JPH01232671A - Fuel battery modifying device - Google Patents

Fuel battery modifying device

Info

Publication number
JPH01232671A
JPH01232671A JP63058580A JP5858088A JPH01232671A JP H01232671 A JPH01232671 A JP H01232671A JP 63058580 A JP63058580 A JP 63058580A JP 5858088 A JP5858088 A JP 5858088A JP H01232671 A JPH01232671 A JP H01232671A
Authority
JP
Japan
Prior art keywords
heat
fuel
fuel cell
reaction
fuel gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63058580A
Other languages
Japanese (ja)
Inventor
Mitsuie Matsumura
光家 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63058580A priority Critical patent/JPH01232671A/en
Publication of JPH01232671A publication Critical patent/JPH01232671A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To modify a fuel gas by using the exhaust heat of a fuel battery and the heat obtained through combustion of the uncombusted fuel gas exhausted as a heat source for heat-absorbing reactions. CONSTITUTION:The exhaust heat as surplus reaction heat produced at the time of discharging is emitted from the battery body 2 in the form of sensible heat using oxygen gas chiefly as the heat medium. This exhaust heat is supplied to the low-temp. modification reaction part 12 of a modifier device 10 and utilized as the modification reaction heat necessary to modify alcohols or hydrocarbons as crude fuel. The low-temp. modification reaction part 12 makes modifying reaction at 550-600 deg.C, and approx. 50% methane is modified and introduced to a high-temp. modification reaction part 13. Uncombusted fuel gas exhausted from the body 2 is combusted, and the heat is supplied to this high-temp. modification reaction part 13. If the fuel gas utilization of the body 2 is assumed to be 85%, the max. temp. attains 850-920 deg.C. The reaction heat in the reaction part 13 can be reduced to a great extent, as approx. 50% modification is finished in the reaction part 12, and the power generating efficiency is improved by approx. 5% of a conventional modifier.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、燃料電池の改質装置、特に発電システム内
において副生される余剰のエネルギーを有効に燃料ガス
の改質反応熱に利用する改質装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention effectively utilizes surplus energy by-produced in a fuel cell reformer, particularly in a power generation system, as the heat of a fuel gas reforming reaction. This relates to a reformer.

〔従来の技術〕[Conventional technology]

第5図は例えば特開昭61−23’73’70号公報に
示された従来の改質装置を用いた燃料電池発電システム
のシステムフローを示す図であり、図におhて(1)は
炭化水素またはアルコール類などの原燃料(4)を主燃
料成分である水素成分の多い燃料ガス(6)に改質する
改質装置であり、改質反応を進行させる改質反応部分(
1a)と改質反応熱を燃焼により供給する加熱部分(1
b)より成っている。(2)は燃料ガス(6)と空気供
給M (51からの酸化ガス(7)が供給され電気化学
反応を起こしてatする燃料電池の本体であシ、燃料ガ
ス(6)を反応させる燃料ガス側Inと酸化ガス(7)
を反応させる酸化ガス側電甑とこれら両電極間に介在す
る電解質板とより成る単電池を多段に積層して構成され
ている。尚、上記の従来例でVi、改質装置(1)は燃
料電池本体(2)と同−各型に収納さねている口 次に動作について説明する5まず、燃料電池の原理的動
作と発電効率を向上させ得る要因を説明する0第5図に
おいて、原燃料である炭化水素またはアルコール類は、
まず改質装置fl) VCで燃料電池本体(2)で電気
化学反応を起こす水幸を主壁な成分とする燃料ガスに改
質される。代表的な炭化水素〒あるメタンの改質反応は
、その反応式を式(1)。
FIG. 5 is a diagram showing a system flow of a fuel cell power generation system using a conventional reformer disclosed in, for example, Japanese Unexamined Patent Publication No. 1986-23'73'70. is a reforming device for reforming raw fuel (4) such as hydrocarbons or alcohols into fuel gas (6) containing a large amount of hydrogen, which is the main fuel component.
1a) and a heating section (1) that supplies reforming reaction heat through combustion.
b) consists of (2) is the main body of the fuel cell that is supplied with the fuel gas (6) and the oxidizing gas (7) from the air supply M (51) to cause an electrochemical reaction. Gas side In and oxidizing gas (7)
It is constructed by stacking unit cells in multiple stages, each consisting of an oxidizing gas-side electric oven for reacting oxidizing gas and an electrolyte plate interposed between these two electrodes. In the conventional example above, the reformer (1) is housed in the same unit as the fuel cell main body (2). In Figure 5, which explains factors that can improve power generation efficiency, the raw fuel hydrocarbons or alcohols are
First, in the reformer (fl) VC, the fuel gas is reformed into a fuel gas whose main component is water, which undergoes an electrochemical reaction in the fuel cell body (2). The reaction formula for the reforming reaction of methane, a typical hydrocarbon, is shown in equation (1).

