとLbsiと
を結ぶ直線が交差せず、a=oとなる。同様にLbp≦
14.10(27m”以下で、Lbs<o、oo3Cd
/mIの範囲では(領域ハ)、a=1となるo O,0
03ca/静≦Lbs≦3ooCd/mlで、Lbp 
<o、o OO141ca7yの場合(領域二)は、理
論的にはa=aiとなるが、aが1に近い値をとるため
a=1と定める。
FIG. 6 shows what value the adaptation coefficient a takes with respect to Lbp and Lbs. In Figure 6, the horizontal axis is L
bs, and the vertical axis is Lbp. In Figure 6, 0.00
3cd/iy≦Lbg≦3000 d/m” Te, 0,
oo0141Cd/rrf≦Lbp≦14.1 cd/
In the case of i (area A), the adaptation coefficient a is determined according to the curve a=&1 shown in Fig. 6.
Lbs in Lbp) 14.10(!/rn' (
In the area (region opening), the curve of the adaptation coefficient turtle and the straight line connecting Lbpi and Lbsi do not intersect, and a=o. Similarly, Lbp≦
14.10 (27m” or less, Lbs<o, oo3Cd
/mI (area C), a=1 o O,0
03ca/static≦Lbs≦3ooCd/ml, Lbp
<o, o In the case of OO141ca7y (region 2), theoretically a=ai, but since a takes a value close to 1, a=1 is set.

0.000141 cd/mI≦Lbp≦14.I C
(1/rn”でLbs 〉3o o cl/m”の場合
(領域ホ)は、同様に理論的にはa=aiとなるがaが
0に近い値となるためa=Oと定める。なお、Lbp 
) 14.I Cd/in”で、Lbs <0.003
cd/rn’(7)領域(領域へ)とLbp <0.0
00141cd /rn”でLbs) 300 cd/
inJの領域(領域ト)は、Lbpが第9図のVλにも
とづいて求めたものであり、Lbsが第9図V′λにも
とづいて求めた値であり、これらの波長範囲が重なり合
っているため、測定時にこのような条件はほとんど存在
しないと考えられる。したがって、領域へおよびトを測
定範囲外とする。この結果、Lbp 、 Lbsの変化
に対し、薄明視領域内で八をほぼ正確に求めることがで
きる。
0.000141 cd/mI≦Lbp≦14. IC
(If Lbs > 3o o cl/m" at 1/rn" (area E), theoretically a = ai, but a is close to 0, so a = O. , Lbp
) 14. I Cd/in”, Lbs <0.003
cd/rn' (7) region (to region) and Lbp <0.0
00141cd/rn"Lbs) 300cd/
In the region of inJ (area G), Lbp is the value obtained based on Vλ in Fig. 9, and Lbs is the value obtained based on V'λ in Fig. 9, and these wavelength ranges overlap. Therefore, it is thought that such conditions almost never exist during measurement. Therefore, the areas to and from are excluded from the measurement range. As a result, with respect to changes in Lbp and Lbs, it is possible to almost accurately determine 8 within the mesopic vision region.

次に順応係数a算出部9の出力とLbp算出部7および
Lbs算出部8の出力は、Lbm算出部1oに供給され
る。Lbm算出部10では(′7)式にしたがって薄明
視における等価輝度Lbmを求める。
Next, the output of the adaptation coefficient a calculation section 9 and the outputs of the Lbp calculation section 7 and the Lbs calculation section 8 are supplied to the Lbm calculation section 1o. The Lbm calculation unit 10 calculates the equivalent luminance Lbm in mesopic vision according to equation ('7).

