JPH01233088A - Gas shield arc welding wire for high tensile strength steel - Google Patents

Gas shield arc welding wire for high tensile strength steel

Info

Publication number
JPH01233088A
JPH01233088A JP5929188A JP5929188A JPH01233088A JP H01233088 A JPH01233088 A JP H01233088A JP 5929188 A JP5929188 A JP 5929188A JP 5929188 A JP5929188 A JP 5929188A JP H01233088 A JPH01233088 A JP H01233088A
Authority
JP
Japan
Prior art keywords
toughness
wire
less
amount
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5929188A
Other languages
Japanese (ja)
Inventor
Kozo Yamashita
山下 砿三
Kiyoshi Kato
清 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5929188A priority Critical patent/JPH01233088A/en
Publication of JPH01233088A publication Critical patent/JPH01233088A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3066Fe as the principal constituent with Ni as next major constituent

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)

Abstract

PURPOSE:To improve toughness at cryogenic temp. by containing the specific ratio of C, Si, Mn, Ni, Al, Ti, P, S, N and the balance Fe component in a wire and if necessary, adding the prescribed quantities of Cr and Mo. CONSTITUTION:The component composition of the gas shield arc welding wire for high tensile strength steel is regulated to 0.01-0.08wt.% C, 0.10-0.30% Si, 0.80-2.00% Mn, 2.50-8.00% Ni, 0.010-0.030% Al, 0.02-0.10% Ti <=0.010% P and S, <=0.008% N and the balance Fe. Further, if necessary, <=2.0% Cr and <=1.0% Mo are added. As Si content is reduced to the lower limit and Al and Ti are added to suitable quantity, in the welded metal at the time of welding, the micro structure is made to fine and the toughness in the matrix can be improved. By this method, the toughness at the welded part in the temp. range of -80--100 deg.C is improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明ば、Ar−C0□混合ガスをシールドガスとして
使用するガスシールドアーク溶接用ワイヤに関し、詳し
くは60kgf/−縁取上の高張力鋼のガスシールドア
ーク溶接に使用し、特に低温じん性の優れた溶着金属を
得るためのワイヤに係わるものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a gas-shielded arc welding wire using an Ar-C0□ mixed gas as a shielding gas, and more specifically, a high-tensile steel wire on a 60 kgf/- edge. This invention relates to a wire used in gas-shielded arc welding to obtain a deposited metal with particularly excellent low-temperature toughness.

(従来の技術) 近年、海洋エネルギー資源の開発を目的として大型の海
洋構造物が建造されている。これらの構造物には、60
kgf/−縁取上の高張力鋼が多く使用され、極地近海
で使用されるため一80’C〜−100°C程度の低温
域でのしん性が必要とされている。また、これらの構造
物の製造にあたっては溶接の高能率化という観点からガ
スシールドアーク溶接用ワイヤ(以下ワイヤ)の開発が
望まれていた。
(Prior Art) In recent years, large offshore structures have been constructed for the purpose of developing ocean energy resources. These structures include 60
kgf/- High tensile strength steel on the edging is often used, and since it is used in polar seas, it is required to have toughness in the low temperature range of about -80'C to -100°C. Furthermore, in the manufacture of these structures, there has been a desire for the development of gas-shielded arc welding wires (hereinafter referred to as wires) from the viewpoint of increasing the efficiency of welding.

従来、この様な用途にはNiを3〜4%程度含む低Ni
系ワイヤが使用されていた。しかし、これらの低Ni系
ワイヤでは一80°C〜−100°C程度の低温域での
しん性を確保するのは難しく、そのため低入熱で多層盛
り溶接を行いしん性を確保するという方法を取っていた
が、溶接欠陥が発生し易くまた溶接能率が低下するとい
う問題があり改善が求められていた。
Conventionally, low Ni containing about 3 to 4% Ni has been used for such applications.
system wire was used. However, it is difficult to ensure toughness in the low temperature range of -80°C to -100°C with these low-Ni wires, so a method to ensure toughness is to perform multilayer welding with low heat input. However, there were problems in that welding defects were likely to occur and welding efficiency was reduced, and improvements were needed.

上記問題を解決する一例として、特公昭6〇−5795
3号公報において、高張力鋼のガスシールドアーク溶接
用IIワイヤについて、従来の方法ではミクロ組織の微
細化は不十分で、/V及びTiの酸可溶性成分と酸不溶
性成分とに分けて各々規定することによりミクロ組織を
微細化し、じん性を改善するという発明が開示されてい
る。しかし、この方法では一80’C以下の低温域にお
けるしん性を改善するには不十分であった。
As an example of solving the above problem,
In Publication No. 3, regarding II wire for gas-shielded arc welding of high-strength steel, the microstructure is insufficiently refined by conventional methods, and the acid-soluble and acid-insoluble components of /V and Ti are defined separately. An invention has been disclosed in which the microstructure is made finer and the toughness is improved by doing so. However, this method was insufficient to improve the toughness in the low temperature range of -80'C or less.