(2)に示すように全体としては大きな吸熱反応である
As shown in (2), this is a large endothermic reaction as a whole.

OH4+H2O−Co + 3H2+ 49.3Kca
l/mol   fl)Co +H2O−002+H2
−9,8Kcal/mol   [2)このような吸熱
を伴なう改質反応を行う改質装置(1)はや内部に改質
触媒を備え改質反応を進行させる改質反応部分(1a)
と改質反応をするときに必要な改質反応熱を供給する加
熱部分(1b)とから財成される。特に、加熱部分(1
b)にμ通常燃焼器を含み、この燃焼器にて一般的には
燃料電池本体(2)から排出される燃料ガス中に含まれ
る未燃の可燃性ガスを燃焼させ、このとき発生する燃焼
熱を改質反応熱として利用して^る。
OH4+H2O-Co+3H2+ 49.3Kca
l/mol fl)Co +H2O-002+H2
-9.8 Kcal/mol [2] A reforming device (1) that performs such a reforming reaction accompanied by endothermy (1) A reforming reaction section (1a) that is equipped with a reforming catalyst inside and allows the reforming reaction to proceed.
and a heating part (1b) that supplies the reforming reaction heat necessary for carrying out the reforming reaction. In particular, the heated part (1
b) includes a normal combustor, in which unburned combustible gas contained in the fuel gas discharged from the fuel cell main body (2) is combusted, and the combustion that occurs at this time is The heat is used as reforming reaction heat.

一方、燃料電池本体では、放電中においては燃料ガス側
電甑および酸化ガス側電甑で各々式(3)。
On the other hand, in the fuel cell main body, during discharging, the fuel gas side electric oven and the oxidant gas side electric oven each satisfy equation (3).

(4)に示す反応が進行し、燃料ガス(水素)の持つ化
学、′r−ネルギーが全熱反応を伴なりながら電気エネ
ルギーに変換される。
The reaction shown in (4) progresses, and the chemical 'r-energy of the fuel gas (hydrogen) is converted into electrical energy with a total heat reaction.

燃料ガス側電険 H2+003 −JO+002+2e−(3)酸化ガス
側電険 02 + 002 + 2e−−+CO32−(4)こ
のような燃料電池本体システムにおいて%定電効率は、
概略次式(5)よシ求められる。
Fuel gas side electrical resistance H2 + 003 - JO + 002 + 2e - (3) Oxidizing gas side electrical resistance 02 + 002 + 2e - - + CO32 - (4) In such a fuel cell main body system, the % constant current efficiency is:
It can be roughly calculated using the following equation (5).

E3 + 14 ここで、、Fli】:・燃料電池本体(2)で発電され
た電気エネルギー E2:発電システムにおいて、そねを購成する補機など
の機器類で消費さ れる電気エネルギー E3:燃料電池本体(2)で消費される水素を生成する
ために必要な原燃料の 有するエネルギー π4:加熱部分(1b)で消費される燃料ガスに相当す
る原燃料の有するエ ネルギー 式(5)にに+八で、E工。E3およびE2は、それぞ
れ燃料電池本体(2)の特性および発電システムにおい
て用tへられる機器類の特性によって概ね決まるつ従っ
て5発電システムの定電効率をシステム的に改善するに
はb”4即ち加熱用の燃料ガスが如何に少なくてすむ改
質装置が得られるかが課題である。
E3 + 14 where, Fli]: Electrical energy generated by the fuel cell main body (2) E2: Electrical energy consumed by equipment such as auxiliary machines that purchase the core in the power generation system E3: Fuel Energy possessed by the raw fuel necessary to generate hydrogen consumed in the battery body (2) π4: Energy possessed by the raw fuel corresponding to the fuel gas consumed in the heating part (1b) At eight, E-engineer. E3 and E2 are roughly determined by the characteristics of the fuel cell body (2) and the characteristics of the equipment used in the power generation system, respectively. Therefore, in order to systematically improve the constant current efficiency of the power generation system, The challenge is how to obtain a reformer that requires less fuel gas for heating.

