JPS6326935B2 - - Google Patents

Info

Publication number
JPS6326935B2
JPS6326935B2 JP56128998A JP12899881A JPS6326935B2 JP S6326935 B2 JPS6326935 B2 JP S6326935B2 JP 56128998 A JP56128998 A JP 56128998A JP 12899881 A JP12899881 A JP 12899881A JP S6326935 B2 JPS6326935 B2 JP S6326935B2
Authority
JP
Japan
Prior art keywords
light
optical
branch
amount
bus transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56128998A
Other languages
Japanese (ja)
Other versions
JPS5830248A (en
Inventor
Seiichi Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP56128998A priority Critical patent/JPS5830248A/en
Publication of JPS5830248A publication Critical patent/JPS5830248A/en
Publication of JPS6326935B2 publication Critical patent/JPS6326935B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/278Bus-type networks

Description

【発明の詳細な説明】 本発明は発光素子、受光素子、光分岐および光
フアイバケーブルより構成される光バス伝送方式
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical bus transmission system comprising a light emitting element, a light receiving element, an optical branch, and an optical fiber cable.

光伝送は近年光伝送技術の発達に伴い広い分野
で実用化されつゝある。光伝送は電気信号と光信
号の変換を伴うが電気信号の伝送に比較して、転
送容量が大きく、妨害を受け難い上ケーブルの細
線化が出来るので、情報処理システムへの適用が
期待されている。情報処理システムへ広範囲に適
用するには従来の電気信号によるバス伝送方式と
同様光バス伝送方式を確立する必要がある。
Optical transmission is being put into practical use in a wide range of fields as optical transmission technology has developed in recent years. Optical transmission involves conversion between electrical and optical signals, but compared to electrical signal transmission, optical transmission has a larger transfer capacity, is less susceptible to interference, and allows for thinner cables, so it is expected to be applied to information processing systems. There is. In order to widely apply it to information processing systems, it is necessary to establish an optical bus transmission method similar to the conventional bus transmission method using electric signals.

光バス伝送方式には光T分岐/Tカプラまたは
光スター分岐/スターカプラを用いた方法が知ら
れている。第1図に従来の電気信号によるバス伝
送方式、第2図に光T分岐による光バス伝送方式
および第3図に光スター分岐による光バス伝送方
式を示す。
As an optical bus transmission method, a method using an optical T branch/T coupler or an optical star branch/star coupler is known. FIG. 1 shows a conventional bus transmission system using electric signals, FIG. 2 shows an optical bus transmission system using optical T-branching, and FIG. 3 shows an optical bus transmission system using optical star branching.

例えば情報処理装置におけるチヤネル1,1a
と複数の入出力装置におけるIOコントローラ
(IOC)2,2aとの間に設けたバス伝送方式ま
たは光バス伝送方式である。
For example, channels 1 and 1a in an information processing device
This is a bus transmission method or an optical bus transmission method provided between the IO controller (IOC) 2, 2a in a plurality of input/output devices.

第1図に示す従来のバス伝送方式ではチヤネル
1と複数のIOC2においてチヤネル1に設けられ
た駆動回路(DV)11の電気信号と複数のIOC
2に設けられた受信回路(RV)22が伝送回路
を形成する電気ケーブル3を経て受信し、逆に複
数のIOC2に設けられた夫々のDV21の電気信
号をチヤネル1に設けられたRV12が受信する
のが通常である。
In the conventional bus transmission system shown in FIG.
Receiving circuit (RV) 22 provided in channel 2 receives the electrical signal via electric cable 3 forming a transmission circuit, and conversely, RV 12 provided in channel 1 receives the electrical signal of each DV21 provided in a plurality of IOCs 2. It is normal to do so.

第2図は第1図の構成による電気信号のバス伝
送方式に対し光T分岐/光Tカプラを用いて光バ
ス伝送方式を、第3図は光スター分岐/光スター
カプラを用いて光バス伝送方式を構成した例であ
る。
Figure 2 shows an optical bus transmission system using an optical T-branch/optical T-coupler for the electrical signal bus transmission system with the configuration shown in Figure 1, and Figure 3 shows an optical bus transmission system using an optical star branch/optical star coupler. This is an example of configuring a transmission method.

