JPS6253032A - Optical fiber two-way transmission system - Google Patents

Optical fiber two-way transmission system

Info

Publication number
JPS6253032A
JPS6253032A JP60193464A JP19346485A JPS6253032A JP S6253032 A JPS6253032 A JP S6253032A JP 60193464 A JP60193464 A JP 60193464A JP 19346485 A JP19346485 A JP 19346485A JP S6253032 A JPS6253032 A JP S6253032A
Authority
JP
Japan
Prior art keywords
optical fiber
optical signal
main device
light emitting
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60193464A
Other languages
Japanese (ja)
Inventor
Koji Uno
浩司 宇野
Naoya Aragaki
新垣 直也
Hiroyuki Hara
博之 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP60193464A priority Critical patent/JPS6253032A/en
Publication of JPS6253032A publication Critical patent/JPS6253032A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To decrease number of components by providing a light emitting element sending an optical signal to a transmission line and a photodetector receiving the optical signal from the transmission line to a master set and providing an element in common use for transmission/reception transmitting/ receiving the optical signal to/from the transmission line to a slave set. CONSTITUTION:The master set A and n-set of slave sets B1-Bn are coupled by one-core optical fiber F and a star coupler C. The master set A is provided with the light emitting element S, the photodetector R and a coupling mirror M coupling the light emitting element S and the photodetector R with the opti cal fiber F. The slave sets B1-Bn are provided respectively with an element SR in common use for transmission/reception. The optical signal sent from the light emitting element S of the master set A is received to the element SR of the slave sets B1-Bn via the optical fiber F and the star coupler C. Then the optical signal sent from the element SR of the slave sets B1-Bn is received by the photodetector R of the master set A.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光ファイバ通信に利用する。本発明は情報処理
装置のローカルエリアネットワークなど比較的簡易な光
通信に適する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention is utilized in optical fiber communications. The present invention is suitable for relatively simple optical communications such as local area networks of information processing devices.

〔概要〕〔overview〕

本発明は一芯の光ファイバにより主装置と従装置とを接
続した時分割切替型の双方向伝送方式において、 主装置には、発光素子と受光素子を別個に設け、従装置
には発光素子と受光素子とを別個に設けることなく送受
兼用素子を利用することにより、経済的で伝送効率のよ
い方式を提供するものである。
The present invention relates to a time-division switching type bidirectional transmission system in which a main device and a slave device are connected through a single optical fiber. By using a transmitting/receiving element without separately providing a light receiving element and a light receiving element, an economical system with high transmission efficiency is provided.

〔従来の技術〕[Conventional technology]

情報処理装置では、例えば中央処理装置を含む主装置と
、操作端末となる従装置との間などに光ファイバを用い
た簡易な通信方式が用いられる。
In information processing devices, a simple communication method using optical fibers is used between a main device including, for example, a central processing unit and a slave device serving as an operation terminal.

主装置と従装置との間に二芯の光ファイバが施設されれ
ば、同時に双方向の通信が可能であるが、主装置と従装
置との間に質問応答形式の通信が行われる方式では、必
ずしも同時に双方向の通信を行う必要がないので、−芯
の光ファイバを施設して時分割的な切替制御により、交
互に送受信を行う方式が広く用いられている。
If a two-core optical fiber is installed between the main device and the slave device, bidirectional communication is possible at the same time, but this method does not require question-and-answer type communication between the main device and the slave device. Since it is not always necessary to carry out bidirectional communication at the same time, a method is widely used in which a negative-core optical fiber is installed and transmission and reception are performed alternately by time-division switching control.

第3図は従来例装置の構成図である。一つの主装置Aと
n個の従装置B、〜Bnは、−芯の光ファイバFおよび
スターカップラCにより結合されている。主装置Aおよ
び従装置B、〜Bnには、それぞれ発光素子Sと、受光
素子Rと、この発光素子Sおよび受光素子Rを光ファイ
バFに結合する結合ミラーMを備えている。
FIG. 3 is a block diagram of a conventional device. One main device A and n slave devices B, ~Bn are coupled by a -core optical fiber F and a star coupler C. The main device A and the slave devices B, -Bn each include a light emitting element S, a light receiving element R, and a coupling mirror M that couples the light emitting element S and the light receiving element R to an optical fiber F.