−・試算によれば、供給された原燃料のうち燃料電池本
体で消費される水素を生成するために利用されZ)割合
V′165((6)であり、残りの35(@は加熱部分
で燃焼されたことになる口燃料電池本体で利用さiする
割合を10o((転)にするのけ原理的に不可能であZ
・が、燃料ガスの配分や動作の安定性などの観点より、
その適正な利用割合は例えば75〜9o(4)程度であ
る。従って、燃料電池発電システムにお、Q″c′5副
生エネルギーを有効に利用することにより加熱部分で消
費される燃料ガスを発電システム全体に投入された原燃
料総量の10〜25(チ)程度あるいはそね2以下に抑
えることができれば、余分な原燃料を加熱部分で消費す
ることなく大@V#:電効率を向上させることが可能に
なる。
- According to the trial calculation, the proportion of the supplied raw fuel that is used to generate the hydrogen consumed in the fuel cell itself is V'165 ((6), and the remaining 35 (@ is the heating part) It is theoretically impossible to reduce the ratio of the fuel that is burned in the fuel cell body to 10
・However, from the viewpoint of fuel gas distribution and operational stability,
The appropriate utilization ratio is, for example, about 75 to 9o(4). Therefore, by effectively utilizing the Q″c′5 by-product energy in the fuel cell power generation system, the fuel gas consumed in the heating section can be reduced to 10 to 25 (chi) of the total amount of raw fuel input to the entire power generation system. If it can be suppressed to less than 2 degrees or less, it will be possible to improve the electrical efficiency without consuming excess raw fuel in the heating section.

この観点より、前述の特開昭61−237370号公報
に示された発電システムにおりでは、燃料電池本体で生
成される余剰の反応熱である排燃で燃料ガスを予熱する
ことにより発電効率の改善を図ろうとしてhる。
From this point of view, in the power generation system disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 61-237370, the power generation efficiency is improved by preheating the fuel gas with exhaust combustion, which is the excess reaction heat generated in the fuel cell main body. I spend hours trying to improve.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のような従来の燃料電池の改質装置では。 In the conventional fuel cell reformer as mentioned above.

原燃料は燃料電池の排熱と燃焼熱とが混合された熱源で
改質される。−試算として混合された熱源の温度は73
0〜800℃程度になり、従って改質装置内でI−t7
00℃前後で改質反応が進行するりこの時、例えば燃料
ガスがメタンの場合、改質反応率はその依存性の一例を
第6図に示すように改質反応温度や反応圧力に大きく依
存し、特VC電池性能を向上さすべく反応圧力を高める
場合などでは改質反応率が低下するので、前述の発電効
率を示す式(5)の恥、即ち加熱用の燃料ガスの低減V
Cは限度があるという課題があった。
The raw fuel is reformed using a heat source that is a mixture of exhaust heat from the fuel cell and combustion heat. - As a trial calculation, the temperature of the mixed heat source is 73
The temperature is about 0 to 800℃, so I-t7 in the reformer.
When the reforming reaction progresses at around 00°C, for example, when the fuel gas is methane, the reforming reaction rate is highly dependent on the reforming reaction temperature and reaction pressure, as shown in Figure 6, an example of its dependence. However, when the reaction pressure is increased to improve the performance of a special VC battery, the reforming reaction rate decreases, which is a problem with equation (5) indicating the power generation efficiency described above, that is, the reduction of fuel gas for heating V
The problem with C was that it had limits.

この発明は、かかる課題を解決するためになされたもの
で、広−反応圧力動作範囲で燃料電池発電システムの発
電効率を高める改質装置を得ることを目的とする〇 〔課題を解決するための手段〕 この発明に係る燃料電池の改質装置は、改質用の熱を得
て原燃料を主燃料成分の多い燃料ガスに改質し燃料電池
に供給する改質装置に、原燃料を導入し燃料電池の排熱
〒改質させる第一の改質反応部分と燃料電池よシ排出さ
れた未燃の燃料ガスを燃焼させて得られる熱で改質させ
燃料電池に導出する第二の改質反応部分とを備えた本の
であるつ〔作用〕 この発明vcおいては、燃料電池からの排熱と排出され
た未燃の燃料ガスを燃焼させて得られる熱とが吸熱反応
の熱源になり、燃料ガスを改質する。
This invention was made to solve the above problems, and the object is to obtain a reformer that increases the power generation efficiency of a fuel cell power generation system over a wide reaction pressure operating range. Means] The fuel cell reformer according to the present invention introduces the raw fuel into the reformer that obtains heat for reforming, reforms the raw fuel into fuel gas containing a large amount of main fuel components, and supplies the fuel gas to the fuel cell. The exhaust heat of the fuel cell is the heat obtained by burning the first reforming reaction part to be reformed and the unburned fuel gas discharged from the fuel cell, which is reformed using the heat obtained and led to the fuel cell. [Function] In this invention vc, the exhaust heat from the fuel cell and the heat obtained by burning the discharged unburned fuel gas serve as the heat source for the endothermic reaction. and reform the fuel gas.