この原因としては、ミクロ組織の改善が十分達成されて
いなかった事、及び−80°C〜−100’C程度の低
温域における溶接金属のしん性改善にはマトリックスそ
のもののしん性改善が必要である事が考えられる。
The reason for this is that the microstructure has not been sufficiently improved, and the toughness of the matrix itself needs to be improved in order to improve the toughness of weld metal in the low temperature range of -80°C to -100'C. I can think of something.

一方、Ar−CO7混合ガスをシールドガスとして使用
するガスシールドアーク溶接において酸化性雰囲気下で
ガスシールドアーク溶接を行うには、Si、 Mn等の
強膜酸剤を添加し溶接金属の酸化と、これに起因するブ
ローホールの発生を防止する必要がある。
On the other hand, in order to perform gas shield arc welding in an oxidizing atmosphere using Ar-CO7 mixed gas as a shielding gas, a sclerotic acid agent such as Si or Mn is added to oxidize the weld metal. It is necessary to prevent blowholes from occurring due to this.

この例として特開昭55−16072号公報には、Si
は溶接金属の脱酸元素として必要で、微量では脱酸不足
となって多量のブローホールが発生するので少なくとも
0.3%以上必要であると開示されている。
As an example of this, Japanese Unexamined Patent Publication No. 16072/1987 describes Si
is necessary as a deoxidizing element for the weld metal, and it is disclosed that at least 0.3% or more is required since deoxidizing becomes insufficient and a large number of blowholes occur if a small amount is used.

このように、ガスシールドアーク溶接においては必然的
にSiを含み、Siがフェライト中に固溶しマトリック
スのしん性そのものを阻害するためしん性改善効果が十
分得られなかったと考えられる。
As described above, gas-shielded arc welding inevitably contains Si, and it is thought that Si dissolves in the ferrite and inhibits the toughness of the matrix itself, so that a sufficient effect of improving toughness cannot be obtained.

(発明が解決しようとする課題) 本発明者等は、ガスシールドアーク溶接における脱酸及
びミクロ組織微細化について種々検耐を行なった結果、
従来のStを0.3〜0.4%程度含むワイヤでは単に
AI、Tiのみを添加しただけではミクロ組織は微細化
されず、AI、Tiを適量複合添加し、かつSi量を極
限まで低下せしめる事により初めて達成できるものであ
る事を見いだした。
(Problems to be Solved by the Invention) As a result of various tests conducted by the present inventors regarding deoxidation and microstructure refinement in gas shielded arc welding,
In conventional wires containing about 0.3 to 0.4% St, the microstructure cannot be refined by simply adding AI and Ti, so we added appropriate amounts of AI and Ti in combination and reduced the amount of Si to the limit. I discovered that it is something that can only be achieved by forcing yourself to do it.

本発明は、ガスシールドアーク溶接における脱酸方法を
改善する事により溶接金属ミクロ組織の微細化を達成し
た事、及びSi量を低下せしめてマトリックスのしん性
を改善した事により著しく低温じん性を改善せしめた高
張力鋼用ガスシールドアーク溶接用ワイヤを提供するも
のである。
The present invention has achieved a finer microstructure of the weld metal by improving the deoxidation method in gas-shielded arc welding, and has significantly improved low-temperature toughness by reducing the amount of Si and improving the toughness of the matrix. The present invention provides an improved gas-shielded arc welding wire for high-strength steel.

(課題を解決するための手段) 本発明の要旨は、下記の通りである。(Means for solving problems) The gist of the invention is as follows.

(1)重量%で、C: 0.01〜0.08%、SAl
:0、10〜0.30%、Mn: 0.80〜2.00
%、M:0.010〜0.030%、TAl:0.02
〜0.10%、NAl:2.50〜8600%、P:0
.010%以下、S: 0.010%以下、N : 0
.008%以下を含有し残部が実質的に鉄よりなる事を
特徴とする高張力鋼用ガスシールドアーク溶接用ワイヤ
(1) In weight%, C: 0.01-0.08%, SAl
:0, 10~0.30%, Mn: 0.80~2.00
%, M: 0.010-0.030%, TAL: 0.02
~0.10%, NAl: 2.50-8600%, P: 0
.. 0.010% or less, S: 0.010% or less, N: 0
.. 1. A gas-shielded arc welding wire for high-strength steel, characterized in that the wire contains 0.008% or less and the remainder is substantially iron.