第2図および第3図では第1図におけるチヤネ
ル1のDV11の代りに光伝送用チヤネル1aに
おいて発光素子31とその駆動回路32が設けら
れ、RV12の代りに受光素子41とその増幅回
路42が設けられている。また複数のIOC2にお
けるRV22の代りに光伝送用IOC2aにおいて
受光素子41aとその増幅回路42aが設けら
れ、DV21の代りに発光素子31aとその駆動
回路32aとが設けられている。4は光フアイバ
ケーブルである。尚光T分岐5/光Tカプラ5a
は第4図a,bの断面図に示すように何れも透明
体、例えばガラス板表面に形成した金属蒸着膜等
によるハーフミラ51を光軸に対し45゜に配置し、
凸レンズ52a,b,cおよび光コネクタ53
a,b,cを配してなり、光入力と光出力の関係
を異にする他は、相互に転用可能の共通構造であ
る。
2 and 3, a light emitting element 31 and its driving circuit 32 are provided in the optical transmission channel 1a instead of the DV11 of the channel 1 in FIG. 1, and a light receiving element 41 and its amplifying circuit 42 are provided instead of the RV12. It is provided. Further, instead of the RV 22 in the plurality of IOCs 2, a light receiving element 41a and its amplifier circuit 42a are provided in the optical transmission IOC 2a, and instead of the DV 21, a light emitting element 31a and its driving circuit 32a are provided. 4 is an optical fiber cable. Optical T branch 5/Optical T coupler 5a
As shown in the cross-sectional views of FIGS. 4a and 4b, in each case, a half mirror 51 made of a transparent material, such as a metal vapor-deposited film formed on the surface of a glass plate, is arranged at 45 degrees to the optical axis.
Convex lenses 52a, b, c and optical connector 53
A, b, and c are arranged, and the structure is common and can be used interchangeably, except that the relationship between optical input and optical output is different.

第4図aにおいて入射光は凸レンズ52a,
b,cによりほゞ平行になつた後ハーフミラー5
1により分岐光と透過光に分割される。第4図b
においては両入射光の一部づつが合成光となる。
その比率はハーフミラー51の特性に従い一定の
値となる。また光スター分岐6と光スターカプラ
6aの間にも同様の関係が存在する。尚50は遮
光容器である。
In FIG. 4a, the incident light is transmitted through a convex lens 52a,
Half mirror 5 after becoming almost parallel due to b and c
1, the light is divided into branched light and transmitted light. Figure 4b
In this case, a portion of both incident lights become combined light.
The ratio takes a constant value according to the characteristics of the half mirror 51. A similar relationship also exists between the optical star branch 6 and the optical star coupler 6a. Note that 50 is a light-shielding container.

こゝで第2図の光T分岐5/光カプラ5aを用
いた光バス伝送方式および第3図の光スター分岐
6/光スターカプラ6aを用いた光バス伝送方式
を比較すると光フアイバケーブルの総延長は光T
分岐5/光Tカプラ5aによる方が短くてすみ、
光フアイバケーブルのコストおよび光フアイバケ
ーブル布設における難易度の点でも優れており、
より好ましいといえる。ところが光T分岐/光T
カプラを用いた光バス伝送方式では光の配分によ
る受信光のパワーレベルを均等に配分し難いとい
う欠点がある。例えば光T分岐5を用いた場合、
光T分岐の分岐光/透過光の分割比率が大きいと
近端のIOC2aにおける受光素子41aの受光量
が大きく、遠端のIOC2aにおける受光素子41
aの受光量が小さくなり、分割比率が小さいと遠
端の受光量が大きく近端の受光量が小さくなる。
Comparing the optical bus transmission method using the optical T-branch 5/optical coupler 5a shown in FIG. 2 and the optical bus transmission method using the optical star branch 6/optical star coupler 6a shown in FIG. The total length is Hikari T
The branch 5/optical T coupler 5a is shorter,
It is also superior in terms of the cost of optical fiber cables and the difficulty of installing optical fiber cables.
It can be said that it is more preferable. However, optical T branch/optical T
An optical bus transmission system using a coupler has a drawback in that it is difficult to evenly distribute the power level of received light due to light distribution. For example, when using the optical T-branch 5,
When the division ratio of branched light/transmitted light of the optical T branch is large, the amount of light received by the light receiving element 41a at the near end IOC2a is large, and the amount of light received by the light receiving element 41a at the far end IOC2a is large.
When the amount of light received at a is small and the division ratio is small, the amount of light received at the far end is large and the amount of light received at the near end is small.