Lbm −Lbp  −Lbs(” )   −−−−
−・−(7)Lbm算出部1oではヴ)式を(8)式の
形に変化させてLbmを求める。
Lbm −Lbp −Lbs(” ) -----
-.- (7) The Lbm calculation unit 1o changes equation (V) to equation (8) to obtain Lbm.

log Lb+++ = a JogLbS−)−(1
−t)logLbp・・・・・・・・・(8) Ltoa算出部10に入力されだLbp信号は、指数分
離部(1)101Lで仮数部(絶対値が1未t4)と指
数部(整数)に分離される。仮数部はさらに指数分離部
(1)101Lから対数変換部(1)1oCに供給され
、指数部は加算部(1)100へ供給される。対数変換
部(1)100では仮数部を対数に変換する。対数変換
された仮数部は加算部(1)1015で指数部と加算さ
れ、log Lbp値を求める。Lbsも同様に指数分
離部(2) 10 b、対数変換部(2)10d、加算
部(2)10 f’でlog Lbsを求める。順応係
数a算出部9の出力値aは、(1−a)算出部1oiで
(1−a )値を求める。乗算部(1)10gでは加算
部(1)1oOの出力log Lbpと(1−a)算出
部10iの出力(1−a )とから(8)式の第2項(
1−a )−JogLbpを求める。また、乗算部(2
)1ohでは、加算部(2)1ofの出力log Lb
gとa値から、(8)式第1項の& −log Lb、
s を求める。さらに、加算部(3) 10 jでは、
乗算部(1)10gの出力と乗算部(2) 10 hの
出力とから(8)式右辺を算出する。加算部(3) 1
0 jの出力は指数分離部(3) 10 kに供給され
、整数部分(指数部)と小数部分(仮数部)に分離する
log Lb+++ = a JogLbS-)-(1
-t) logLbp (8) The Lbp signal input to the Ltoa calculation unit 10 is separated by the exponent separation unit (1) 101L into the mantissa part (absolute value is less than 1 t4) and the exponent part ( integers). The mantissa part is further supplied from the exponent separation unit (1) 101L to the logarithmic conversion unit (1) 1oC, and the exponent part is supplied to the addition unit (1) 100. A logarithmic conversion unit (1) 100 converts the mantissa into a logarithm. The logarithmically converted mantissa part is added to the exponent part in an adder (1) 1015 to obtain a log Lbp value. Similarly, log Lbs is obtained using an exponent separation section (2) 10b, a logarithmic conversion section (2) 10d, and an addition section (2) 10f'. The output value a of the adaptation coefficient a calculation unit 9 is determined by the (1-a) calculation unit 1oi. The multiplier (1) 10g calculates the second term (
1-a) - Find JogLbp. In addition, the multiplication section (2
) 1oh, the output log Lb of the adder (2) 1of
From the g and a values, & −log Lb in the first term of equation (8),
Find s. Furthermore, in the addition section (3) 10j,
The right side of equation (8) is calculated from the output of the multiplier (1) 10g and the output of the multiplier (2) 10h. Addition section (3) 1
The output of 0j is supplied to an exponent separation unit (3) 10k, and is separated into an integer part (exponent part) and a decimal part (mantissa part).

この結果、仮数部は0から1までの数値のみを取り、逆
対数変換部101で逆対数変換される。逆対数変換部1
01の出力と、指数分離部(3) 10 kの指数出力
は合成部1011に供給され、薄明視領域における等価
輝度Lbm値を求める。このようにすることにより、L
bm算出部10で対数変換あるいは逆対数変換される数
値はどちらも絶対値で0〜1の範囲となり、テーブルメ
モリを用いてあらかじめ対数値、逆対数値を計算し記憶
しておけば、少ないメモリ容量でかつ短時間で対数・逆
対数変換ができる。
As a result, the mantissa takes only numerical values from 0 to 1, and is subjected to anti-logarithm transformation in the anti-logarithm transformation unit 101. Anti-logarithm transformation unit 1
The output of 01 and the index output of index separation unit (3) 10k are supplied to a synthesis unit 1011, and the equivalent luminance Lbm value in the mesopic region is determined. By doing this, L
The numerical values that are logarithmically transformed or antilogarithmically transformed in the bm calculation unit 10 are both in the range of 0 to 1 in absolute value, and if the logarithmic value and antilogarithm value are calculated and stored in advance using table memory, the memory will be saved. Logarithm/anti-logarithm conversion can be performed in a short time and with a small capacity.

上記実施例では、測定対象の色彩による補正係数Cの算
出を、WlC式により求めたが、これと同様のモデル式
を用いて算出しても良い。また、器の出力を用いて代用
しても実用的にさしつかえない。
In the above embodiment, the correction coefficient C based on the color of the object to be measured is calculated using the WIC formula, but it may be calculated using a model formula similar to this. Furthermore, it is practically acceptable to use the output of the device as a substitute.

