JPH01231261A - Manufacture of battery - Google Patents

Manufacture of battery

Info

Publication number
JPH01231261A
JPH01231261A JP63138307A JP13830788A JPH01231261A JP H01231261 A JPH01231261 A JP H01231261A JP 63138307 A JP63138307 A JP 63138307A JP 13830788 A JP13830788 A JP 13830788A JP H01231261 A JPH01231261 A JP H01231261A
Authority
JP
Japan
Prior art keywords
battery
lithium
sealing
lid
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63138307A
Other languages
Japanese (ja)
Inventor
Kinya Suzuki
欽也 鈴木
Yoshitomo Masuda
善友 増田
Takahiro Kawagoe
隆博 川越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP63138307A priority Critical patent/JPH01231261A/en
Priority to US07/269,449 priority patent/US4939050A/en
Priority to DE3838575A priority patent/DE3838575A1/en
Publication of JPH01231261A publication Critical patent/JPH01231261A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • H01M4/662Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • H01M4/742Meshes or woven material; Expanded metal perforated material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/317Re-sealable arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/669Steels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/10Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with wound or folded electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

PURPOSE:To improve a retainable and cycle characteristic by sealing a vessel main body and a cover body by laser welding. CONSTITUTION:The cover body 2 to which a terminal 8 and an insulator 7 are attached is laser-welded 10 to a vessel main body 1, and the first sealing for closing the upper end opening part of the body 1 is conducted. Then an electrolyte E is injected into a battery vessel through the through hole 8a of the terminal 8, a sealing rod 11 is inserted into the hole 8a after the condition is left intactly for a given time, and the second sealing for closing the hole 8a by laser welding 12 is carried out. This causes the airtightness of the parts 10 and 12 to be retained for a long time, and the generation of a gap to be restricted even the conductive polymer of a positive electrode 3 is expanded and contracted by charging or discharging. Consequently the air intrusion into a battery is excluded, the deterioration of a negative electrode 4 by the outside impurities of lithium or a lithium alloy is prevented, and conservativeness and a cycle characteristic is improved with a liquid spill, etc., prevented.

Description

【発明の詳細な説明】 産1し旦匁−利J正分1T 本発明は、正極に導電性ポリマー、負極にリチウム又は
リチウム合金を用いた電池の製造方法に関し、更に詳述
すれば優れた保存1゛1j性及びサイクル特性を有する
ポリマー電池の製造方法に関する。
[Detailed Description of the Invention] The present invention relates to a method for manufacturing a battery using a conductive polymer for the positive electrode and lithium or a lithium alloy for the negative electrode, and more specifically, it relates to a method for manufacturing a battery using a conductive polymer for the positive electrode and lithium or a lithium alloy for the negative electrode. The present invention relates to a method for producing a polymer battery having good storage and cycle characteristics.

従−米人吸皿り支流−訓逆邂迭山ようζ支ゑ】−則−従
来より、ポリアニリン等の導電j生ポリマーを電極活物
質とするポリマー電池が種々提案されており、特に正極
に導電性ポリマー、負極にリチウム又はリチウム合金、
電解液にリチウムイオンを含む非水溶媒を用いた二次電
池は一部実用に供されている。
A variety of polymer batteries have been proposed in the past that use conductive raw polymers such as polyaniline as electrode active materials. Conductive polymer, lithium or lithium alloy for negative electrode,
Some secondary batteries using non-aqueous solvents containing lithium ions as electrolytes are in practical use.

かかる電池を製造する場合は、金属製の容器本体とプラ
スチック製の蓋体とからなる電池容器内に正・負極及び
電解液を収容し、容))3本体と蓋体とを封口処理し、
密封するものであるが、この蓋体の容器本体への取り付
け、密封加工としては。
When manufacturing such a battery, the positive and negative electrodes and electrolyte are contained in a battery container consisting of a metal container body and a plastic lid, and the container and the lid are sealed.
It is meant to be sealed, but what about attaching the lid to the container body and sealing it?

従来プレスによるかしめ加工が多く採用されている。Traditionally, caulking using a press is often used.