例えば第2図の構成でIOC2aが#1〜5まで
5個とし光T分岐5の挿入損失およびフアイバケ
ーブル4の損失を無視出来るとすれば光T分岐の
分岐光/透過光の分割比率が1/3:2/3の場
合は#1のIOC2aの受光量1/3=−4.8dbよ
り順に−6.5db、−8.3db、−10.1dbおよび−7.0db
となり、分割比率が1/10:9/10の場合は#1
のIOC2aの受光量は1/10=−10dbより順に−
10.5db、−10.9db、−11.4dbおよび−1.8dbとなる。
For example, in the configuration shown in Figure 2, if there are five IOC2a #1 to #5 and the insertion loss of the optical T-branch 5 and the loss of the fiber cable 4 can be ignored, the splitting ratio of branched light/transmitted light of the optical T-branch is 1. /3: In the case of 2/3, the received light amount of #1 IOC2a is -6.5db, -8.3db, -10.1db and -7.0db from 1/3 = -4.8db.
So, if the split ratio is 1/10:9/10, it is #1
The amount of light received by IOC2a is - in order from 1/10 = -10db
10.5db, -10.9db, -11.4db and -1.8db.

このように光T分岐の分割比率に従つて#1〜
5のIOC2aの受光量に差が出てしまう場合が存
在する。
In this way, according to the division ratio of the optical T-branch, #1 to
There are cases where there is a difference in the amount of light received by the IOC 2a of No. 5.

信号の符号誤り率は受光量に大きく影響される
以上はハーフミラーを用いた光T分岐の例を説明
したが、他の手段を用いたT分岐の場合にもIOC
2aの受光量に差が出てしまうのは明らかである
ので、従来の光T分岐5による光伝送バス方式で
は複数のIOC2aにおける符号誤り率にバラツキ
を生じ、光伝送系全体としての信頼性が下り、接
続できる最大光T分岐数も制限されるという欠点
を有していた。
Since the signal error rate is greatly affected by the amount of received light, we have explained an example of an optical T-branch using a half mirror, but the IOC can also be applied in the case of a T-branch using other means.
It is obvious that there will be a difference in the amount of light received by IOC 2a, so in the conventional optical transmission bus system using optical T-branch 5, the code error rate of multiple IOC 2a will vary, and the reliability of the optical transmission system as a whole will decrease. It also has the disadvantage that the maximum number of optical T-branches that can be connected downstream is limited.

本発明の目的はこの欠点を補うための手段を提
供しようとするものである。そのため、本発明は
一つの発光素子と複数の受光素子および複数の受
光素子に対応する光T分岐ならびに前記各素子と
光T分岐間を接続する光フアイバケーブルからな
る光バス伝送方式において、該光T分岐は各々分
岐光/透過光の光量分割比率を可変とし、各受光
素子の受光量情報と各光T分岐における分岐光/
透過光の光量分割比率情報を受光素子側より発光
素子側へ送信する手段を備えてなり、両情報にも
とずき各光T分岐の分岐光/透過光の光量分割比
率を発光素子側へ指示変更することにより複数の
受光素子における受光量を均等とすることを特徴
とするものである。
The object of the present invention is to provide means for compensating for this drawback. Therefore, the present invention provides an optical bus transmission system comprising one light-emitting element, a plurality of light-receiving elements, an optical T-branch corresponding to the plurality of light-receiving elements, and an optical fiber cable connecting each of the elements and the optical T-branches. Each T-branch has a variable light amount division ratio of branched light/transmitted light, and the received light amount information of each light receiving element and the branched light/transmitted light at each optical T-branch are
It is equipped with a means for transmitting the light amount division ratio information of the transmitted light from the light receiving element side to the light emitting element side, and based on both information, the light amount division ratio of the branched light/transmitted light of each optical T branch is sent to the light emitting element side. This method is characterized in that the amount of light received by a plurality of light receiving elements is made equal by changing the instruction.

以下図面に従い本発明の一実施例について具体
的に説明する。
An embodiment of the present invention will be described in detail below with reference to the drawings.