第4図は別の従来例装置の構成図である。この例は光フ
ァイバFおよびスターカップラCについては第3図の例
と同様であるが、主装置Aとn個の従装置B1〜Bnに
は、それぞれ送受兼用素子SRが備えられそれぞれ光フ
ァイバFに結合されている。
FIG. 4 is a block diagram of another conventional device. In this example, the optical fiber F and the star coupler C are similar to the example shown in FIG. is combined with

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記第3図の例では、発光素子と受光素子とがそれぞれ
主装置Aとn個の従装置81〜Bnに設けられているの
で、部品数が多く高価である。また、結合ミラーを用い
た光ファイバFとの結合は機械精度が必要で高価である
In the example shown in FIG. 3, the light emitting element and the light receiving element are provided in the main device A and the n slave devices 81 to Bn, respectively, so the number of parts is large and the cost is high. Furthermore, coupling with the optical fiber F using a coupling mirror requires mechanical precision and is expensive.

一方、第4図の例では、発光素子と受光素子とが個別に
設けられることがなく、送受信兼用素子を利用するので
部品数は少なく安価であるが、通信効率が悪い欠点があ
る。すなわち、送受兼用素子を用いると、発光パワーは
専用の発光素子はど得ることができない、また、現在安
価に利用できる送受兼用素子(例えばNEC製OD83
56)では、発光スペクトルと最大受光感度スペクトル
との間に波長ずれがあり、効率が悪くなる欠点がある。
On the other hand, in the example shown in FIG. 4, the light emitting element and the light receiving element are not provided separately, and a transmitting/receiving element is used, so the number of components is small and the cost is low, but there is a drawback of poor communication efficiency. In other words, when a transmitting/receiving element is used, the luminous power cannot be obtained by using a dedicated light emitting element.
56) has a disadvantage that there is a wavelength shift between the emission spectrum and the maximum light-receiving sensitivity spectrum, resulting in poor efficiency.

本発明はこれを改良するもので、部品数を多くすること
なく、しかも通信効率のよい双方向通信方式を提供する
ことを目的とする。
The present invention improves this, and aims to provide a two-way communication system with high communication efficiency without increasing the number of parts.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、一つの主装置と複数の従装置との間が光ファ
イバおよび分岐結合回路を含む伝送路により接続され、
その伝送路は、主装置が送信する光信号は全ての従装置
に到達し、従装置の一つが。
In the present invention, one main device and a plurality of slave devices are connected by a transmission path including an optical fiber and a branching/coupling circuit,
The transmission path is such that the optical signal sent by the main device reaches all the slave devices, and one of the slave devices.

送信する光信号は少なくとも主装置に到達する構成であ
り、時分割的に送受信を切替える手段を含む光ファイバ
双方向伝送方式において、上記主装置には、上記伝送路
に光信号を送信する発光素子と、上記伝送路から光信号
を受信する受光素子とを個別に備え、 上記従装置には、上記伝送路に光信号を送受信する送受
兼用素子を備えた ことを特徴とする。
In an optical fiber bidirectional transmission system that includes means for time-divisionally switching transmission and reception, the optical signal to be transmitted is configured to reach at least the main device, and the main device includes a light emitting element that transmits the optical signal to the transmission path. and a light-receiving element that receives an optical signal from the transmission path, and the slave device includes a transmitting/receiving element that transmits and receives the optical signal to and from the transmission path.

分岐結合回路は、スターカップラとすることができる。The branch-coupling circuit can be a star coupler.

主装置の発光素子の発光波長は従装置の受光素子の最大
受光感度の波長に近似し、主装置の受光素子の最大受光
感度波長は従装置の発光素子の発光波長に近似するよう
に各素子の特性が選択されることが好ましい。
The light emission wavelength of the light emitting element of the main device approximates the wavelength of the maximum light receiving sensitivity of the light receiving element of the slave device, and the maximum light receiving sensitivity wavelength of the light receiving element of the main device approximates the light emission wavelength of the light emitting element of the slave device. Preferably, the characteristics are selected.