〔実施例〕〔Example〕

第1図はこの発明の一実施例の改質装置を用りた燃料電
池発電システムのシステムフローを示す図であり、 +
2)、 [41〜(7)は従来例と同様なものである。
FIG. 1 is a diagram showing a system flow of a fuel cell power generation system using a reformer according to an embodiment of the present invention.
2), [41 to (7) are similar to the conventional example.

αυは原燃料(4)を主燃料成分である水素成分の多い
燃料ガス(6a)に改質し燃料電池本体(2)へ供給す
る改質装置であり、相対的に低温度〒改質反応を行う低
温改質反応部分@と相対的に高温度で改質反応を行う高
温改質反応部分α3より成っている。
αυ is a reformer that reforms raw fuel (4) into fuel gas (6a) with a high hydrogen component, which is the main fuel component, and supplies it to the fuel cell main body (2). It consists of a low-temperature reforming reaction section @ that performs the reforming reaction and a high-temperature reforming reaction section α3 that performs the reforming reaction at a relatively high temperature.

低温改質反応部分(2)では、燃料電池本体(2)の反
応熱が循環酸化ガスの顕熱の形でブロワα9やヒートポ
ンプなどの熱媒体(2)で改質装置αOまで熱輸送され
て得らする排熱を吸熱反応の熱源として改質反応が行れ
る〇一方、高温改質反応部分(至)でけ、燃料電池本体
(2)より排出された未燃の燃料ガス(6b)に含まれ
る可燃性成分を加熱部分αるで燃焼させて得られる熱を
吸熱反応の熱源として改質反応が行れる0尚1図示して
^ないが、燃料ガスの径路で排気部や浄化部などまた酸
化ガスの循環経路で回収部など必要な箇所にけ熱交換器
などが投げられている。
In the low-temperature reforming reaction section (2), the reaction heat of the fuel cell body (2) is transported in the form of sensible heat of the circulating oxidizing gas to the reformer αO by a heat medium (2) such as a blower α9 or a heat pump. The reforming reaction can be carried out using the obtained exhaust heat as the heat source for the endothermic reaction. On the other hand, unburned fuel gas (6b) discharged from the fuel cell main body (2) at the high temperature reforming reaction part (end) The reforming reaction is carried out using the heat obtained by burning the combustible components contained in the fuel gas in the heating section as the heat source for the endothermic reaction. In addition, heat exchangers and the like are installed at necessary locations such as the recovery section in the oxidizing gas circulation path.

次に動作について説明する、この発明の一実施例の発電
システムにおいては、投入された原燃料は燃料電池本体
(2)で生成された余剰の反応熱である排熱と燃料電池
本体(2)よシ排出された未燃の燃料ガスを燃焼させた
燃焼熱とを有効に組み合わせてその両者を改質反応熱と
して利用して燃料ガスを改質するものであるつ Wc1図の実施例では、燃料電池本体(2)f放電時に
生成された余剰の反応熱である排熱は主として酸化ガス
を熱媒体として顕熱の形で燃料電池本体(2)よシ排出
される。顕熱の形で排出された余剰の反応熱である排熱
は、改質装置αOの低温改質反応部分(2)に供給され
、原燃料である炭化水素またはアルコール類を改質する
ために必要な改質反応熱として利用される5例えば、溶
融炭酸塩形の燃料電池を用いた発電システムでは循環す
る酸化ガスの温度は一例として排出時YVi65o℃前
後であるが、低温改質反応部分囮では若干下がり、55
0〜600℃程度の反応@度で改質反応が行れる。この
反応温度fij、メタンけ、第6因に示すように。
In a power generation system according to an embodiment of the present invention, the operation of which will be explained next, the raw fuel input is combined with exhaust heat, which is excess reaction heat generated in the fuel cell main body (2), and the fuel cell main body (2). In the embodiment shown in Fig. Wc1, the fuel gas is reformed by effectively combining the combustion heat generated by burning the discharged unburned fuel gas and using both as reforming reaction heat. Fuel cell main body (2) f Exhaust heat, which is surplus reaction heat generated during discharge, is discharged from the fuel cell main body (2) in the form of sensible heat, mainly using oxidizing gas as a heat medium. Exhaust heat, which is surplus reaction heat discharged in the form of sensible heat, is supplied to the low-temperature reforming reaction section (2) of the reformer αO to reform the raw fuel, hydrocarbons or alcohols. For example, in a power generation system using a molten carbonate fuel cell, the temperature of the circulating oxidant gas is around 65oC (YVi) at the time of discharge, but the temperature of the circulating oxidant gas is used as the necessary heat of the reforming reaction. Then it fell slightly to 55.
The modification reaction can be carried out at a reaction temperature of about 0 to 600°C. This reaction temperature fij, methane gas, as shown in the sixth factor.

