JPH01232844A - Optical communication unit and optical communication system - Google Patents

Optical communication unit and optical communication system

Info

Publication number
JPH01232844A
JPH01232844A JP63058173A JP5817388A JPH01232844A JP H01232844 A JPH01232844 A JP H01232844A JP 63058173 A JP63058173 A JP 63058173A JP 5817388 A JP5817388 A JP 5817388A JP H01232844 A JPH01232844 A JP H01232844A
Authority
JP
Japan
Prior art keywords
liquid crystal
master station
optical communication
light
station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63058173A
Other languages
Japanese (ja)
Inventor
Takeshi Matsuoka
毅 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP63058173A priority Critical patent/JPH01232844A/en
Publication of JPH01232844A publication Critical patent/JPH01232844A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To enable bidirectional communication between a master station and some slave stations without optical branching by detecting an incident light to a liquid crystal cell capable of being controlled to the transparent state and the scattering state with the utilization of the scattering state of the liquid crystal. CONSTITUTION:Bidirectional communication is applied between one master station 5 and some slave stations 6-8 connected in series. The master station 5 is provided with a light emitting element 51 and a light receiving element 52, and the slave stations 6, 7 are respectively provided with liquid crystal cells 61, 71 and a light receiving elements 62, 72, and the slave station 8 is provided with a liquid crystal cell 81, a light receiving element 82 and a reflecting mirror 83. The liquid crystal cells 61, 71 and 81 can be controlled at the transparent state and the scattering state and the light receiving elements 62, 72 and 82 detect the light in the scattering state. The master station 5 and the slave stations 6-8 are connected in series by an optical fiber.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、双方向通信が可能な光通信ユニットおよび光
通信システムに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical communication unit and an optical communication system capable of bidirectional communication.

〔従来の技術〕[Conventional technology]

従来の光通信システムにおいて、双方向通信を可能なら
しめるためには通常、シリアルに接続された各子局は、
親局からの光信号を受信するために、光分岐器等を用い
て、親局からの光の一部を分岐し受信しなければならな
い。
In conventional optical communication systems, in order to enable bidirectional communication, each serially connected slave station usually
In order to receive the optical signal from the master station, a part of the light from the master station must be branched and received using an optical splitter or the like.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、このような光通信システムにおいては、
光の分岐を例えば1対lとすると、後段の子局の受光量
は前段の子局の1/2になるため、シリアルに接続され
る子局の数は極めて限られてしまうという欠点があった
However, in such optical communication systems,
For example, if the optical branching is 1:1, the amount of light received by the downstream slave station will be 1/2 of that of the preceding slave station, so there is a drawback that the number of slave stations that can be serially connected is extremely limited. Ta.

本発明はこのような点に鑑みてなされたものであり、そ
の目的とするところは、光の送受信機能をもつ親局とシ
リアルに1本の光ファイバで結ばれたいくつかの子局と
の間に光分岐を行なうことなく双方向通信を可能ならし
めるよう工夫された光通信ユニットおよび光通信システ
ムを得ることにある。
The present invention has been made in view of these points, and its purpose is to provide communication between a master station having optical transmission and reception functions and several slave stations serially connected by a single optical fiber. An object of the present invention is to obtain an optical communication unit and an optical communication system devised to enable bidirectional communication without performing optical branching.

〔課題を解決するための手段〕[Means to solve the problem]

このような目的を達成するために本発明による光通信ユ
ニットは、透明状態と散乱状態の2つの状態を制御可能
な液晶セルと、この液晶セルへの入射光を液晶の散乱状
態を利用して検出し、入射光のオン・オフを識別するた
めの受光素子とを設けるようにしたものである。
In order to achieve such an object, the optical communication unit according to the present invention includes a liquid crystal cell that can control two states, a transparent state and a scattering state, and uses the scattering state of the liquid crystal to control the incident light to this liquid crystal cell. A light-receiving element for detecting and identifying whether the incident light is on or off is provided.