しかしながら、従来のプレスによるかしめ加工は、プラ
スチック製蓋体に金属製容器本体の端部をくい込ませる
ことによる封口法であり、長期密閉性の点て問題がある
。特に、上述したような正極に導′ポ性ポリマー、負極
にリチウム又はリチウム合金を使用する電極構成では、
これを電池容器内に収容し、プレスによるかしめ加工を
採用して蓋体を容器本体に取り付け、密封しても、圧用
に用いられる導電性ポリマーは充電時に膨張し、放電時
に収縮する性質を有するため、電池を使用した際に生じ
る正極の導電性ポリマーの膨張、収縮によってかしめ加
工部分にゆるみが生じ、密封状態が解消されて外部空気
が電池容器内に侵入する。
However, the conventional press crimping process is a sealing method in which the end of the metal container body is pushed into the plastic lid, and there is a problem in terms of long-term sealability. In particular, in the electrode configuration described above in which a conductive polymer is used for the positive electrode and lithium or a lithium alloy is used for the negative electrode,
Even if this is housed in a battery container, the lid is attached to the container body using press caulking, and the lid is sealed, the conductive polymer used for pressure has the property of expanding during charging and contracting during discharging. Therefore, due to the expansion and contraction of the conductive polymer of the positive electrode that occurs when the battery is used, the caulked portion becomes loose, the sealing state is broken, and external air enters the battery container.

一方、負極に使用されるリチウムやリチウム合金は空気
中の不純物に触れると不活性化したり水素ガスを発生す
る性質を有するため、上記かしめ加工部分から侵入した
空気と負極のリチウム又はリチウム合金とが反応し、電
池性能を低下、させるという問題を生じる。特に、放電
容量の大きい電池を指向した場合には、正極の膨張・収
縮、負極の外部空気との反応などの影響がより大きくな
り。
On the other hand, the lithium or lithium alloy used in the negative electrode has the property of becoming inactivated or generating hydrogen gas when it comes into contact with impurities in the air, so the air that has entered through the caulking part may not interact with the lithium or lithium alloy of the negative electrode. This causes problems such as reaction and deterioration of battery performance. In particular, when aiming for a battery with a large discharge capacity, the effects of expansion and contraction of the positive electrode, reaction of the negative electrode with external air, etc. become greater.

優れた保存特性及びサイクル特性を有するポリマー電池
を得難いという問題がある。
There is a problem in that it is difficult to obtain polymer batteries with excellent storage and cycle characteristics.

本発明は、上記事情に鑑みなされたもので、負極にリチ
ウム又はリチウム合金、正極に導電性ポリマー、電解質
にリチウム全屈イオンを含む非水溶媒を用い、これら構
成要素を電池容器内に収容し、容器本体と蓋体とを封口
処理した電池において長期密閉性を高くすることによっ
て、優れた保存特性及びサイクル特性を有するポリマー
電池を製造する方法を提供することを目的とする。
The present invention was made in view of the above circumstances, and uses lithium or a lithium alloy for the negative electrode, a conductive polymer for the positive electrode, and a nonaqueous solvent containing lithium ion as the electrolyte, and houses these components in a battery container. An object of the present invention is to provide a method for manufacturing a polymer battery having excellent storage characteristics and cycle characteristics by improving long-term sealing performance in a battery whose container body and lid are sealed.

課題を解決するためノと手」え及」/道」−本発明は上
記目的を達成するため、正極に導電性ポリマー、負極に
リチウム又はリチウム合金、及びリチウムイオンを含む
非水溶媒からなる電解質を用い、これらの電池要素を容
器本体と蓋体とからなる電池容器に収容し、容器本体と
蓋体とを封口処理する電池の製造方法において、上記封
口処理をレーザー溶接により行なうようにしたものであ
る。
In order to achieve the above object, the present invention uses an electrolyte consisting of a conductive polymer for the positive electrode, lithium or a lithium alloy for the negative electrode, and a non-aqueous solvent containing lithium ions. A battery manufacturing method in which these battery elements are housed in a battery container consisting of a container body and a lid, and the container body and the lid are sealed, wherein the sealing treatment is performed by laser welding. It is.