上記実施例では薄明視領域に限定したが、(8)式より
明らかなようにa=OとすればLbm = Lbpとな
り、a=1とすればLbm = Lbsとなり、(8)
代用いた本発明では明所視領域から暗所視領域に至る範
囲にわたって等価輝度を測定することができる。
In the above embodiment, it was limited to the mesopic vision region, but as is clear from equation (8), if a=O, Lbm = Lbp, and if a=1, Lbm = Lbs, (8)
In the present invention, the equivalent luminance can be measured over the range from the photopic region to the scotopic region.

また、暗所視領域における等価輝度Lbs算出は、暗所
視領域では色彩情報の寄与が小さいため、Lbsの算出
を暗所視輝度に定数Kを乗する方法としたが、色彩情報
を考慮してLbsを求めれば、さらに人間の感ずる明る
さに近い測定ができ、測定精度が向上する。
In addition, when calculating the equivalent brightness Lbs in the scotopic vision area, the contribution of color information is small in the scotopic vision area, so Lbs was calculated by multiplying the scotopic brightness by a constant K. If Lbs is determined by using the brightness, it is possible to measure the brightness even closer to the brightness perceived by humans, and the measurement accuracy is improved.

発明の効果 本発明の測光装置は、等色関数X、7.Zと暗所視視感
度関数V′λの分光感度を有する4種類の受光器と、X
、7.Z受光器に接続された色度演算部と、色度演算部
に接続された補正係数G算出部と、補正係数C算出部と
前記y受光器に接続され明所視領域における等価輝度L
bp算出部と、前記V′λ受光器に接続され暗所視領域
における等価輝度を求めるLbg算出部と、Lbp算出
部とLbs算出部に接続され順応係数1算出部と、順応
係数a算出部とLbp算出部、Lbs算出部に接続され
薄明視領域における等価輝度を求めるLbm算田部を設
けることにより、薄明視領域において測定対象の色彩情
報を計測し、これをもとに輝度値を補正し、等価輝度と
して人間の感ずる明るさを測定することができ、実用的
効果は大きい。
Effects of the Invention The photometric device of the present invention has color matching functions X, 7. Four types of receivers having spectral sensitivities of Z and scotopic luminosity function V'λ,
,7. A chromaticity calculation section connected to the Z light receiver, a correction coefficient G calculation section connected to the chromaticity calculation section, a correction coefficient C calculation section connected to the Y light receiver, and a correction coefficient G calculation section connected to the y light receiver to calculate equivalent luminance L in the photopic region.
a bp calculating section, an Lbg calculating section connected to the V'λ light receiver and calculating equivalent luminance in a scotopic vision region, an adaptation coefficient 1 calculating section connected to the Lbp calculating section and the Lbs calculating section, and an adaptation coefficient a calculating section. By providing an Lbm calculation section that is connected to the Lbp calculation section and the Lbs calculation section and calculates the equivalent luminance in the mesopic region, the color information of the measurement target is measured in the mesopic region, and the luminance value is corrected based on this. , it is possible to measure the brightness perceived by humans as equivalent luminance, which has great practical effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における測光装置のブロック図
、第2図は同装置のi受光器の具体的なブロック図、第
3図は同補正係数C算出部の具体的なブロック図、第4
図は同補正係数C算出部の具体的なブロック図、第6図
は同順応係数&の曲線を示す特性図、第6図は同順応係
数aの算出方法を示す順応係数aと明所視領域における
等価輝度Lbp 、暗所視領域における等価輝度Lbs
との関係を示す図、第7図は四Lbm算出部の具体的な
ブロック図、第8図は従来の測光装置のブロック図、第
9図は4種類の受光器の相対感度を示す特性図である。 1・・・・・・讐受光器、2・・・・・・i受光器、3
・・・・・・i受光器、4・・・・・・V′λ受光器、
6・・・・・・色度演算部、6・・・・・・補正係数C
算出部、7・・・・・・Lbp算出部、8・・・・・・
Lbs算出部、9・・・・・・順応係数a算出部、1o
・・・・・・Lbm算出部。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第2
図 第 3 図 第 4 図 N 5 図 α003              300Lbs 
(cd/mす 第8図
FIG. 1 is a block diagram of a photometric device according to an embodiment of the present invention, FIG. 2 is a specific block diagram of the i-receiver of the same device, and FIG. 3 is a specific block diagram of the correction coefficient C calculating section. Fourth
The figure is a concrete block diagram of the correction coefficient C calculating section, FIG. 6 is a characteristic diagram showing the curve of the adaptation coefficient &, and FIG. Equivalent luminance Lbp in the region, equivalent luminance Lbs in the scotopic region
Figure 7 is a concrete block diagram of the four Lbm calculation unit, Figure 8 is a block diagram of a conventional photometer, and Figure 9 is a characteristic diagram showing the relative sensitivity of four types of light receivers. It is. 1... i-receiver, 2...i-receiver, 3
......i photoreceiver, 4...V'λ photoreceiver,
6...Chromaticity calculation unit, 6...Correction coefficient C
Calculation unit, 7... Lbp calculation unit, 8...
Lbs calculation unit, 9...adaptation coefficient a calculation unit, 1o
...Lbm calculation section. Name of agent: Patent attorney Toshio Nakao and 1 other person 2nd
Figure 3 Figure 4 Figure N 5 Figure α003 300Lbs
(cd/m Figure 8