また本発明による光通信システムは、上記通信ユニット
から成る子局と、発光素子と受光素子を有する親局とを
備え、1つの親局と複数の子局とを光ファイバによって
シリアルに接続するようにしたものである。
Further, an optical communication system according to the present invention includes a slave station comprising the communication unit described above, and a master station having a light emitting element and a light receiving element, and connects one master station and a plurality of slave stations serially through an optical fiber. This is what I did.

〔作用〕[Effect]

本発明による光通信システムにおいては、シリアルによ
り多くの子局を接続できる。
In the optical communication system according to the present invention, many slave stations can be connected serially.

〔実施例〕〔Example〕

本発明に係わる光通信ユニットの一実施例を第1図(a
)、 (b)に示す。同図(alは正面図、同図(bl
は側面図であり、■は液晶セル、2はアルミ蒸着等によ
る反射膜、3は液晶セル制御タップ、4は受光素子、H
lは入射光である。
An embodiment of the optical communication unit according to the present invention is shown in FIG.
), shown in (b). Same figure (al is front view, same figure (bl is front view)
is a side view, ■ is a liquid crystal cell, 2 is a reflective film made of aluminum vapor deposition, etc., 3 is a liquid crystal cell control tap, 4 is a light receiving element, H
l is the incident light.

液晶セル1は円筒状をしており、親局の光源から発せら
れた光は、この円筒の中心軸に平行に入射する。液晶セ
ル1の側面はアルミ蒸着等の反射膜2でおおわれており
、一部だけが除かれている。
The liquid crystal cell 1 has a cylindrical shape, and light emitted from a light source of a master station is incident parallel to the central axis of the cylinder. The side surfaces of the liquid crystal cell 1 are covered with a reflective film 2 made of vapor-deposited aluminum or the like, and only a portion is removed.

この除かれた部分に対して受光素子4が向けられている
。この液晶セル1と受光素子4のセットになったものを
光通信ユニットと呼ぶ。
The light receiving element 4 is directed toward this removed portion. This set of liquid crystal cell 1 and light receiving element 4 is called an optical communication unit.

この光通信ユニットの動作を第2図〜第4図を用いて説
明する。これらの図において、Hlは入射光、H2は透
過光、H3は散乱光であり、第1図と同一部分又は相当
部分には同一符号が付しである。
The operation of this optical communication unit will be explained using FIGS. 2 to 4. In these figures, H1 is incident light, H2 is transmitted light, and H3 is scattered light, and the same or equivalent parts as in FIG. 1 are given the same reference numerals.

光通信ユニットは3つの動作モード、すなわちバイパス
モード、散乱モードおよび送信モードを持っている。バ
イパスモードにおいては、液晶セル1が透明状態に維持
され、入射光のほとんどがこの液晶セル1を通過する。
The optical communication unit has three operating modes: bypass mode, scattering mode and transmitting mode. In the bypass mode, the liquid crystal cell 1 is maintained in a transparent state, and most of the incident light passes through the liquid crystal cell 1.

受光素子4には入射光はほとんど感知されない。散乱モ
ード(受信モードともいう)においては、液晶セル1が
白濁した状態となり、受光素子4は入射光のオン・オフ
(明暗)を感知することができる。送信モードにおいて
は、液晶セル1は送信すべきデジタル信号に応じて透過
状態と散乱状態を繰り返す光のチョッピングを行なう。
Almost no incident light is sensed by the light receiving element 4. In the scattering mode (also called reception mode), the liquid crystal cell 1 becomes cloudy, and the light receiving element 4 can sense whether the incident light is on or off (brightness or darkness). In the transmission mode, the liquid crystal cell 1 performs light chopping that repeats a transmission state and a scattering state depending on the digital signal to be transmitted.

第5図は本発明に係わる光通信システムの一実施例を示
す構成図で、この実施例においては第1図〜第4図で示
した光通信ユニットが組み込まれている。第5図におい
て、5は親局、6〜8は子局、51は発光素子、52.
 6′2. 72. 82は受光素子、61.’71.
81は液晶セル、83は反射鏡である。このシステムは
、1つの親局5とシリアルに接続されたいくつかの子局
6〜8との間に双方向通信を成立させようとするもので
ある。
FIG. 5 is a block diagram showing an embodiment of an optical communication system according to the present invention, in which the optical communication unit shown in FIGS. 1 to 4 is incorporated. In FIG. 5, 5 is a master station, 6 to 8 are slave stations, 51 is a light emitting element, 52.
6'2. 72. 82 is a light receiving element; 61. '71.
81 is a liquid crystal cell, and 83 is a reflecting mirror. This system attempts to establish bidirectional communication between one master station 5 and several serially connected slave stations 6 to 8.