本発明によって得られた電池は、容器本体の開口部を覆
って蓋体が気密に取り付けられ、かつ蓋体が容器本体に
しっかりと固着されるため、長期間に亘り封口部の気密
性が保持され、正極の導電性ポリマーが充放電により膨
張、収縮しても該封口部に隙間が生じるような不都合も
ない。従って、電池内への空気侵入が確実に遮断される
ので、負極のリチウム又はリチウム合金が外部不純物に
より劣化せしめられることが防止され、電極劣化が生じ
難く、また内部からの液漏れ等も防止されて、保存特性
及びサイクル特性が十分発揮されるものである。
In the battery obtained by the present invention, the lid is airtightly attached to cover the opening of the container body, and the lid is firmly fixed to the container body, so the airtightness of the sealing part is maintained for a long period of time. Therefore, even if the conductive polymer of the positive electrode expands and contracts due to charging and discharging, there is no inconvenience such as the formation of a gap in the sealing portion. Therefore, since air intrusion into the battery is reliably blocked, the lithium or lithium alloy of the negative electrode is prevented from deteriorating due to external impurities, electrode deterioration is less likely to occur, and liquid leakage from the inside is also prevented. Therefore, storage characteristics and cycle characteristics are fully exhibited.

以下、本発明につき更に詳しく説明、する。The present invention will be explained in more detail below.

本発明に係る電池は、上記したように正極に導電性ポリ
マー、負極にリチウム又はリチウム合金、電解質にリチ
ウムイオンを含む非水溶媒を用いたものである。
As described above, the battery according to the present invention uses a conductive polymer for the positive electrode, lithium or a lithium alloy for the negative electrode, and a nonaqueous solvent containing lithium ions for the electrolyte.

ここで、正極に用いる導電性ポリマーとしては、ポリア
ニリン、ポリアセチレン、ポリーP−フェニレン、ポリ
ベンゼン、ポリピリジン、ポリチオフェン、ポリフラン
、ポリピロール、ポリアントラセン、ポリナフタリン等
及びこれらの誘導体の有機導電性ポリマーなどが挙げら
れるが、これらの中でポリアニリン又はその誘導体が好
適に用いられる。
Here, examples of the conductive polymer used for the positive electrode include organic conductive polymers such as polyaniline, polyacetylene, polyP-phenylene, polybenzene, polypyridine, polythiophene, polyfuran, polypyrrole, polyanthracene, polynaphthalene, and derivatives thereof. Among these, polyaniline or its derivatives are preferably used.

なお、正極基体の形態に特に制限はなく、例えば、繊維
、布、不織布、フィルム、板等の各種形態で使用できる
Note that there is no particular restriction on the form of the positive electrode substrate, and it can be used in various forms such as fiber, cloth, nonwoven fabric, film, and plate.

また、本発明の電池は、負極としてリチウム又はリチウ
ム合金を用いるものであるが、この場合1、リチウム合
金の種類に特に制限はなく、例えばリチウムとアルミニ
ウム、マグネシウム、インジウム、水銀、亜鉛、カドミ
ウム、鉛、ビスマス、錫、アンチモン等の1種又は2種
以上との合金などを好適に使用し得る。これらの中では
、特にアルミニウムとリチウムとの合金を用いることが
負極特性、成形性の点で好ましい。
Further, the battery of the present invention uses lithium or a lithium alloy as the negative electrode, but in this case, 1. there is no particular restriction on the type of lithium alloy; for example, lithium and aluminum, magnesium, indium, mercury, zinc, cadmium, An alloy of one or more of lead, bismuth, tin, antimony, etc. can be suitably used. Among these, it is particularly preferable to use an alloy of aluminum and lithium in terms of negative electrode characteristics and formability.

なお、リチウム合金を使用する場合、リチウムと合金化
すべき金属のリチウム合金化は電池容器内で行なうこと
ができる。
Note that when a lithium alloy is used, lithium alloying of the metal to be alloyed with lithium can be performed within the battery container.