Claims (4)

【特許請求の範囲】[Claims] (1)等色関数@x@、@y@、@z@と暗所視視感度
関数V′λの分光感度を有する4種類の受光器と、これ
らの@x@、@y@、@z@受光器に接続した色度演算
部と、この色度演算部に接続され人間の感ずる明るさの
うち、色による係数を求める補正係数C算出部と、この
補正係数C算出部と前記@y@受光器に接続され、明所
視領域における等価輝度を求めるLbp算出部と、前記
V′λ受光器に接続され暗所視領域における等価輝度を
求めるLbs算出部と、前記Lbp算出部とLbs算出
部に接続され、明るさのレベルに応じて順応係数aを求
める順応係数a算出部と、順応係数a算出部と前記Lb
p算出部、Lbs算出部に接続され logLbm=alogLbs+(1−a)logLb
pにもとづき薄明視領域における等価輝度を求めるLb
m算出部とから構成した測光装置。
(1) Four types of light receivers with spectral sensitivities of color matching functions @x@, @y@, @z@ and scotopic luminosity function V'λ, and these @x@, @y@, @ z@ A chromaticity calculation unit connected to the light receiver, a correction coefficient C calculation unit connected to this chromaticity calculation unit and which calculates a coefficient depending on the color of the brightness perceived by humans, and this correction coefficient C calculation unit and the @ an Lbp calculation unit connected to the y@ light receiver and which calculates the equivalent brightness in the photopic region; an Lbs calculation unit connected to the V′λ light receiver and which calculates the equivalent brightness in the scotopic region; and the Lbp calculation unit. an adaptation coefficient a calculation section that is connected to the Lbs calculation section and calculates an adaptation coefficient a according to the brightness level, an adaptation coefficient a calculation section and the Lb
It is connected to the p calculation section and the Lbs calculation section and logLbm=alogLbs+(1-a)logLb
Lb to find the equivalent luminance in the mesopic region based on p
A photometric device comprising an m calculation section.
(2)順応係数1算出部が、Lbp≦14.1cd/m
^2と、Lbs≧0.03cd/m^2の入力値に対し
て動作する請求項、記載の測光装置。
(2) The adaptation coefficient 1 calculation unit calculates that Lbp≦14.1cd/m
^2 and Lbs≧0.03cd/m^2.
(3)順応係数a算出部が、LbpおよびLbsの10
^5の入力範囲に対して動作する請求項2記載の測光装
置。
(3) The adaptation coefficient a calculation section is 10 of Lbp and Lbs.
3. The photometric device according to claim 2, which operates over an input range of ^5.
(4)順応係数a算出部が、Lbs>300cd/m^
2で、0.000141cd/m^2≦Lbp≦14.
1cd/m^2に対し、a=0となり、Lbp<0.0
00141cd/m^2で0.003cd/m^2≦L
bs≦300cd/m^2に対しa=1となり、0.0
00141cd/m^2≦Lbp≦14.1cd/m^
2で0.003cd/m^2≦Lbs≦300cd/m
^2に対しaを理論式により求める構成とした請求項3
記載の測光装置。
(4) The adaptation coefficient a calculation unit determines that Lbs>300cd/m^
2, 0.000141cd/m^2≦Lbp≦14.
For 1cd/m^2, a=0 and Lbp<0.0
00141cd/m^2 and 0.003cd/m^2≦L
For bs≦300cd/m^2, a=1 and 0.0
00141cd/m^2≦Lbp≦14.1cd/m^
2 0.003cd/m^2≦Lbs≦300cd/m
Claim 3, wherein a for ^2 is determined by a theoretical formula.
Photometric device as described.
JP5973688A 1988-03-14 1988-03-14 Photometric apparatus Pending JPH01233328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5973688A JPH01233328A (en) 1988-03-14 1988-03-14 Photometric apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5973688A JPH01233328A (en) 1988-03-14 1988-03-14 Photometric apparatus