このシステムの構成は、第5図に示すように、発光素子
51と受光素子52とを備えた親局5と、複数の光通信
ユニットとしての子局(最終段は反射鏡83を備える)
と、これらをシリアルに接続する光ファイバとで構成さ
れる。
As shown in FIG. 5, the configuration of this system includes a master station 5 equipped with a light emitting element 51 and a light receiving element 52, and slave stations as a plurality of optical communication units (the final stage is equipped with a reflecting mirror 83).
and an optical fiber that serially connects them.

次に、このように構成された光通信システムの動作の概
要について述べる。一般に子局が親局に対して送信を行
なう場合には、親局から発せられた連続光に対して送信
信号に従ってチョッピングを行なう。親局から発せられ
た光は各子局を通過して終段液晶セル(第5図では液晶
セル81)の反射鏡により方向が反転して親局の受光素
子に戻り、ここでいくつかの子局の1つによってチョッ
ピングされた光信号が受信される。
Next, an overview of the operation of the optical communication system configured as described above will be described. Generally, when a slave station transmits to a master station, chopping is performed on continuous light emitted from the master station according to a transmission signal. The light emitted from the master station passes through each slave station, its direction is reversed by the reflecting mirror of the final stage liquid crystal cell (liquid crystal cell 81 in Figure 5), and returns to the light receiving element of the master station. The chopped optical signal is received by one of the following.

次に、親局が子局に対して送信を行なう場合には、親局
から指定された子局だけが受信モード(散乱状態)に維
持され、親局の信号を受信する。
Next, when the master station transmits to a slave station, only the slave stations designated by the master station are maintained in reception mode (scattered state) and receive the signal from the master station.

次に、第5図の光通信システムの動作を更に詳細に説明
する。まずシステムイニシャライズについて説明する。
Next, the operation of the optical communication system shown in FIG. 5 will be explained in more detail. First, system initialization will be explained.

親局5は、通信の開始時には、ある定められた長さの連
続的な光信号を発生する。
At the start of communication, the master station 5 generates a continuous optical signal of a certain predetermined length.

子局は最初、受信状態に維持されており、親局5の連続
光をイニシャル信号として検出すると、バイパスモード
に変化して、下位局も同様にイニシャル信号を検出する
。以下同様にして子局のすべてがイニシャライズされる
と、すべてがバイパスモードとなって親局5から発した
光が反射鏡83で反射され、親局5の受光素子52に戻
ってイニシャライズの完了がEl 7JRされる。
Initially, the slave station is maintained in a receiving state, and when it detects continuous light from the master station 5 as an initial signal, it changes to bypass mode, and the lower station similarly detects the initial signal. When all of the slave stations are initialized in the same way, all of them go into bypass mode, and the light emitted from the master station 5 is reflected by the reflecting mirror 83 and returns to the light receiving element 52 of the master station 5, and the initialization is completed. El 7JR will be made.

次に、子局の送信について説明する。子局はセ−/ )
された相互に異なった待時間(配列順序と共にセットさ
れる)の後、送信の光チョッピングを始め、他の子局は
すべてバイパスモードに維持されている。以下、次々と
同様の送信が繰り返される。親局5は子局同士の信号の
衝突があったか否かを調べ、衝突があったと判断した場
合は、再度イニシャライズを行なう。
Next, transmission from a slave station will be explained. The slave station is /)
After mutually different waiting times (set together with the sequence order), optical chopping of the transmission begins, and all other slave stations are kept in bypass mode. Thereafter, similar transmissions are repeated one after another. The master station 5 checks whether or not there has been a signal collision between the slave stations, and if it is determined that there has been a collision, it initializes again.

次に、親局から子局への送信について説明する。Next, transmission from the master station to the slave station will be explained.