50〜程度のものが改質され、引き続き高温改質反応部
分(至)に導かれる。この部分には加熱部分04が設け
られており、燃料電池本体(2)から排出さfまた未燃
の燃料ガスを燃焼し、この燃焼熱が改質反応熱として高
温改質反応部分(至)に供給されるう未燃の燃料ガスを
燃焼して得られる最高温度は各種運転条件、各機器の購
成等によシ変化するが、−例として1例えば燃料部、池
本体(2)における燃料ガスの利用率を85%とすると
850〜920°C8度にまで到達する。従って、高温
改質反応部分α3におハては、低温改質反応部分αのに
比べて高温で改質反応を進行させることが可能であり、
しかも高圧動作条件にお^でも第6図に示すようにほぼ
児全にメタンを改質することが可能となる。なお、既に
低温改質反応部分(ハ)におハて原燃料の501よの改
質を完了しているため、高温改質反応部分(1:1 [
おいて必要とされる改質反応熱は従来の改質反応器と比
較して著るしく低減でき、加熱部分aavc供給すべき
燃料ガス量を大きく減らすことができる。
About 50% is reformed and then led to the high-temperature reforming reaction section (end). This part is provided with a heating part 04, which burns unburned fuel gas discharged from the fuel cell main body (2), and this combustion heat is used as reforming reaction heat to reach the high temperature reforming reaction part (towards the high temperature reforming reaction part). The maximum temperature obtained by burning the unburned fuel gas supplied to the tank will vary depending on various operating conditions and the purchase of each equipment. If the utilization rate of fuel gas is 85%, the temperature will reach 850-920°C. Therefore, in the high-temperature reforming reaction section α3, it is possible to advance the reforming reaction at a higher temperature than in the low-temperature reforming reaction section α,
Furthermore, even under high pressure operating conditions, it is possible to reform methane almost completely as shown in Figure 6. In addition, since the reforming of raw fuel 501 has already been completed in the low-temperature reforming reaction section (c), the high-temperature reforming reaction section (1:1 [
The reforming reaction heat required in the reforming reactor can be significantly reduced compared to conventional reforming reactors, and the amount of fuel gas to be supplied to the heated portion aavc can be significantly reduced.

−試算例によりは、本発明実施例による改質装置を用A
た燃′44を池発電システムにおいては、全軍システム
に供給された原燃料のうち加熱部分(14)に供給され
た燃料ガスの割合は15チ程度であり、加熱部分α4に
供給さねる燃料ガスを低減することにより発電システム
の定電効率を5チ程度改養することができる。
- Depending on the trial calculation example, the reformer according to the embodiment of the present invention may be used.
In the fuel tank power generation system, the proportion of fuel gas supplied to the heating section (14) out of the raw fuel supplied to the entire military system is about 15 inches, and the proportion of fuel gas supplied to the heating section α4 is about 15. By reducing the amount of gas, the constant current efficiency of the power generation system can be improved by about 5 cm.

このようVC,i璽システム内において副生される余剰
のエネルギーを有効に燃料ガスの改質反応熱に利用して
広^反応王力fIJf/F、範囲で高1.A発電効率を
得ることができる。
In this way, the surplus energy by-produced in the VC system is effectively used as the heat of the reforming reaction of the fuel gas, and the reaction power fIJf/F is wide and high in the range of 1. A power generation efficiency can be obtained.