第5図a,bは本発明の一実施例における光バ
ス伝送方式に使用する可変分岐光/透過光の機能
を備えた光可変T分岐7の構造図である。光可変
T分岐7は第5図aの断面構造図に示す通り、従
来における光T分岐5のハーフミラー51に代え
て可変ハーフミラー54に変更したものであり、
その他の構成は第4図a,bと共通の凸レンズ5
2a,b,cおよび光コネクタ53a,b,cよ
りなる。可変ハーフミラー54は第5図bの斜視
図に示す如く、円板状の透明体例えばガラス円板
の表面に金属蒸着膜等による反射膜を形成すると
き、ガラス円板の円周方向に応じてハーフミラー
となる膜厚を順に、且連続的に変化させた可変ハ
ーフミラー板54aに軸54bを設け、軸54b
の回転により可変ハーフミラー板54aを回転さ
せて入射光の0%〜100%の間連続的に光分岐出
来るように構成されている。50aは遮光容器で
ある。尚光可変Tカプラ7aも第5図a,bと同
一構造よりなり、前述の第4図a,bに示す光T
分岐5および光Tカプラ5aの関係と同じく、光
の入出力が逆向きとなつたものである。
FIGS. 5a and 5b are structural diagrams of an optical variable T-branch 7 having a function of variable branching light/transmitting light used in an optical bus transmission system in an embodiment of the present invention. The optical variable T-branch 7, as shown in the cross-sectional structural diagram of FIG.
The other configuration is the same convex lens 5 as in Fig. 4 a and b.
2a, b, c and optical connectors 53a, b, c. As shown in the perspective view of FIG. 5b, the variable half mirror 54 is configured to move according to the circumferential direction of the glass disk when a reflective film such as a metal vapor deposition film is formed on the surface of a disk-shaped transparent body, such as a glass disk. A shaft 54b is provided on a variable half mirror plate 54a whose film thickness is sequentially and continuously changed to become a half mirror.
The variable half mirror plate 54a is rotated by the rotation of the variable half mirror plate 54a, so that light can be continuously branched between 0% and 100% of the incident light. 50a is a light-shielding container. The optical variable T coupler 7a also has the same structure as shown in FIGS. 5a and 5b, and the optical T coupler 7a shown in FIGS.
Similar to the relationship between the branch 5 and the optical T coupler 5a, the input and output of light are in opposite directions.

第6図は本発明の一実施例による光バス伝送方
式であり、光T分岐/光Tカプラによる第2図の
従来における光バス伝送方式に使用する複数の光
T分岐5/光Tカプラ5aを可変分岐光/透過光
の機能を備えた複数の光T分岐7/光Tカプラ7
aにすべて置き換えた他は共通である。
FIG. 6 shows an optical bus transmission system according to an embodiment of the present invention, in which a plurality of optical T-branches 5/optical T-couplers 5a used in the conventional optical bus transmission system of FIG. Multiple optical T-branches 7/optical T-couplers 7 with variable branching light/transmitted light functions
They are all the same except that they are all replaced with a.

こゝで次の手順に従つて第6図において複数の
光T分岐7を用いた光バス伝送方式における各
IOC2aの受光量を均等に調整する。
Now, according to the following procedure, each of the optical bus transmission systems using multiple optical T-branches 7 in FIG.
Adjust the amount of light received by IOC2a evenly.

(1) 最初は各光T分岐7の光量分割比率を最小に
設定する。(透過光を多くする。) (2) その時点で各受光素子41aの受光量を測定
する。もし受光量が光伝送可能の最小レベルに
達しない場合は、その受光素子41aに対応す
る光T分岐7の光量分割比率を光伝送可能の最
小レベル迄増加する。
(1) Initially, the light amount division ratio of each optical T-branch 7 is set to the minimum. (Increase the amount of transmitted light.) (2) At that point, measure the amount of light received by each light receiving element 41a. If the amount of received light does not reach the minimum level that allows optical transmission, the light amount division ratio of the optical T-branch 7 corresponding to that light receiving element 41a is increased to the minimum level that allows optical transmission.

(3) 各IOC2aはそれぞれの光T分岐7の光量分
割比率および受光素子41aの受光量情報をチ
ヤネル1aに伝送する。第6図の例では各IOC
2aに設けられた発光素子31aにより光フア
イバケーブル4および光Tカプラ7aを通じ
て、チヤネル1aの受光素子41へ光伝送す
る。
(3) Each IOC 2a transmits the light amount division ratio of each optical T-branch 7 and information on the amount of light received by the light receiving element 41a to the channel 1a. In the example in Figure 6, each IOC
The light emitting element 31a provided in the channel 1a transmits light to the light receiving element 41 of the channel 1a through the optical fiber cable 4 and the optical T-coupler 7a.