(2)重量%で、c:o、o1〜0゜08%、SAl:
0.1.0〜0.30%、Mn: 0.80〜2.00
%、Al:0、010〜0.030%、TAl:0.0
2〜0.10%、NAl:2.50〜8.00%、P 
: 0.010%以下、S:o、oto%以下、N:0
.008%以下を含有すると共にCr : 2.0%以
下、Mo : 1.0%以下のうち一種または二種を含
有し、残部が実質的に鉄よりなる事を特徴とする高張力
鋼用ガスシールドアーク溶接用ワイヤ。
(2) In weight%, c:o, o1~0°08%, SAl:
0.1.0-0.30%, Mn: 0.80-2.00
%, Al: 0, 010-0.030%, TAl: 0.0
2-0.10%, NAl: 2.50-8.00%, P
: 0.010% or less, S: o, oto% or less, N: 0
.. 008% or less, and one or two of Cr: 2.0% or less, Mo: 1.0% or less, and the remainder substantially consists of iron. Wire for shielded arc welding.

即ち、本発明の最大の特徴とするところは、Si。That is, the greatest feature of the present invention is that Si.

ql、 AI、 Tiによる複合脱酸とする事により、
ALTiによるミクロ組織微細化効果を最大限に利用し
、かつSi量を極力低下せしめてマトリックスのしん性
そのものを改善する事により低温じん性を改善したとこ
ろにある。
By performing complex deoxidation using ql, AI, and Ti,
The low-temperature toughness has been improved by making the most of the microstructure refinement effect of ALTi and reducing the amount of Si as much as possible to improve the toughness of the matrix itself.

従来のガスシールドアーク溶接用ワイヤにおいてばSi
を主脱酸剤として使用するため、脱酸過程において低融
点のMn−5ilicateが生成し、これがAI、T
iの酸化物と結合し大形の複合介在物を形成し、ミクロ
組織微細化に有効な核生成サイトを減少させるため、ミ
クロ組織の微細化が十分に達成されず、その結果じん性
改善効果が得られなかったことに着目して、本発明をな
した。
In conventional gas shielded arc welding wire, Si
Since Mn-5 ilicate is used as the main deoxidizing agent, low melting point Mn-5 ilicate is generated during the deoxidation process, and this
Because it combines with the oxide of i to form large composite inclusions and reduces the number of nucleation sites that are effective for microstructure refinement, the microstructure cannot be refined sufficiently, resulting in a poor toughness improvement effect. The present invention was created by paying attention to the fact that the above was not obtained.

(作 用) 以下に、本発明における成分組成限定理由について述べ
る。
(Function) The reasons for limiting the component composition in the present invention will be described below.

C: 0.01〜0.08% Cは強度を調整するため適量添加されるが、0.01%
未満では十分な強度を得ることができず、また0、08
%を超えると耐割れ性が著しく低下するので、0.01
〜0.08%とした。
C: 0.01-0.08% C is added in an appropriate amount to adjust the strength, but 0.01%
If it is less than 0.08, sufficient strength cannot be obtained;
If it exceeds 0.01%, the cracking resistance will decrease significantly.
~0.08%.

SAl:0.IO〜0.30% Siば、通常主脱酸剤として使用され、ブローホールの
発生を防止し健全な溶接部を得るため、−船釣には0.
4%以上添加する。しかし、適量のへl。
SAl: 0. IO ~ 0.30% Si is usually used as the main deoxidizer to prevent blowholes and obtain a sound weld.
Add 4% or more. However, a suitable amount of hel.

Tiを複合添加すると、Siの脱酸能を補い、ブローホ
ールの発生を抑制できる。第1表に示す2種の成分系の
ワイヤについて、第2表、第2図の溶接条件及び開先形
状を用いて検討した例を第1図に示す。AI、Tiを含
まないBグループのワイヤでは、Si量が0.3%未満
の範囲では脱酸が不足しブローホールが発生する。一方
、AI、Tiを複合添加したAグループでは、Si量が
0.1%までブローホールは発生せず、AI、Tiを複
合添加することにより脱酸が改善される。
Addition of Ti in combination can supplement the deoxidizing ability of Si and suppress the generation of blowholes. FIG. 1 shows an example in which wires having two types of composition shown in Table 1 were studied using the welding conditions and groove shapes shown in Table 2 and FIG. In group B wires that do not contain AI or Ti, deoxidation is insufficient and blowholes occur when the Si content is less than 0.3%. On the other hand, in group A in which AI and Ti are added in combination, blowholes do not occur until the amount of Si is 0.1%, and deoxidation is improved by adding AI and Ti in combination.