更に、電解質としては液体電解質又は固体電解質が用い
られる。液体電解質は、リチウムイオンを含む非水液体
溶媒からなるもので、この場合リチウムイオンは、リチ
ウムイオンとアニオンとからなる化合物として供給され
る。このアニオンの例としてはP F、−、5bFG−
、AsFl、 5bCI21.−の如きVA族元素のハ
ロゲン化物アニオン、B F4−、AU(J4−の如き
mA族元素のハロゲン化物アニオン、I−(I、−)、
Br−、CQ−の如きハロゲンアニオン、CQOl−の
如き過塩素酸アニオン、HF2−、CFJS○、−,5
CN−,5OS−。
Further, as the electrolyte, a liquid electrolyte or a solid electrolyte is used. The liquid electrolyte consists of a nonaqueous liquid solvent containing lithium ions, and in this case, the lithium ions are supplied as a compound consisting of lithium ions and anions. Examples of this anion are PF, -, 5bFG-
, AsFl, 5bCI21. Halide anions of group VA elements such as -, B F4-, AU (m) halide anions of group A elements such as J4-, I- (I, -),
Halogen anions such as Br-, CQ-, perchlorate anions such as CQOl-, HF2-, CFJS○, -,5
CN-, 5OS-.

HS○、−等を挙げることができる。具体的には、リチ
ウムイオンはLiPF、、Li5bF、、■−iA s
 F 6 HLiCQO4,LiI、LiBr、LiC
Q、LiBF、。
HS○, -, etc. can be mentioned. Specifically, lithium ions are LiPF, , Li5bF, ,■-iA s
F 6 HLiCQO4, LiI, LiBr, LiC
Q.LiBF.

LiAQ(j)、4. LiHF2. Li5CN、 
Li5O,CF。
LiAQ(j), 4. LiHF2. Li5CN,
Li5O, CF.

等として供給することができ、これらの中では特に電池
の軽量化、安定化等の点からL i CQ○4゜LiB
F、、LiPF6.Li5O,CF3などが好適に用い
られる。一方、非水溶媒としては、比較的():件の大
きい溶媒が好適に用いられる。具体的には、プロピレン
カーボネート、エチレンカーボネート、ベンゾニトリル
、テトラヒドロフラン、2−メチルテトラヒドロフラン
、γ−ブチロラクトン。
Among these, LiCQ○4゜LiB can be supplied as LiCQ
F,,LiPF6. Li5O, CF3, etc. are preferably used. On the other hand, as the non-aqueous solvent, a solvent with a relatively large () ratio is preferably used. Specifically, propylene carbonate, ethylene carbonate, benzonitrile, tetrahydrofuran, 2-methyltetrahydrofuran, and γ-butyrolactone.

ジオキソラン、塩化メチレン、1ヘリエチルフオスフエ
ート、トリエチルフォスファイト、硫酸ジメチル、ジメ
チルホルムアミド、ジメチルアセトアミド、ジメチルス
ルフオキシド、ジオキサン、ヅメ1−キシエタン、ポリ
エチレングリコール、スルフオラン、ジクロロエタン、
グロルベンゼン、ニトロベンゼンなどの有機溶媒の1種
又は2種以上の混合物を挙げることができる。
Dioxolane, methylene chloride, 1-heliethyl phosphate, triethyl phosphite, dimethyl sulfate, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, dioxane, 1-xyethane, polyethylene glycol, sulfolane, dichloroethane,
One type or a mixture of two or more types of organic solvents such as globenzene and nitrobenzene can be mentioned.

また、本発明の電池に使用し得る固体電解質としては、
上記液体電解質を例えばポリエチレンオキサイド、ポリ
プロピレンオキサイド、ポリエチレンオキサイドのイソ
シアネート架橋体、エチレンオキサイドオリゴマーを側
鎖に持つホスファゼンポリマー等の重合体に含浸させた
有機固体電解質、Li、N、LiBC(!4.Li4S
in4.Li、BO。
In addition, solid electrolytes that can be used in the battery of the present invention include:
Organic solid electrolytes, such as Li, N, LiBC (!4. Li4S
in4. Li, B.O.

等のリチウムガラスなどの無機固体電解質が挙げられる
Examples include inorganic solid electrolytes such as lithium glass.