第2図に、上述したような二つの反応部分を有した改質
装置00の構造概念の一例を示す。図において、原燃料
には1例えば筒体形状の低温改質反応部分(2)内で熱
媒体(至)によυ熱輸送されてきた排熱が供給さね、そ
の後例えば管状の高温改質反応部分(至)内を通過する
とき未燃の燃料ガス〔6b)の燃焼熱が供給さね、て改
質反応が行れる。このような改質装sh大きな吸熱反応
を伴なうので実現するにはその内部での熱の伝達方法に
留意する必要があり具体例として次のものがある。低温
改質反応部分に関しては、iib常燃料1&1′池本体
からの反応熱が熱媒体を用いて顕熱または潜熱の形で輸
送されるため、上記熱媒体と改質反応される燃料ガスと
を熱交換させる形式の熱交ll1L器形のものであり。
FIG. 2 shows an example of the structural concept of a reformer 00 having two reaction parts as described above. In the figure, the raw fuel is supplied with exhaust heat that has been transported by a heat medium (2) in a low-temperature reforming reaction section (2), for example, a cylinder, and then undergoes high-temperature reforming in a tube-shaped When passing through the reaction part (to), combustion heat of the unburned fuel gas [6b] is not supplied, and a reforming reaction can be carried out. Since such a reforming system involves a large endothermic reaction, it is necessary to pay attention to the internal heat transfer method in order to realize it. Regarding the low-temperature reforming reaction part, the reaction heat from the iib normal fuel 1 &1' pond body is transported in the form of sensible heat or latent heat using a heating medium, so the heating medium and the fuel gas to be subjected to the reforming reaction are transported. It is a type of heat exchanger that exchanges heat.

装置を小形化しかつ熱交換を十分行うためにはフィン付
き管やセラミック粒等の充填粒子を使用すればよ^。一
方、高温改質反応部分に関しては。
In order to downsize the device and perform sufficient heat exchange, filler particles such as finned tubes and ceramic particles should be used. On the other hand, regarding the high temperature reforming reaction part.

バーナ形燃焼器や触媒燃焼器を使った直接加熱や高温の
燃焼ガスと反応管とを熱交換語形式で熱交換させること
による加熱またはこれら両者の組み合わせなどで行うこ
とができる。
Direct heating using a burner-type combustor or catalytic combustor, heating by exchanging heat between high-temperature combustion gas and a reaction tube, or a combination of the two can be used.

第3図は、この発明の他の実施例の改質装置を用^た燃
料電池発電システムのシステムフローを示す図である。
FIG. 3 is a diagram showing a system flow of a fuel cell power generation system using a reformer according to another embodiment of the present invention.

このシステムでは、燃料電池本体を上流側燃料電池(2
a)と下流側燃料電池(2b)に2分割し、それぞれに
燃料ガスを供給する改質装置が設けられた縦続的な接続
構成のシステムである。ここで、原燃料が供給される上
流側の改質装置α0には低温改質反応部分■と高温改質
反応部分@を備えてハる0尚、下流側の改質装#(3)
へは上流側燃料電池(2a)から排出さねた酸化ガスを
供給することにより、上流側燃料電池(2a)で生成さ
れた反応熱を改質反応の熱源として利用して再度改質し
、下流側燃料電池(2b)へ供給している、この場合、
溶融炭酸塩形燃料電池では、一般に動作温度V1650
℃前後であるため、燃料電池から排出さtL75650
℃前後の排熱あるいけ実際的i’cVi熱交換に必要な
有限の温度差を考慮すればそれ以下の排熱が改質反応熱
として利用される0ここで、改質装置における改質反応
は前述の式+1) 、 (2)に示すように燃料ガス中
の水素濃度が低く、水蒸気濃度が高^程促進されるので
上流側燃料電池(2a)で水素を消費しかつ水蒸気を生
成して排出された燃料ガスが改質装置【3)に導入され
るため、スチーム−メタン比が大きくなり改質反応が促
進される。
In this system, the fuel cell main body is connected to the upstream fuel cell (2
This system is divided into two parts, a) and a downstream fuel cell (2b), each of which is equipped with a reformer for supplying fuel gas in a cascade connection. Here, the upstream reformer α0 to which the raw fuel is supplied is equipped with a low-temperature reforming reaction section ■ and a high-temperature reforming reaction section @.
By supplying the oxidizing gas that has not been discharged from the upstream fuel cell (2a), the reaction heat generated in the upstream fuel cell (2a) is used as a heat source for the reforming reaction to perform reforming again. Supplying to the downstream fuel cell (2b), in this case,
For molten carbonate fuel cells, the operating temperature is generally V1650.
Since the temperature is around ℃, tL75650 is emitted from the fuel cell.
Considering the finite temperature difference required for practical i'cVi heat exchange, exhaust heat around ℃ is used as reforming reaction heat. Here, the reforming reaction in the reformer is As shown in the above equations +1) and (2), the hydrogen concentration in the fuel gas is low and the water vapor concentration is promoted to a high degree, so the upstream fuel cell (2a) consumes hydrogen and generates water vapor. Since the fuel gas discharged from the fuel gas is introduced into the reformer [3], the steam-methane ratio increases and the reforming reaction is promoted.