また、SiNが0.30%を超えると、Al、 Tiに
よるミクロ組織微細化効果を損ない、さらにはマトリッ
クスの固溶硬化の原因となり、じん性を著しく低下させ
るので0.10〜0.30%とした。
Furthermore, if SiN exceeds 0.30%, the microstructure refinement effect of Al and Ti will be impaired, and furthermore, it will cause solid solution hardening of the matrix, which will significantly reduce the toughness. And so.

Mn: 0.80〜2.00% Mnは脱酸を補助し溶融金属の流動性を改善する上で効
果があり、又強度、じん性を改善する上でも効果がある
。しかし、0.80%未満では溶融金属の流動性が不足
し溶接欠陥が発生し易く、又2.00%を超えると耐割
れ性を著しく損なうので、0.80〜2.00%とした
Mn: 0.80-2.00% Mn is effective in assisting deoxidation and improving the fluidity of molten metal, and is also effective in improving strength and toughness. However, if it is less than 0.80%, the fluidity of the molten metal will be insufficient and welding defects will easily occur, and if it exceeds 2.00%, the cracking resistance will be significantly impaired, so it is set at 0.80 to 2.00%.

P:0.010%以下 Pは、フェライト中に固溶しマトリックスのしん性を損
なうのみならず、0.010%を超えるとNiとの低融
点化合物を形成し粒界を著しくぜい化し耐割れ性を低下
させるので0.010%以下とした。
P: 0.010% or less P not only dissolves in ferrite and impairs the toughness of the matrix, but if it exceeds 0.010%, it forms a low melting point compound with Ni, significantly embrittles grain boundaries and impairs durability. Since it reduces crackability, it is set to 0.010% or less.

s:o、o1o%以下 Sは、Pと同様に0.010%を超えるとNiとの低融
点化合物を形成し耐割れ性を著しく損なうので0.01
0%以下とした。
s: o, o1o% or less S, like P, if it exceeds 0.010%, it forms a low melting point compound with Ni and significantly impairs cracking resistance, so 0.01
It was set to 0% or less.

A1: 0.010〜0.030% 八へば強膜酸剤であり、5ilJ低下による脱酸力の低
下を補い、溶着金属の酸化を妨げ健全な溶接部を得る上
で最も効果があり、0.05%以上であれば溶接部の健
全性を保てる。
A1: 0.010-0.030% It is a strong film acid agent, and is most effective in compensating for the decrease in deoxidizing power due to a decrease in 5ilJ, preventing oxidation of the weld metal, and obtaining a sound weld. If it is 0.05% or more, the integrity of the welded part can be maintained.

又、 Tiと共にミクロ組織を微細化し、じん性を改善
する上では、更に成分量の調整が必要である。
Further, in order to refine the microstructure and improve toughness together with Ti, further adjustment of the amount of the components is required.

第3表に示す2種のグループのワイヤについて第2表、
第2図の溶接条件、開先形状による検討例を第3図に示
す。Si量が0.2%であるCグループのワイヤでは、
AI量が0.010%から0.030%の範囲において
低温じん性が著しく改善されることが明かである。又、
0.03%を超えるとへ!酸化吻かや、激に増加して、
大形の複合酸化物を作すしん性を低下させる。
Table 2 for the two groups of wires shown in Table 3;
Fig. 3 shows an example of the study using the welding conditions and groove shape shown in Fig. 2. In the C group wire with Si content of 0.2%,
It is clear that the low temperature toughness is significantly improved when the AI amount is in the range of 0.010% to 0.030%. or,
If it exceeds 0.03%! Oxidized proboscis increases dramatically,
Forms large complex oxides and reduces oxidation properties.

一方、Si量が0.4%であるDグループのワイヤはM
量の増加に比例してじん性が低下する。即ち、Si量が
過剰であるため、AI、Tiによるミクロ組織微細化効
果が得られず、又マトリックスのしん性が低下するため
、低温じん性が改善されないことが明かである。
On the other hand, wires of group D with Si content of 0.4% are M
Toughness decreases in proportion to increase in amount. That is, it is clear that because the amount of Si is excessive, the effect of microstructure refinement by AI and Ti cannot be obtained, and the toughness of the matrix is reduced, so that low-temperature toughness is not improved.

従って、へ!量は0.010〜0.030%とした。Therefore, to! The amount was 0.010-0.030%.

TAl:0.02〜0.10% TIはAIと共に、強膜酸剤であり溶着金属の酸化を妨
げ、かつTi酸化物の生成により溶接金属のミクロ組織
を微細化し、じん性改善に効果がある。
TAl: 0.02 to 0.10% TI, along with AI, is a strong oxidizing agent that prevents the oxidation of the weld metal, and refines the microstructure of the weld metal by forming Ti oxides, which is effective in improving toughness. be.