なお、正負極間に電解質を介在させるに際し、使用する
電解質が固体電解質の場合には、正負両極の接触が生じ
るおそれはなく、正負両極間に直接固体電解質を介在さ
せることができるが、使用する電解質が液体電解質の場
合には、正負両極の接触が生じるおそれがあり、正負両
極間に両極の接触による電流の短絡を防ぐためにセパレ
ータを介装することが好ましい。セパレータとしては多
孔質で電解液を通したり含んだりすることのできる材料
、例えばポリテトラフルオロエチレン、ポリプロピレン
やポリエチレンなどの合成樹脂製の不織布、織布、多孔
体及び網等を使用することができる。
When interposing an electrolyte between the positive and negative electrodes, if the electrolyte used is a solid electrolyte, there is no risk of contact between the positive and negative electrodes, and the solid electrolyte can be directly interposed between the positive and negative electrodes. When the electrolyte is a liquid electrolyte, there is a risk that the positive and negative electrodes may come into contact with each other, and it is preferable to interpose a separator between the positive and negative electrodes in order to prevent short-circuiting of current due to contact between the two electrodes. As the separator, it is possible to use porous materials that allow the electrolyte to pass through or be contained therein, such as nonwoven fabrics, woven fabrics, porous bodies, and nets made of synthetic resins such as polytetrafluoroethylene, polypropylene, and polyethylene. .

而して、本発明に係る電池の製造方法は、上記正・負極
及び電解質、更に必要によりセパレータを電池要素とし
、その他電池の種類に応じて用いる電池要素を容器本体
と蓋体とからなる電池容器内に収容し、容器本体と蓋体
とを封口処理するものであるが、この際封口箇所にレー
ザーを照射してレーザー溶接することにより封口処理を
施すようにしたものである。
Therefore, the method for manufacturing a battery according to the present invention includes a battery comprising a container body and a lid body, with the positive and negative electrodes, electrolyte, and, if necessary, a separator as battery elements, and other battery elements used depending on the type of battery. The container is housed in a container, and the container body and lid are sealed. At this time, the sealing process is performed by irradiating the sealing portion with a laser and performing laser welding.

この場合、電池容器の形状は特に限定されず、コイン形
、円筒形、箱形等、各種形状に形成し得ろが、本発明に
おいてはプレスによるかしめ加工が困Inな形状、例え
ば箱形の場合に有効に採用される。
In this case, the shape of the battery container is not particularly limited and may be formed into various shapes such as a coin shape, a cylindrical shape, and a box shape. be effectively adopted.

また、容器本体及び蓋体の材質はレーザー溶接が可能な
金属欠のものであればいずれのものでもよく、例えばニ
ッケルめっきを施したスチールがコスト的な点から有利
に使用できるが、強度的にはSUS  304,316
L等のステンレススチールが好適に用いられる。
In addition, the material of the container body and lid may be any metal-free material that can be laser welded. For example, nickel-plated steel can be used advantageously from a cost standpoint, but it is not strong enough. is SUS 304,316
Stainless steel such as L is preferably used.

ここで、電気容器は、特に制限されるものではないが、
通常正極と接続される正極部と負嘆と接続される負極部
との間に不導電性の合成樹脂等からなるWIJi体を介
装することにより、両極部間を絶縁した構成とされる。
Here, the electric container is not particularly limited, but
A WIJi body made of non-conductive synthetic resin or the like is interposed between the positive electrode part, which is normally connected to the positive electrode, and the negative electrode part, which is connected to the negative electrode, thereby insulating the two electrode parts.