通常、イニシャライズされたあとは、子局から親局5へ
の一方向的な送信が続行されるが、親局5が子局に対し
て送信を行ないたい時には、親局5が発していた連続光
を一定期間オフにする。子局の側は未だ送信状態のまま
チョッピング動作を続けているが、チョッピングによる
散乱光はその子局の受光素子によって監視されており、
チョッピングを行なっているにもかかわらず、散乱光が
検出されない場合は、上位の子局が受信モードに入った
か、あるいは親局5の光源がオフになったと認識する。
Normally, after initialization, unidirectional transmission from the slave station to the master station 5 continues, but when the master station 5 wants to transmit to the slave station, the continuous Turn off the light for a period of time. The slave station continues its chopping operation while still in the transmitting state, but the light scattered by the chopping is monitored by the light receiving element of the slave station.
If no scattered light is detected even though chopping is being performed, it is recognized that the higher-order slave station has entered reception mode or that the light source of the master station 5 has been turned off.

このような状態を認識すると、子局はイニシャライズか
、親局5からの送信かが行なわれるとして、連続的な散
乱状態すなわち受信モードに移行する。親局5は特定の
子局を選択するために、その子局に予め定められた周波
数の矩形波を連続して送信すると、上位の局から順に自
分が指定されたか否かを判断し、指定されていないと判
断するとバイパスモードに変化し、指定されたと認識し
た子局のみが散乱モード(受信モード)を維持する。親
局5からの送信が終了すると再びイニシャライズされて
、子局から親局5への通常の送信が繰り返される。
When such a state is recognized, the slave station assumes initialization or transmission from the master station 5, and shifts to a continuous scattering state, that is, a reception mode. In order to select a specific slave station, the master station 5 continuously transmits a rectangular wave of a predetermined frequency to the slave station, and then determines whether or not it has been designated in order from the higher-ranking station, and determines whether it has been designated or not. If it determines that it is not, it changes to bypass mode, and only the slave stations that are recognized as designated maintain scattering mode (receiving mode). When the transmission from the master station 5 is completed, it is initialized again, and normal transmission from the slave station to the master station 5 is repeated.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明による光通信システムは、光
通信ユニットから成る子局と、発光素子と受光素子を有
する親局とを備え、1つの親局と複数の子局とを光ファ
イバによってシリアルに接続したことにより、液晶セル
の制御により光のチョッピングを行なうことができるの
で、光分岐器や偏光子を内在するPLZT等の光スイツ
チング素子を使用した場合に比較して、光の減衰の少な
い、従ってシリアルにより多くの子局を接続した通信シ
ステムを実現できる効果がある。
As explained above, the optical communication system according to the present invention includes a slave station consisting of an optical communication unit and a master station having a light emitting element and a light receiving element, and one master station and a plurality of slave stations are serially connected via an optical fiber. Since it is possible to chop the light by controlling the liquid crystal cell, there is less attenuation of light compared to the case of using an optical switching element such as PLZT that has an optical splitter or polarizer inside. Therefore, it is possible to realize a communication system in which more slave stations are serially connected.

また、液晶セルを使用したことにより、消it力の少な
い光通信システムを実現できる効果がある。
Furthermore, the use of liquid crystal cells has the effect of realizing an optical communication system with less extinction force.

さらに、シリアルに接続された子局の1つが故障状態に
なっても透明状態が維持されるので、システム全体の通
信は確保されるという効果がある。
Furthermore, even if one of the slave stations connected serially is in a failure state, the transparent state is maintained, which has the effect of ensuring communication throughout the system.

【図面の簡単な説明】 第1図は本発明に係わる光通信ユニットの一実施例を示
す構成図、第2図〜第4図はその動作を説明するための
説明図、第5図は本発明に係わる光通信システムの一実
施例を示す構成図である。 1.61,71.81・・・液晶セル、2・・・アルミ
蒸着、3・・・液晶セル制御タップ、4・・・受光素子
、5・・・親局、6〜8・・・子局、51・・・発光素
子、52.62,72.82・・・受光素子、83・・
・反射鏡。
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a configuration diagram showing an embodiment of an optical communication unit according to the present invention, FIGS. 2 to 4 are explanatory diagrams for explaining its operation, and FIG. 1 is a configuration diagram showing an embodiment of an optical communication system according to the invention. 1.61, 71.81... Liquid crystal cell, 2... Aluminum vapor deposition, 3... Liquid crystal cell control tap, 4... Light receiving element, 5... Master station, 6-8... Child Station, 51... Light emitting element, 52.62, 72.82... Light receiving element, 83...
·Reflector.