〔作用〕[Effect]

主装置は数が少ないので、発光素子と受光素子とを別に
しても、全体の部品数は増加の割合は小さい、また、主
装置の発光素子はその発光スペクトルが送受兼用素子の
最大受光感度波長に一致するように選択することが可能
であり、さらに、主装置の受光素子はその最大受光感度
波長が送受無用素子の発光スペクトルに一敗するように
選択することが可能である。すなわち、主装置は数が少
ないので、その素子に多少高価なものを選択しても、全
体の価格に与える影響は小さい。
Since the main device is small in number, the overall number of parts will only increase at a small rate, even apart from the light-emitting element and the light-receiving element.Also, the light-emitting element in the main device has an emission spectrum that has the maximum light-receiving sensitivity of the transmitter-receiver element. Furthermore, the light-receiving element of the main device can be selected so that its maximum light-receiving sensitivity wavelength coincides with the emission spectrum of the non-transmitting/receiving element. That is, since the number of main devices is small, even if somewhat expensive elements are selected, the effect on the overall price is small.

〔実施例〕〔Example〕

第1図は本発明実施例装置の構成図である。一つの主装
置Aとn個の従装置B+xBnは、−芯の光ファイバF
およびスターカップラCにより結合されている。スター
カップラCはn+1個の端子があり、その任意の一つの
端子に到来した光信号を他のn個の端子に分配する。主
装置Aには、発光素子Sと、受光素子Rと、この発光素
子Sおよび受光素子Rを光ファイバFに結合する結合ミ
ラーMを備えている。従装置Bl mBnにはそれぞれ
送受兼用素子SRを備え、これらはそれぞれ光ファイバ
Fと結合されている。
FIG. 1 is a block diagram of an apparatus according to an embodiment of the present invention. One main device A and n slave devices B+xBn are connected to a -core optical fiber F.
and are coupled by a star coupler C. Star coupler C has n+1 terminals, and distributes an optical signal arriving at any one terminal to the other n terminals. The main device A includes a light emitting element S, a light receiving element R, and a coupling mirror M coupling the light emitting element S and the light receiving element R to an optical fiber F. The slave devices Bl mBn are each equipped with a transmitter/receiver element SR, and each of these is coupled to an optical fiber F.

主装置Aは図外の中央処理装置に接続され、従装置B 
+ −B nはそれぞれ図外の端末装置に接続されてい
る0通信は主装置Aと従装置81〜Bnとの間で交互に
時分割的に行われ、その送受信の切替は主装置Aが接続
された中央処理装置の制御により行われる。
Main device A is connected to a central processing unit (not shown), and slave device B
+ -Bn are each connected to a terminal device not shown in the figure.0 Communication is performed alternately between the main device A and the slave devices 81 to Bn in a time-sharing manner, and switching between transmission and reception is performed by the main device A. This is done under the control of a connected central processing unit.

このような装置では、主装置Aの発光素子Sが送信する
光信号は光ファイバFおよびスター力“フプラCを経由
して、各従装置B1〜Bnの送受兼用素子SRに受信さ
れる。また、各従装置B、〜Bnの送受兼用素子SRが
送信する光信号は主装置Aの受光素子Rに受信される。
In such a device, the optical signal transmitted by the light emitting element S of the main device A is received by the transmitting/receiving device SR of each of the slave devices B1 to Bn via the optical fiber F and the star force “Fuplar C”. , the optical signal transmitted by the transmitting/receiving element SR of each slave device B, -Bn is received by the light receiving element R of the main device A.

第2図はこの実施例に用いた送受兼用素子の波長特性を
示す図である。この図は横軸に波長をとり、縦軸に発光
パワーのスペクトル(実線)および受光感度のスペクト
ル(破線)を規格化して示す、すなわち発光パワーの最
大スペクトルの波長は、受光感度が最大になる波長とは
ずれがある。
FIG. 2 is a diagram showing the wavelength characteristics of the transmitter/receiver element used in this example. In this figure, the horizontal axis represents the wavelength, and the vertical axis shows the normalized emission power spectrum (solid line) and photosensitivity spectrum (dashed line).In other words, the wavelength of the maximum spectrum of the emission power has the maximum photosensitivity. There is a difference from the wavelength.