この絶縁体としては、ポリプロピレン等の通常電池容器
の絶縁体として用いられるものを使用することができる
が、特にポリアセタール、ポリエーテルエーテルケトン
、ナイロン、ポリテトラフルオロエチレン、ポリフェニ
レンサルファイドなどの融点が170°C以上の耐熱性
樹脂を使用することが好ましい。このような耐熱性樹脂
を絶縁体として使用することにより、電池容器をレーザ
ー溶接により封口処理する際に、電池容器が加熱される
ような高エネルギーのレーザー光を照射して封口処理す
るようにしても、絶縁体が軟化して隙間が生じたり、絶
縁不良となるようなことがなく、良好な封口密閉状態を
達成することができる。従って、高エネルギーのレーザ
ー光により、短時間で封口処理を完了することがができ
、電池1個当りの生産時間を短縮することが可能となる
。特に、電池の用途等の制約などにより絶縁部とレーザ
ー溶接処理を施す箇所とが近接した形状の電池容器を封
口する場合は、レーザー光照射により発生した高熱が絶
、球部に伝播し易く、融点の低い樹脂を絶縁体とすると
高熱のために樹脂が軟化し、隙間が生じるなどの不都合
が生じやすく、このためレーザー光のエネルギーを成度
に低くしなければならず、封口処理に長い時間を要する
こととなるので、絶縁体として上述したような口j熱性
樹脂を使用してレーザー光のエネルギーを上げることは
、電池の製造時間を短縮する点で非常に有効である。
As this insulator, materials commonly used as insulators for battery containers such as polypropylene can be used, but in particular polyacetal, polyetheretherketone, nylon, polytetrafluoroethylene, polyphenylene sulfide, etc. with a melting point of 170° can be used. It is preferable to use a heat resistant resin of C or higher. By using such a heat-resistant resin as an insulator, when sealing a battery container by laser welding, the battery container can be sealed by irradiating it with high-energy laser light that heats it. Also, a good sealing state can be achieved without softening of the insulator and creating gaps or poor insulation. Therefore, the sealing process can be completed in a short time using a high-energy laser beam, and the production time per battery can be shortened. In particular, when sealing a battery container where the insulating part and the part to be laser welded are close to each other due to restrictions such as battery usage, the high heat generated by laser beam irradiation is likely to be cut off and propagate to the bulb part. If a resin with a low melting point is used as an insulator, the high heat will cause the resin to soften and cause problems such as gaps, which will cause problems such as the creation of gaps.This requires the laser beam energy to be extremely low, and the sealing process will take a long time. Therefore, increasing the energy of the laser beam by using the above-mentioned thermal resin as an insulator is very effective in shortening the manufacturing time of the battery.

なお、電池容器内に電極を収容する場合、電極形状は積
層形、円筒形等種々選定し得るが、特に積層形が好まし
い。
In addition, when housing an electrode in a battery container, the shape of the electrode can be selected from various shapes such as a laminated shape and a cylindrical shape, but a laminated shape is particularly preferable.

本発明は、上述したように封口処理をレーザー溶接にて
行なうものであるが、この場合、レーザー溶接は通常の
条件にて行なうことができる。レーザーとしては特に制
限はないが、パワー密度が高く、微細加工に適し、光フ
ァイバーを使用することにより任意の角度より照射でき
るYAGレーザーが好ましく使用できる。
In the present invention, the sealing process is performed by laser welding as described above, but in this case, the laser welding can be performed under normal conditions. Although there are no particular limitations on the laser, a YAG laser is preferably used, which has a high power density, is suitable for fine processing, and can be irradiated from any angle by using an optical fiber.

次に1本発明製造方法の好適な実施態様を第1゜2図を
参照して説明する。
Next, a preferred embodiment of the manufacturing method of the present invention will be described with reference to FIGS. 1-2.

第1図は、本発明によって得られる電池の一例を示すも
ので、図中1は上端が開口する箱形の容器本体、2はこ
の容器本体1の上端開口部を閉塞する蓋体であり、容器
本体1内に正極3と負嘆4とがセパレータ5を介して積
層された積層形構成の電極が収容されている。ここで、
該電極は負極4内に正極3が介装された構成とされ、負
トπ4は金属製容器本体1に接触している。また、正極
3は、上記蓋体2の中央部に穿設された透孔6に固着さ
れた筒状の絶縁体7内に保持された金属端子8にリード
線9を介して接続されているものである。なお、絶縁体
7はガラス製のハーメチックシール、ポリプロピレン、
ポリアセタール、ポリエーテルエーテルケトン、ナイロ
ン、ポリテトラフルオロエチレン、ポリフェニレンサル
ファイド等の合成樹脂にて形成できるが、特に上述した
ようにポリアセタール、ポリエーテルエーテルケトン。
FIG. 1 shows an example of a battery obtained by the present invention. In the figure, 1 is a box-shaped container body with an open top, and 2 is a lid that closes the top opening of the container body 1. A container body 1 accommodates an electrode having a laminated structure in which a positive electrode 3 and a negative electrode 4 are laminated with a separator 5 in between. here,
The electrode has a structure in which a positive electrode 3 is interposed within a negative electrode 4, and the negative electrode π4 is in contact with the metal container body 1. Further, the positive electrode 3 is connected via a lead wire 9 to a metal terminal 8 held within a cylindrical insulator 7 fixed to a through hole 6 formed in the center of the lid 2. It is something. Note that the insulator 7 is a hermetic seal made of glass, polypropylene,
It can be formed from synthetic resins such as polyacetal, polyetheretherketone, nylon, polytetrafluoroethylene, and polyphenylene sulfide, and in particular polyacetal and polyetheretherketone as mentioned above.