Si量低下による脱酸を補うためには0.01%以上で
よいが、しかし0.02%未満ではミクロ組織微細化に
よるしん性改善効果が得られず、又0.10%を超える
と炭化物を形成し、著しくしん性を損なうので0.02
〜0.10%とした。
In order to compensate for the deoxidation caused by a decrease in the amount of Si, the amount may be 0.01% or more, but if it is less than 0.02%, the effect of improving the toughness due to microstructure refinement cannot be obtained, and if it exceeds 0.10%, carbide 0.02 as it forms and significantly impairs the stiffness.
~0.10%.

Nt:2.50〜8.00% Niは溶接金属のマトリックスのしん性改善に有効で、
−80〜−100°C程度におけるしん性改善に不可欠
な成分である。しかし、2.50%未満ではじん性改善
の効果が不足し、8.00%を超えると耐割れ性が著し
く低下するので2.50〜8.00%とした。
Nt: 2.50-8.00% Ni is effective in improving the toughness of the weld metal matrix.
It is an indispensable component for improving rosacea at temperatures of about -80 to -100°C. However, if it is less than 2.50%, the effect of improving toughness is insufficient, and if it exceeds 8.00%, the cracking resistance will be significantly reduced, so it is set at 2.50 to 8.00%.

N : 0.008%以下 Nは、0.015%以下であれば溶接部の健全性を損な
う事はないが、Af、Tiとの窒化物を形成し易く、そ
のため脱酸及びミクロ組織微細化に寄与するAI、 T
i量を減少させる結果、著しくしん性を低下させるので
0.008%を上限とした。
N: 0.008% or less N does not impair the integrity of the weld if it is 0.015% or less, but it tends to form nitrides with Af and Ti, so it is difficult to deoxidize and refine the microstructure. AI that contributes to T
As a result of decreasing the amount of i, the toughness is significantly lowered, so the upper limit was set at 0.008%.

P:0.010%以下 Pは、フェライト中に固溶しマトリックスのしん性を損
なうのみならず、0.010%を超えるとNiとの低融
点化合物を形成し粒界を著しくぜい化し耐割れ性を低下
させるので0.010%以下とした。
P: 0.010% or less P not only dissolves in ferrite and impairs the toughness of the matrix, but if it exceeds 0.010%, it forms a low melting point compound with Ni, significantly embrittles grain boundaries and impairs durability. Since it reduces crackability, it is set to 0.010% or less.

S : 0.010%以下 Sは、Pと同様にo、 o i o%を超えるとNiと
の低融点化合物を形成し耐割れ性を著しく損なうので0
.010%以下とした。
S: 0.010% or less Like P, S exceeds o, o io%, forms a low melting point compound with Ni, and significantly impairs cracking resistance, so it should not be 0.
.. 0.010% or less.

また、Cr、 Moは溶接金属の焼き入れ性を高め、強
度、じん性を高めるために使用するが、Crば2.0%
を超えると溶接金属を著しく硬化させ、じん性及び耐割
れ性を低下させるので2.0%以下とした。
In addition, Cr and Mo are used to improve the hardenability of weld metal and increase its strength and toughness.
If it exceeds 2.0%, the weld metal will be significantly hardened and the toughness and cracking resistance will decrease, so it was set at 2.0% or less.

又、Moは1.0%を超えるとMo炭化物を生成し、溶
接金属を硬化させ、著しくしん性を損なうので1.0%
以下とした。
In addition, if Mo exceeds 1.0%, Mo carbide will be generated, hardening the weld metal and significantly impairing the toughness, so Mo should be set at 1.0%.
The following was made.

以下、実施例により本発明を具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to Examples.

(実施例1) 第4表に示すワイヤを用いて、第5表及び第4図に示す
溶接条件、開先形状により溶接継手を作製した。この溶
接継手から引張試験片及びシャルピー衝撃試験片を採取
し、機械試験を行なった結果を第6表に示した。
(Example 1) Using the wires shown in Table 4, welded joints were produced under the welding conditions and groove shapes shown in Table 5 and FIG. 4. Tensile test pieces and Charpy impact test pieces were taken from this welded joint, and mechanical tests were conducted. The results are shown in Table 6.

又、−101°Cの吸収エネルギーが4.8kg1m以
上あれば良好な低温じん性を有するとした。
Also, if the absorbed energy at -101°C is 4.8 kg/m or more, it is considered to have good low-temperature toughness.

第4表においてE1〜E4が本発明ワイヤであり、F1
〜F5が本発明の限定外にある比較ワイヤである。
In Table 4, E1 to E4 are wires of the present invention, and F1
~F5 is a comparison wire that is outside the scope of the present invention.