ところが、本発明の装置では主装置Aには発光素子Sと
受光素子Rとが個別に設けられているがら、発光素子S
の最大スペクトルが第2図の矢印Sになり、受光素子の
感度最大波長が第2図の矢印Rになるように、発光素子
Sおよび受光素子Rを選ぶことができる。また、発光素
子Sには出力光の大きいレーザダイオードを使用し、受
光素子Rには感度の大きいものを使用することができる
However, in the device of the present invention, although the main device A is provided with the light emitting element S and the light receiving element R separately, the light emitting element S
The light-emitting element S and the light-receiving element R can be selected so that the maximum spectrum of the light-receiving element becomes the arrow S in FIG. 2, and the maximum sensitivity wavelength of the light-receiving element becomes the arrow R in FIG. Further, a laser diode with a large output light can be used as the light emitting element S, and a laser diode with high sensitivity can be used as the light receiving element R.

上記例では複数の光ファイバを分岐結合する手段はスタ
ーカップラであるが、これは方向性結合器その他の結合
手段を用いても同様に本発明を実施することができる。
In the above example, the means for branching and coupling a plurality of optical fibers is a star coupler, but the present invention can be similarly implemented using a directional coupler or other coupling means.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、数の大きい従装置では送受兼用素
子を用いて部品数が小さく経済的になり、一つの主装置
では部品数が多くなり装置は高価になっても・全体に与
える影響は小さい。しかも、それぞれ個別の発光素子お
よび受光素子を設けると同等に通信の効率がよくなる。
As explained above, in a large number of slave devices, the number of parts is small and economical by using a transmitting/receiving element, and even if a single main device has a large number of parts and becomes expensive, the overall effect is small. small. Furthermore, if separate light-emitting elements and light-receiving elements are provided, communication efficiency can be improved as well.

したがって、経済的で通信の効率のよい方式が得られる
Therefore, an economical and efficient method of communication is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例装置の構成図。 第2図は送受兼用素子の波長特性図。 第3図および第4図は従来例装置の構成図。 A・・・主装置、B r −B n・・・従装置、C・
・・スターカップラ、F・・・光ファイバ、M・・・結
合ミラー、S・・・発光素子、R・・・受光素子、SR
・・・送受兼用素子。
FIG. 1 is a configuration diagram of an apparatus according to an embodiment of the present invention. Figure 2 is a wavelength characteristic diagram of the transmitting/receiving element. FIG. 3 and FIG. 4 are configuration diagrams of a conventional device. A...Main device, B r -B n...Slave device, C.
... Star coupler, F... Optical fiber, M... Coupling mirror, S... Light emitting element, R... Light receiving element, SR
...An element used for both transmission and reception.

Claims (3)