(4) チヤネル1aでは各IOC2aからの光T分岐
7の光量分割比率と受光素子41aの受光量情
報およびチヤネル1aの発光素子31の発光量
情報から光フアイバケーブル4および光T分岐
7での損失を計算する。これ等の値を基本にし
てすべての受光素子41aの受光量が均等とな
るよう各光T分岐7の光量分割比率を計算す
る。
(4) In the channel 1a, the loss in the optical fiber cable 4 and the optical T-branch 7 is calculated from the light intensity division ratio of the optical T-branch 7 from each IOC 2a, the received light quantity information of the light-receiving element 41a, and the light-emission quantity information of the light-emitting element 31 of channel 1a. Calculate. Based on these values, the light amount division ratio of each light T-branch 7 is calculated so that the amount of light received by all the light receiving elements 41a is equal.

(5) 各IOC2aに対して計算した光T分岐7の光
量分割比率情報を伝送する。この情報伝送には
チヤネル1aの発光素子31により光バス伝送
系をその侭利用し各受光素子41aに送る。
(5) Transmit the calculated light amount division ratio information of the optical T-branch 7 to each IOC 2a. For this information transmission, the light emitting element 31 of the channel 1a uses the optical bus transmission system to send the information to each light receiving element 41a.

(6) 各IOC2aではチヤネル1aからの光量分割
比率情報に従つて対応する光T分岐7の光量分
割比を変更設定する。
(6) Each IOC 2a changes and sets the light intensity division ratio of the corresponding optical T-branch 7 according to the light intensity division ratio information from the channel 1a.

以上により各IOC2aにおける各受光素子41
aの受光量を均等にすることが出来る。情報処理
システムの場合これ等の手順をシステム変更時、
または必要であれば該情報処理システムにおける
電源投入時に各入出力装置の自動診断を行う機能
に組込んで行えば良い。
As described above, each light receiving element 41 in each IOC2a
It is possible to equalize the amount of light received at a. For information processing systems, these procedures should be followed when changing the system.
Alternatively, if necessary, it may be incorporated into a function that automatically diagnoses each input/output device when the information processing system is powered on.

以上はチヤネル1aより各IOC2aへの光T分
岐7による動作を説明したが、各IOC2aよりチ
ヤネル1aへの光伝送もチヤネルでの受光量とT
カプラでの光量合成比率の情報に基き受光量を均
等にできることはいう迄もない。又ハーフミラー
を用いず、結合損失のないTカプラを用いればチ
ヤネルでの受光量はほぼ均等となり、必要に応じ
て各IOCの発光素子の発光量を調整すれば良い。
The above has explained the operation by optical T branch 7 from channel 1a to each IOC 2a, but optical transmission from each IOC 2a to channel 1a is also based on the amount of light received in the channel and T.
It goes without saying that the amount of received light can be made equal based on the information on the light amount synthesis ratio at the coupler. Furthermore, if a T coupler with no coupling loss is used without using a half mirror, the amount of light received in the channel will be approximately equal, and the amount of light emitted by the light emitting elements of each IOC can be adjusted as necessary.

以上のように本発明の一実施例によれば、各光
T分岐の光量分割比率を変更して各受光素子にお
ける受光量を均等とすることにより信頼性の高い
光バス伝送方式を得ることが出来る。
As described above, according to an embodiment of the present invention, a highly reliable optical bus transmission system can be obtained by changing the light amount division ratio of each optical T-branch to equalize the amount of light received by each light receiving element. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来における電気信号によるバス伝送
方式のブロツク図、第2図は従来における光T分
岐/光Tカプラによる光バス伝送方式のブロツク
図、第3図は従来における光スター分岐/光スタ
カプラによる光バス伝送方式のブロツク図、第4
図a,bは従来における光T分岐/光Tカプラの
構造断面図、第5図a,bは可変T分岐の構造を
示す図、第6図は本発明の一実施例における光バ
ス伝送方式のブロツク図である。 1,1aはチヤネル、2,2aはIOコントロ
ーラ、3は伝送ケーブル、4は光フアイバケーブ
ル、5は光T分岐、5aは光Tカプラ、6は光ス
ター分岐、6aは光スターカプラ、7は光可変T
分岐、7aは光可変Tカプラである。
Figure 1 is a block diagram of a conventional bus transmission system using electrical signals, Figure 2 is a block diagram of a conventional optical bus transmission system using an optical T-branch/optical T-coupler, and Figure 3 is a conventional optical star branch/optical star coupler. Block diagram of optical bus transmission system by
Figures a and b are structural cross-sectional views of a conventional optical T-branch/optical T-coupler, Figures a and b are diagrams showing the structure of a variable T-branch, and Figure 6 is an optical bus transmission system in an embodiment of the present invention. FIG. 1 and 1a are channels, 2 and 2a are IO controllers, 3 is transmission cable, 4 is optical fiber cable, 5 is optical T branch, 5a is optical T coupler, 6 is optical star branch, 6a is optical star coupler, 7 is Optical variable T
Branch 7a is an optically variable T-coupler.