主合金成分量及びSi、 AI、 Ti量を本発明の限
定内としたE1〜E4のワイヤは、いずれも良好な低温
じん性を得る。
Wires E1 to E4 in which the main alloy component content and the amounts of Si, AI, and Ti are within the limits of the present invention all obtain good low-temperature toughness.

一方、Ni量が本発明の範囲以下でへ/量が本発明の範
囲を超える比較ワイヤF1は、へl量が過度となりミク
ロ組織微細化効果が得られず、又Ni量が不足しマトリ
ックスのしん性が不足するためしん性が低い。
On the other hand, in comparison wire F1, in which the Ni amount is below the range of the present invention and the amount exceeds the range of the present invention, the amount of Ni is excessive and the microstructure refinement effect cannot be obtained, and the amount of Ni is insufficient and the matrix is It has low lentiginous properties due to lack of lenticulence.

C量が本発明の範囲を超え、AI量が本発明の範囲以下
である比較ワイヤF2は、C量が過多となり溶接金属が
過度に硬化し、かつIVによるミクロ組織微細化効果が
得られないためしん性が低い。
Comparative wire F2, in which the amount of C exceeds the range of the present invention and the amount of AI is below the range of the present invention, has an excessive amount of C and the weld metal is excessively hardened, and the microstructure refinement effect by IV cannot be obtained. Testability is low.

St量が本発明の範囲を超え、Mn量が本発明の範囲以
下である比較ワイヤF3では、本発明の特徴であるAI
、Ti複合添加によるしん性改善効果が得られず、じん
性は低い。
Comparative wire F3, in which the St content exceeds the range of the present invention and the Mn content is below the range of the present invention, has an AI characteristic of the present invention.
, the toughness was low because the effect of improving the toughness due to Ti composite addition was not obtained.

P、S量及びN量が本発明の範囲を超える比較ワイヤF
4は、低融点化合物の生成及びN量が過度となるためし
ん性が低い。
Comparison wire F whose P, S and N amounts exceed the range of the present invention
No. 4 has low toughness because low melting point compounds are produced and the amount of N is excessive.

又、Si、 Ti量が本発明の範囲を超える比較ワイヤ
F5は、マトリックスのしん性が改善されない事、及び
Ti量が過多となりTi炭化物が析出し、溶接金属が著
しく硬化するため十分なしん性が得られない。
In addition, comparison wire F5, in which the amount of Si and Ti exceeds the range of the present invention, does not have sufficient toughness because the toughness of the matrix is not improved and the amount of Ti is excessive, causing Ti carbide to precipitate and the weld metal to harden significantly. is not obtained.

このように、本発明ワイヤにより始めてミクロ組織の微
細化が達成され、更にSi量を極限まで低下させマトリ
ックスのしん性を改善した効果が相乗して、しん性が改
善されることが明かである。
As described above, it is clear that the wire of the present invention achieves a finer microstructure for the first time, and furthermore, the effect of reducing the amount of Si to the maximum and improving the toughness of the matrix is combined to improve the toughness. .

(実施例2) 第7表に示す80kgf/++j級ワイヤについて、第
8表及び第5図に示す溶接条件、開先形状により溶接継
手を作製した。この溶接継手から引張試験片及びシャル
ピー衝撃試験片を採取し、機械試験を行なった結果を第
9表に示した。
(Example 2) Welded joints were prepared using the 80 kgf/++j class wire shown in Table 7 under the welding conditions and groove shapes shown in Table 8 and FIG. 5. Tensile test pieces and Charpy impact test pieces were taken from this welded joint, and mechanical tests were conducted. The results are shown in Table 9.

又、−80°Cの吸収エネルギーが4.8kg1m以上
あれば良好な低温しん性を有するとした。
Further, if the absorbed energy at -80°C is 4.8 kg/m or more, it is assumed that the material has good low temperature resistance.

第7表においてG1−G4が本発明ワイヤであり、H1
〜J(3が本発明の限定外にある比較ワイヤである。
In Table 7, G1-G4 are the wires of the present invention, and H1
~J(3 is a comparison wire outside the scope of the present invention).

Si、 IV、 Ti量を本発明の限定内とし、Cr、
 Moを含む本発明ワイヤG1及びG4、Crのみを含
むワイヤG2、Moのみを含むワイヤG3共すべて良好
なしん性を示している。
The amounts of Si, IV, and Ti are within the limits of the present invention, and Cr,
Wires G1 and G4 of the present invention containing Mo, wire G2 containing only Cr, and wire G3 containing only Mo all exhibit good toughness.

しかるに、Niが本発明の範囲以下でありMo量が本発
明の範囲を超える比較ワイヤH1ではNi量が不足する
ためマトリックスのしん性が不足し、かつMo量が過多
であるため溶接金属が硬化するため低温じん性が不足す
る。
However, in the comparison wire H1 in which Ni is below the range of the present invention and Mo content is above the range of the present invention, the toughness of the matrix is insufficient due to the insufficient Ni content, and the weld metal is hardened due to the excessive Mo content. Therefore, low-temperature toughness is insufficient.