Publications (1)

Publication Number Publication Date
JPH01233328A true JPH01233328A (en) 1989-09-19

Family

ID=13121795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5973688A Pending JPH01233328A (en) 1988-03-14 1988-03-14 Photometric apparatus

Country Status (1)

Country Link
JP (1) JPH01233328A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010511162A (en) * 2006-11-30 2010-04-08 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Beam detector with adjustable spectral sensitivity
EP2407760A1 (en) * 2010-07-12 2012-01-18 Panasonic Electric Works Co., Ltd. Photometry device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MESOPIC PHOTOMETRY SYSTEM BASED ON BRIGHTNESS PERCEPTION=1987 *
MODELS OF HETEROCHROMATIC BRIGHTNESS MATCHING=1986 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010511162A (en) * 2006-11-30 2010-04-08 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Beam detector with adjustable spectral sensitivity
US8274657B2 (en) 2006-11-30 2012-09-25 Osram Opto Semiconductors Gmbh Radiation detector
EP2407760A1 (en) * 2010-07-12 2012-01-18 Panasonic Electric Works Co., Ltd. Photometry device
CN102331298A (en) * 2010-07-12 2012-01-25 松下电工株式会社 Photometry device
US8562132B2 (en) 2010-07-12 2013-10-22 Panasonic Corporation Photometry device
CN102331298B (en) * 2010-07-12 2014-12-31 松下电器产业株式会社 Photometry device

Similar Documents

Publication Publication Date Title
US7667845B2 (en) Color evaluation apparatus and method
Bahcall Self-consistent determinations of the total amount of matter near the sun
US4673807A (en) Automatic range control method for an optical density/dot percentage measuring device
JPH05253256A (en) Decision of color of translucent object, such as teeth and apparatus therefor
CN105577982A (en) Image processing method and terminal
CA2050799A1 (en) Shift amount floating-point calculating circuit with a small amount of hardware and rapidly operable
JPH01233328A (en) Photometric apparatus
JPH02107928A (en) Photometer
Cowley et al. A spectroscopic method for determining the luminosities of spiral galaxies and estimating their stellar population
Stenger An analytic function which is an approximate characteristic function
US4739459A (en) Automatic range control method for an optical density/dot percentage measuring device
CN108053451A (en) Color computational methods and system under a kind of state based on mesopic vision
SU934210A2 (en) Inclination angle measuring device
JPH0670581B2 (en) Optical receiver spectral responsivity evaluation method
JPS60159635A (en) Method for measuring turbidity
SU1049733A2 (en) Straight line slope encoder
SU1291932A1 (en) Device for determining gain factor of object
CN115167798A (en) Quantum dot optical simulation method, device and system and computer readable storage medium
Kim The visual surface brightness method and the radii of dwarf Cepheids
JP2004132770A (en) Photodetection device, projector, photodetection method, program and recording medium
Kinney et al. Background Due to Scattered Light'
JPH0949765A (en) Device for measuring color
Golay Two-Dimensional Photometric Representations of Stars
SU932209A1 (en) Digital strain-gauge meter
JPH05172869A (en) Spectrum analyzer