Claims (1)

【特許請求の範囲】[Claims] 1 一つの発光素子と複数の受光素子および複数
の受光素子に対応する光T分岐ならびに前記各素
子と光T分岐間を接続する光フアイバケーブルか
らなる光バス伝送方式において、該光T分岐は
各々分岐光/透過光の光量分割比率を可変とし、
各受光素子の受光量情報と各光T分岐における分
岐光/透過光の光量分割比率情報を受光素子側よ
り発光素子側へ送信する手段を備えてなり、両情
報にもとずき各光T分岐の分岐光/透過光の光量
分割比率を発光素子側より受光素子側へ指示変更
することにより複数の受光素子における受光量を
均等とすることを特徴とする光バス伝送方式。
1. In an optical bus transmission system consisting of one light-emitting element, multiple light-receiving elements, optical T-branches corresponding to the plurality of light-receiving elements, and optical fiber cables connecting each of the elements and the optical T-branches, each of the optical T-branches Variable light intensity division ratio of branched light/transmitted light,
It is equipped with means for transmitting information on the amount of light received by each light receiving element and information on the light amount division ratio of branched light/transmitted light in each light T branch from the light receiving element side to the light emitting element side, and based on both information, each light T An optical bus transmission method characterized in that the amount of light received by a plurality of light receiving elements is made equal by changing the light amount division ratio of branched light/transmitted light from the light emitting element side to the light receiving element side.
JP56128998A 1981-08-18 1981-08-18 Optical bus transmitting system Granted JPS5830248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56128998A JPS5830248A (en) 1981-08-18 1981-08-18 Optical bus transmitting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56128998A JPS5830248A (en) 1981-08-18 1981-08-18 Optical bus transmitting system

Publications (2)

Publication Number Publication Date
JPS5830248A JPS5830248A (en) 1983-02-22
JPS6326935B2 true JPS6326935B2 (en) 1988-06-01

Family

ID=14998604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56128998A Granted JPS5830248A (en) 1981-08-18 1981-08-18 Optical bus transmitting system

Country Status (1)

Country Link
JP (1) JPS5830248A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02145736U (en) * 1989-05-11 1990-12-11

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4730888A (en) * 1986-02-20 1988-03-15 American Telephone And Telegraph Company, At&T Bell Laboratories Optimized guided wave communication system
US5023942A (en) * 1987-06-26 1991-06-11 Martin Marietta Fault tolerant data transmission network
GB8921339D0 (en) * 1989-09-21 1989-11-08 Smiths Industries Plc Optical systems

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02145736U (en) * 1989-05-11 1990-12-11

Also Published As

Publication number Publication date
JPS5830248A (en) 1983-02-22

Similar Documents

Publication Publication Date Title
US4318873A (en) Method of bonding an array of optical fibers
US6389201B1 (en) Arrayed waveguide grating having arrayed waveguide employing taper structure
US4775210A (en) Voice and data distribution system with fiber optic multinode star network
EP0800099A3 (en) Reflective optical star coupler
JPS6326935B2 (en)
US20020164115A1 (en) Optical fiber communication system, communications apparatus and optical transceiver
US7095927B2 (en) Optical distributor and optical distributing system
JPS6142461B2 (en)
JPH10293219A (en) Structure of optical waveguide coupler
US6792211B1 (en) Compact optical wavelength add/drop multiplexer
US7236708B2 (en) Optical communication system with optical output level control function
US5923800A (en) Optical waveguide module having main-line waveguide and branch waveguides, and optical transmission device including such optical waveguide module
US5068847A (en) Fiber optic network architecture having data feedback for monitoring communications thereon
US20080031622A1 (en) Bidirectional Router and a Method of Bidirectional Amplification
JP3077620B2 (en) Optical booster amplifier for WDM transmission
US6259839B1 (en) Optical communication connector
US20090060500A1 (en) Data processing system and storage device
JPS61264239A (en) Moisture sensor
JPS6253032A (en) Optical fiber two-way transmission system
JPS58200644A (en) Optical bus system
JPS6117641Y2 (en)
JPH01291203A (en) Optical star coupler
KR20020081708A (en) Optical Communication Apparatus for NetWork
JPH088534B2 (en) Optical communication system
JPS58163914A (en) Optical distributor