Claims (2)

【特許請求の範囲】[Claims] (1)透明状態と散乱状態の2つの状態を制御可能な液
晶セルと、この液晶セルへの入射光を液晶の散乱状態を
利用して検出し、入射光のオン・オフを識別するための
受光素子とを備えた光通信ユニット。
(1) A liquid crystal cell that can control two states, a transparent state and a scattering state, and a system that detects incident light to this liquid crystal cell using the scattering state of the liquid crystal and distinguishes whether the incident light is on or off. An optical communication unit equipped with a light receiving element.
(2)請求項1記載の光通信ユニットから成る子局と、
発光素子と受光素子を有する親局とを備え、1つの親局
と複数の子局とを光ファイバによってシリアルに接続し
た光通信システム。
(2) a slave station comprising the optical communication unit according to claim 1;
An optical communication system that includes a master station that has a light emitting element and a light receiving element, and serially connects one master station and a plurality of slave stations through optical fibers.
JP63058173A 1988-03-14 1988-03-14 Optical communication unit and optical communication system Pending JPH01232844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63058173A JPH01232844A (en) 1988-03-14 1988-03-14 Optical communication unit and optical communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63058173A JPH01232844A (en) 1988-03-14 1988-03-14 Optical communication unit and optical communication system

Publications (1)

Publication Number Publication Date
JPH01232844A true JPH01232844A (en) 1989-09-18

Family

ID=13076610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63058173A Pending JPH01232844A (en) 1988-03-14 1988-03-14 Optical communication unit and optical communication system

Country Status (1)

Country Link
JP (1) JPH01232844A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5332750B2 (en) * 1974-04-01 1978-09-09
JPS56149841A (en) * 1980-04-23 1981-11-19 Mitsubishi Electric Corp Optical fiber transmission system
JPS6282832A (en) * 1985-10-08 1987-04-16 Nec Corp Optical fiber communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5332750B2 (en) * 1974-04-01 1978-09-09
JPS56149841A (en) * 1980-04-23 1981-11-19 Mitsubishi Electric Corp Optical fiber transmission system
JPS6282832A (en) * 1985-10-08 1987-04-16 Nec Corp Optical fiber communication system

Similar Documents

Publication Publication Date Title
CA2125751A1 (en) Polarization independent transmissive/reflective optical switch
CA2420334C (en) Polarization recovery system for projection displays
CA2177789A1 (en) Optical Device Having Switching Function
TW354386B (en) Projection type image display apparatus
WO1997001781A3 (en) Diffusely reflecting multilayer polarizers and mirrors
US4590619A (en) Star coupler for local networks of optical communications system
EP1065551A3 (en) Reflective non-reciprocal optical device
JP2583025B2 (en) Optical data transmission system and transmission method
JPH01232844A (en) Optical communication unit and optical communication system
CN213581439U (en) Wavelength division multiplexing structure
CN210982806U (en) High-reflection isolation wavelength division multiplexer
US6647174B2 (en) Optical fiber transmission bypass device
TW368614B (en) Back side projection type display device
CN212905563U (en) Optoelectronic component
US4902087A (en) Fiber optic bypass switch
JPS5740205A (en) Optical star coupler
CN211786221U (en) Relay optical device based on polarization light splitting
JPS6028421B2 (en) Optical transmission branching method
JPS62280811A (en) Optical branching and coupling device
JPS58133059A (en) Optical transmitting circuit
RU2437146C1 (en) Device to eliminate access collisions
US6671082B2 (en) Optical switch
JP3687363B2 (en) Optical branching device and optical branching device
JPS6326935B2 (en)
JPS60117211A (en) Optical switch