$4図は、この発明のさらに池の実施例の改質装置を用
^た燃料電池発電システムのシステム70−を示す図で
ある。このシステムでは、燃料電池本体を2分割して縦
続的な接続構成にし、上流側の改質装置(lla)K低
温改質反応部分υと高温改質反応部分α3を備えている
が、さらに下流側の改質装置(IINもこれに近接して
設けたものであり、下流側の改質装@(11b)の改質
反応温度もより高めやすくしたものである。
Figure $4 is a diagram showing a system 70- of a fuel cell power generation system using a reformer according to an embodiment of the present invention. In this system, the fuel cell main body is divided into two and connected in a cascade configuration, and is equipped with an upstream reformer (lla) K low-temperature reforming reaction section υ and high-temperature reforming reaction section α3, and further downstream The side reformer (IIN) is also provided close to this, and the reforming reaction temperature of the downstream reformer @ (11b) is also made easier to raise.

なお、上記実施例では燃料電池本体として溶融炭酸塩形
のものについて説明を行ってきたが、リン酸形の燃料電
池を用めた発電システムでも良い。
In the above embodiments, a molten carbonate type fuel cell has been described as the main body of the fuel cell, but a power generation system using a phosphoric acid type fuel cell may also be used.

例えば、リン酸形の燃料電池は通常動作温度が200℃
前後であp、  180〜200℃前後の反応熱が多電
に利用できる。一方、原燃料としてアルコール類例えば
メタノールを用いる例があるが、メタノールの好ましい
改質反応温度)i230〜300℃程度である0従って
、この場合においても高温改質反応部分では、燃料電池
本体から排出される未燃の燃料ガスを燃焼させた燃焼熱
を用いて燃料電池からの排熱の温度レベルを30−10
0℃程度上げ最終的な反応温度を230〜300℃にす
ることによシ燃料電池からの排熱を有効に改質反応に利
用することができる。
For example, phosphoric acid fuel cells typically have an operating temperature of 200°C.
The reaction heat of around 180 to 200°C can be used for polyelectrification. On the other hand, there are examples in which alcohols such as methanol are used as the raw fuel, but the preferred reforming reaction temperature for methanol is approximately 230 to 300°C. The temperature level of the exhaust heat from the fuel cell is reduced to 30-10 using the combustion heat from the combustion of unburned fuel gas.
By increasing the final reaction temperature by about 0°C to 230 to 300°C, the exhaust heat from the fuel cell can be effectively utilized for the reforming reaction.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したとお!11..改質用の熱を得
て原燃料を主燃料成分の多い燃料ガスに改質し索料芦池
に供給する改質装置において、原燃料を導入し燃料電池
の排熱で改質させる第一の改質反応部分と燃料電池より
排出された未燃の燃料ガスを燃焼させて得られる熱で改
質させ燃料電池に導出する第二の改質反応部分とを備え
る構成にしたので1発電システム内におめで副生される
余剰のエネルギーを有効に燃料ガスの改質反応熱に利用
でき、広い反応圧力動作範囲で高Vh発電効率が得られ
る効果がある。
This invention has been explained above! 11. .. In the reformer, which obtains heat for reforming and reforms the raw fuel into fuel gas with a large amount of main fuel components and supplies it to the fuel tank, the first stage is where the raw fuel is introduced and reformed using the exhaust heat of the fuel cell. The structure includes a reforming reaction part and a second reforming reaction part that reforms the unburned fuel gas discharged from the fuel cell using the heat obtained by burning it and leads it to the fuel cell, thus creating a single power generation system. The surplus energy by-produced within the reactor can be effectively used for the heat of the reforming reaction of the fuel gas, and has the effect of obtaining high Vh power generation efficiency over a wide reaction pressure operating range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の改質装置を用いた燃料電
池発電システムのシステムフローを示す図、第2図は第
1図に用いられるこの発明の一実施例の改質装置の構造
概念の一例を示す図、第3図はこの発明の他の実施例の
改質装置を用いた燃N電池発電システムのシステムフロ
ーを示す図、第4図はこの発明のさらに他の実施例の改
質装置ヲ用いた燃料電池発電システムのシステムフロー
を示す図、第5図Vi従来の改質装置を用いた燃料電池
発−1システムのシステムフローを示す図、第6図は燃
料電池の燃料ガスの一つとして用いらね。 るメタンの改質反応率と反応温度・反応圧力との関係を
示す図である。 図におハて%(2)げ燃料電池、αOVi改質装a1@
l−t@−の改質反応部分、α3は第二の改質反応部分
である。 なお、各図中同−符Jij−け同一またげ相当部分を示
すり
FIG. 1 is a diagram showing a system flow of a fuel cell power generation system using a reformer according to an embodiment of the present invention, and FIG. 2 is a diagram showing the structure of the reformer according to an embodiment of the present invention used in FIG. A diagram showing an example of the concept, FIG. 3 is a diagram showing a system flow of a fuel-N battery power generation system using a reformer according to another embodiment of the present invention, and FIG. Figure 5 shows the system flow of a fuel cell power generation system using a reformer; Figure 6 shows the system flow of a fuel cell power generation system using a conventional reformer. It can't be used as a type of gas. FIG. 2 is a diagram showing the relationship between the methane reforming reaction rate and the reaction temperature and reaction pressure. Figure shows percentage (2) fuel cell, αOVi reformer a1@
The reforming reaction part of lt@-, α3, is the second reforming reaction part. In addition, in each figure, the same reference numeral indicates the same overlapping portion.