Si量が本発明の範囲を超えCr量が本発明の範囲を超
える比較ワイヤH2は、Si量が過多となり7トリック
スのしん性を低下させ、かつCr量が過多となるため溶
接金属が著しく硬化するため低温じん性が不足する。
Comparative wire H2, in which the amount of Si exceeds the range of the present invention and the amount of Cr exceeds the range of the present invention, has an excessive amount of Si, which reduces the tenacity of 7 trix, and an excessive amount of Cr, which causes the weld metal to harden significantly. Therefore, low-temperature toughness is insufficient.

又、Au、Ti量が本発明の範囲より低く、更にN量が
本発明の限定外にある比較ワイヤH3では、ミクロ組織
微細化によるしん性改善効果が得られないため低温じん
性が不足する。
In addition, in comparison wire H3, in which the amounts of Au and Ti are lower than the range of the present invention, and the amount of N is further outside the limits of the present invention, the effect of improving toughness due to microstructure refinement cannot be obtained, resulting in insufficient low-temperature toughness. .

このように、本発明ワイヤにより始めてミクロ組織の微
細化が達成され、更にSi量を極限まで低下させマトリ
ックスのしん性を改善した効果が相乗して、じん性が改
善されることが明かである。
As described above, it is clear that the wire of the present invention achieves a finer microstructure for the first time, and furthermore, the effect of reducing the amount of Si to the maximum and improving the toughness of the matrix is combined to improve the toughness. .

(発明の効果) 以上に示したように、本発明ワイヤにより初めて−80
〜−100°C程度の低温域でのしん性を改善でき、溶
接能率を低下させずかつ良好な低温じん性を確保できる
(Effects of the invention) As shown above, the wire of the present invention has a -80
Toughness can be improved in a low temperature range of about -100°C, and good low-temperature toughness can be ensured without reducing welding efficiency.

従って、海洋構造物など60 kgf/mm2級以上の
高張力鋼を使用し、かつ苛酷な条件下で使用される構造
物の溶接加工において溶接部の品質向上、溶接能率の改
善が図れる。
Therefore, it is possible to improve the quality of welded parts and welding efficiency in welding of structures such as offshore structures that use high tensile strength steel of 60 kgf/mm2 class or higher and are used under severe conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は溶接部の健全性に及ぼすSi、 /V、 Ti
量の影響を示す図、第2図は第1図で用いた開先形状を
示す正面図、第3図は溶接金属のしん性に及ぼすSi、
 A/、 Ti量の影響を示す図、第4図、第5図は本
発明の実施例で用いた開先形状を示す正面図である。 0     θ2    θ4   0.6   0.
8   10Si  量  (尻2) 第2図 第3図 0     0.02    004    0θ6 
  0.08   0./θAA  量    (wt
%)
Figure 1 shows the effects of Si, /V, and Ti on the integrity of welds.
Figure 2 is a front view showing the groove shape used in Figure 1, Figure 3 is the effect of Si on the toughness of weld metal,
A/, Figures 4 and 5 showing the influence of the amount of Ti are front views showing the groove shapes used in the examples of the present invention. 0 θ2 θ4 0.6 0.
8 10Si amount (bottom 2) Fig. 2 Fig. 3 0 0.02 004 0θ6
0.08 0. /θAA amount (wt
%)

Claims (2)

【特許請求の範囲】[Claims] (1)重量%で、C:0.01〜0.08%、Si:0
.10〜0.30%、 Mn:0.80〜2.00%、 Ni:2.50〜8.00%、 Al:0.010〜0.030%、 Ti:0.02〜0.10%、 P:0.010%以下、 S:0.010%以下、 N:0.008%以下、 を含有し、残部が実質的に鉄よりなる事を特徴とする高
張力鋼用ガスシールドアーク溶接用ワイヤ。
(1) In weight%, C: 0.01-0.08%, Si: 0
.. 10-0.30%, Mn: 0.80-2.00%, Ni: 2.50-8.00%, Al: 0.010-0.030%, Ti: 0.02-0.10% , P: 0.010% or less, S: 0.010% or less, N: 0.008% or less, and the remainder is substantially iron. Wire for.
(2)重量%で、C:0.01〜0.08%、Si:0
.10〜0.30%、 Mn:0.80〜2.00%、 Ni:2.50〜8.00%、 Al:0.010〜0.030%、 Ti:0.02〜0.10%、 P:0.010%以下、 S:0.010%以下、 N:0.008%以下、 を含有すると共に Cr:2.0%以下、 Mo:1.0%以下、 のうち一種または二種を含有し、残部が実質的に鉄より
なる事を特徴とする高張力鋼用ガスシールドアーク溶接
用ワイヤ。
(2) In weight%, C: 0.01-0.08%, Si: 0
.. 10-0.30%, Mn: 0.80-2.00%, Ni: 2.50-8.00%, Al: 0.010-0.030%, Ti: 0.02-0.10% , P: 0.010% or less, S: 0.010% or less, N: 0.008% or less, Cr: 2.0% or less, Mo: 1.0% or less, one or two of the following. A wire for gas-shielded arc welding for high-strength steel, characterized in that it contains seeds and the remainder consists essentially of iron.
JP5929188A 1988-03-15 1988-03-15 Gas shield arc welding wire for high tensile strength steel Pending JPH01233088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5929188A JPH01233088A (en) 1988-03-15 1988-03-15 Gas shield arc welding wire for high tensile strength steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5929188A JPH01233088A (en) 1988-03-15 1988-03-15 Gas shield arc welding wire for high tensile strength steel