【特許請求の範囲】[Claims] (1)一つの主装置と複数の従装置との間が光ファイバ
および分岐結合回路を含む伝送路により接続され、 その伝送路は、主装置が送信する光信号は全ての従装置
に到達し、従装置の一つが送信する光信号は少なくとも
主装置に到達する構成であり、時分割的に送受信を切替
える手段を含む光ファイバ双方向伝送方式において、 上記主装置には、上記伝送路に光信号を送信する発光素
子と、上記伝送路から光信号を受信する受光素子とを個
別に備え、 上記従装置には、上記伝送路に光信号を送受信する送受
兼用素子を備えた ことを特徴とする光ファイバ双方向伝送方式。
(1) One main device and multiple slave devices are connected by a transmission line including an optical fiber and a branching/coupling circuit, and the transmission path is such that the optical signal transmitted by the main device reaches all the slave devices. , the optical signal transmitted by one of the slave devices is configured to reach at least the main device, and in an optical fiber bidirectional transmission system that includes means for switching transmission and reception in a time-division manner, the main device has an optical signal on the transmission path. A light emitting element for transmitting a signal and a light receiving element for receiving an optical signal from the transmission line are separately provided, and the slave device is equipped with a transmitter/receiver element for transmitting and receiving an optical signal to the transmission line. Optical fiber bidirectional transmission method.
(2)分岐結合回路は、スターカップラである特許請求
の範囲第(1)項に記載の光ファイバ双方向伝送方式。
(2) The optical fiber bidirectional transmission system according to claim (1), wherein the branching and coupling circuit is a star coupler.
(3)主装置の発光素子の発光波長は従装置の受光素子
の最大受光感度の波長に近似し、主装置の受光素子の最
大受光感度波長は従装置の発光素子の発光波長に近似す
るように各素子の特性が選択された特許請求の範囲第(
1)項に記載の光ファイバ双方向伝送方式。
(3) The emission wavelength of the light emitting element of the main device approximates the wavelength of maximum light receiving sensitivity of the light receiving element of the slave device, and the maximum light receiving sensitivity wavelength of the light receiving element of the main device approximates the light emission wavelength of the light emitting element of the slave device. The characteristics of each element are selected in claim No. (
The optical fiber bidirectional transmission method described in item 1).
JP60193464A 1985-09-02 1985-09-02 Optical fiber two-way transmission system Pending JPS6253032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60193464A JPS6253032A (en) 1985-09-02 1985-09-02 Optical fiber two-way transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60193464A JPS6253032A (en) 1985-09-02 1985-09-02 Optical fiber two-way transmission system

Publications (1)

Publication Number Publication Date
JPS6253032A true JPS6253032A (en) 1987-03-07

Family

ID=16308439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60193464A Pending JPS6253032A (en) 1985-09-02 1985-09-02 Optical fiber two-way transmission system

Country Status (1)

Country Link
JP (1) JPS6253032A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04137310A (en) * 1990-09-27 1992-05-12 Dai Ichi Kogyo Seiyaku Co Ltd Conductor paste for aluminium nitride sintered substrate
US5559624A (en) * 1993-03-11 1996-09-24 Lucent Technologies Inc. Communication system based on remote interrogation of terminal equipment
US5645765A (en) * 1996-05-09 1997-07-08 Shoei Chemical Inc. Lead-free conductive paste

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04137310A (en) * 1990-09-27 1992-05-12 Dai Ichi Kogyo Seiyaku Co Ltd Conductor paste for aluminium nitride sintered substrate
US5559624A (en) * 1993-03-11 1996-09-24 Lucent Technologies Inc. Communication system based on remote interrogation of terminal equipment
US5645765A (en) * 1996-05-09 1997-07-08 Shoei Chemical Inc. Lead-free conductive paste

Similar Documents

Publication Publication Date Title
ES487624A1 (en) Fiber optic signal conditioning circuit
CA2231889A1 (en) Optical transceiver using common optical path for transmission and reception
KR100444798B1 (en) Short range data communication apparatus using diffusion array infrared antenna for receiving signals from transmission module and diffusing received signals
JPS6253032A (en) Optical fiber two-way transmission system
US6970653B1 (en) Fiberoptic system for communicating between a central office and a downstream station
JPS6189735A (en) Time division direction control transmission system of optical communication system
EP0350207A2 (en) Transceiver-based single fiber lan
US5068847A (en) Fiber optic network architecture having data feedback for monitoring communications thereon
JPS6253033A (en) Optical fiber two-way transmission system
EP1018814A2 (en) Optical communication apparatus
JPS6253031A (en) Wavelength multiplex optical fiber transmission system
KR100386813B1 (en) Free-space optical transmission apparatus with optical alignment function by using the visible optical signal
JP2872284B2 (en) Wavelength-selective optical star coupler
JPS5857835A (en) Optical communication system
JPH0119481Y2 (en)
JPS6030459B2 (en) optical communication equipment
US6259839B1 (en) Optical communication connector
JPS62105540A (en) Optical coupling device
US20050089333A1 (en) Combining high-speed data and analog video on an optical fiber
JPH0364136A (en) Bidirectional optical communication system
JPS6236611A (en) Active start coupler
JPS58115950A (en) Optical signal transmitter
JPS58101536A (en) Annular optical communication device
JPH01238330A (en) Optical transmission equipment
SU1674208A1 (en) Optronic device for receiving and transmitting information