Claims (1)

【特許請求の範囲】[Claims]  改質用の熱を得て原燃料を主燃料成分の多い燃料ガス
に改質し燃料電池に供給する燃料電池の改質装置におい
て、前記原燃料を導入し燃料電池の排熱で改質させる第
一の改質反応部分と燃料電池より排出された未燃の燃料
ガスを燃焼させて得られる熱で改質させ燃料電池に導出
する第二の改質反応部分とを備えたことを特徴とする燃
料電池の改質装置。
In a fuel cell reformer, the raw fuel is introduced into a fuel cell reformer that obtains heat for reforming, reforms the raw fuel into a fuel gas containing a large amount of main fuel components, and supplies the fuel gas to the fuel cell, where the raw fuel is introduced and reformed using the exhaust heat of the fuel cell. The fuel cell is characterized by comprising a first reforming reaction part and a second reforming reaction part that reforms unburned fuel gas discharged from the fuel cell using heat obtained by burning it and leads it to the fuel cell. fuel cell reformer.
JP63058580A 1988-03-11 1988-03-11 Fuel battery modifying device Pending JPH01232671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63058580A JPH01232671A (en) 1988-03-11 1988-03-11 Fuel battery modifying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63058580A JPH01232671A (en) 1988-03-11 1988-03-11 Fuel battery modifying device

Publications (1)

Publication Number Publication Date
JPH01232671A true JPH01232671A (en) 1989-09-18

Family

ID=13088394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63058580A Pending JPH01232671A (en) 1988-03-11 1988-03-11 Fuel battery modifying device

Country Status (1)

Country Link
JP (1) JPH01232671A (en)

Similar Documents

Publication Publication Date Title
JPH0622148B2 (en) Molten carbonate fuel cell power plant
JP2005276836A (en) Method and system for start and transient operation of fuel cell-gas turbine combined system
Yen et al. Experimental investigation of 1 kW solid oxide fuel cell system with a natural gas reformer and an exhaust gas burner
JP6194321B2 (en) Method and apparatus utilizing recirculation for high temperature fuel cell systems
JPS61193371A (en) Fuel cell power generator
CN115084574A (en) Solid oxide fuel cell cogeneration system based on diesel reforming
US9343766B2 (en) Fuel cell system
JP2014229438A (en) Fuel cell device
CN114024009A (en) Fuel cell power generation system
JP4342172B2 (en) Co-energy system
JPH06103629B2 (en) Combined fuel cell power generation facility
JP2003059521A (en) Combined system of solid oxide fuel cell and industrial process utilizing combustion and its operating method
JPH04206362A (en) High-temperature type fuel cell system power generating device
JP2000331698A (en) Fuel cell generating device using gas turbine exhaust gas
JP3941159B2 (en) Fuel cell power generation system
JP2003132903A (en) Combined system of industrial furnace and solid oxide fuel cell
JP2003031249A (en) Fuel cell power generating system
JPH01232671A (en) Fuel battery modifying device
KR101368667B1 (en) Fuel cell system for ship
JP3257604B2 (en) Fuel cell generator
JP2006294464A (en) Fuel cell power generation system
JP3110158B2 (en) Solid electrolyte fuel cell power generator
JPH10275625A (en) Fuel cell generator
JP6800367B1 (en) Fuel cell system
JP2003068314A (en) Solid electrolyte fuel cell and stirling engine combined system