Publications (1)

Publication Number Publication Date
JPH01233088A true JPH01233088A (en) 1989-09-18

Family

ID=13109134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5929188A Pending JPH01233088A (en) 1988-03-15 1988-03-15 Gas shield arc welding wire for high tensile strength steel

Country Status (1)

Country Link
JP (1) JPH01233088A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007260697A (en) * 2006-03-27 2007-10-11 Nippon Steel & Sumikin Welding Co Ltd Solid wire for welding high tensile strength steel and gas-shielded arc welding method for high tensile strength steel
CN104785955A (en) * 2015-04-23 2015-07-22 江苏省沙钢钢铁研究院有限公司 Gas protection welding wire for super-strength steel and weld metal
CN112008290A (en) * 2019-05-29 2020-12-01 宝山钢铁股份有限公司 Gas shielded welding wire for EH40 crack arrest steel
CN112008289A (en) * 2019-05-29 2020-12-01 宝山钢铁股份有限公司 Gas shielded welding wire for EH47 crack arrest steel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007260697A (en) * 2006-03-27 2007-10-11 Nippon Steel & Sumikin Welding Co Ltd Solid wire for welding high tensile strength steel and gas-shielded arc welding method for high tensile strength steel
CN104785955A (en) * 2015-04-23 2015-07-22 江苏省沙钢钢铁研究院有限公司 Gas protection welding wire for super-strength steel and weld metal
CN112008290A (en) * 2019-05-29 2020-12-01 宝山钢铁股份有限公司 Gas shielded welding wire for EH40 crack arrest steel
CN112008289A (en) * 2019-05-29 2020-12-01 宝山钢铁股份有限公司 Gas shielded welding wire for EH47 crack arrest steel

Similar Documents

Publication Publication Date Title
JPH07195193A (en) Solid wire for thin sheet of high tension steel
JP3120912B2 (en) Flux-cored wire for gas shielded arc welding
JP2908585B2 (en) Flux-cored wire for gas shielded arc welding
JP2857318B2 (en) Welding wire for high tensile steel
WO1997024203A1 (en) Method of manufacturing large diameter welded steel pipe having high strength and toughness
JPS60158995A (en) Mig welding wire for high-tension steel
JPH08257785A (en) Flux cored wire for arc welding to improve low temp. crack resistance of steel weld zone
JPH044079B2 (en)
JP3894703B2 (en) Gas shielded arc welding wire
JPS63157795A (en) Wire for high tensile steel
JPH01233088A (en) Gas shield arc welding wire for high tensile strength steel
JPH0577086A (en) Flux cored wire for gas shielded arc welding for 0.5 mo steel, mn-mo steel and mn-mo-ni steel
JP2723335B2 (en) Flux-cored wire for gas shielded arc welding
JP5726017B2 (en) Bond flux and welding method for submerged arc welding
JP2001293596A (en) Flux-filled wire for welding ferritic stainless steel
JP3208556B2 (en) Flux-cored wire for arc welding
JPH08174275A (en) Gas shield arc welding flux cored wire for high tension steel
JP2000226633A (en) Steel for electron beam welding excellent in toughness
JPH0596397A (en) Steel wire for high electric current mig welding
JP2596868B2 (en) Welded structure with excellent HIC resistance and SSC resistance
JPH04313488A (en) Tig welding wire for high tension steel
JPH02220795A (en) Consumable nozzle type electroslag welding method
JP3360235B2 (en) Gas shielded arc welded steel wire for high tensile steel
JP3598600B2 (en) Weld metal having high strength and toughness and method of forming the same
JPS6264486A (en) Welding method for low-alloy high tensile steel with excellent toughness of weld metal