ナイロン、ポリテトラフルオロエチレン、ポリフェニレ
ンサルファイドなどの融点が170℃以上の耐熱性樹脂
で形成したものが好適に用いられる。
A material made of a heat-resistant resin having a melting point of 170° C. or higher, such as nylon, polytetrafluoroethylene, or polyphenylene sulfide, is preferably used.

かかる電池を製造する場合は、まず容器本体1内に電極
を収容すると共に、第2図Aに示すように上記金属端子
8として筒状のもの(貫通孔8aを有するもの)を使用
し、該端子8及び絶縁体7を取り付けた蓋体2を容器本
体1にレーザー溶接10することにより、容器本体1の
上端開口部を気密に閉塞する第1の封口処理を行なう。
When manufacturing such a battery, first, the electrode is housed in the container body 1, and as shown in FIG. 2A, a cylindrical metal terminal (having a through hole 8a) is used as the metal terminal 8. A first sealing process is performed to airtightly close the upper end opening of the container body 1 by laser welding 10 the lid 2 to which the terminal 8 and the insulator 7 are attached to the container body 1.

次いで、第2図Bに示したように上記端子8の貫通孔8
aを通して電池容器内に電解液(液体電解質E)を注入
し、所定期間放置後、第2図Cに示したように端子8の
貫通孔8aに封入捧11を挿入し、レーザー溶接12す
ることにより、該貫通孔8aを気密に閉塞する第2の封
口処理を行なう方法が好適に採用される。
Next, as shown in FIG. 2B, the through hole 8 of the terminal 8 is opened.
Inject electrolytic solution (liquid electrolyte E) into the battery container through a, and after leaving it for a predetermined period of time, insert the enclosing rod 11 into the through hole 8a of the terminal 8 as shown in FIG. 2C, and perform laser welding 12. Therefore, a method of performing a second sealing process to airtightly close the through hole 8a is preferably adopted.

即ち、本発明において正極に用いる導電比ポリマーは、
水分を吸着し易い材料であり、これを容器本体内に収容
した場合には既に幾分かの水分を含んでいる。このため
、電極を容器本体内に収容した後、直ちに蓋体で封口し
、完全に密封すると、正極の導電性ポリマー中の残存水
分と負極のリチウム又はリチウム合金とが反応して水素
ガスを発生し、電池容器にふくれ等の問題を生じさせる
That is, the conductivity polymer used for the positive electrode in the present invention is
It is a material that easily absorbs moisture, and when it is housed in the container body, it already contains some moisture. For this reason, if the electrode is placed in the container body and then immediately sealed with a lid and completely sealed, the residual moisture in the conductive polymer of the positive electrode will react with the lithium or lithium alloy of the negative electrode to generate hydrogen gas. This causes problems such as blistering in the battery container.

また、この点を避けるため、電極収容後、−上記水素発
生が完了し、電極が乾燥するまで封口処理することを中
止すると、容器本体の上端開口部が大きいので、電解液
を注入したときに電解液が蒸発し易く、アルゴン等の不
活性ガス雰囲気中で放置しても多少の不純物が侵入する
ことは避は難い。
In addition, to avoid this problem, after the electrode is housed, if the sealing process is stopped until the above-mentioned hydrogen generation is completed and the electrode is dry, the opening at the top of the container body is large, so when the electrolyte is injected, The electrolytic solution easily evaporates, and even if it is left in an inert gas atmosphere such as argon, it is inevitable that some impurities will enter.

また、電解液を注入した段階で大きな開口部をレーザー
溶接することは危険である。
Furthermore, it is dangerous to laser weld large openings once the electrolyte has been injected.

しかしながら、上述した2段階封口処理によれば、第1
の封口処理後において、開口部が存するので水素ガスを
電池容器から逃散させることができると共に、1液間口
部は小さいので、上記不都合は生じ難いものである。
However, according to the two-stage sealing process described above, the first
After the sealing process, the presence of the opening allows hydrogen gas to escape from the battery container, and the opening for the first liquid is small, so the above-mentioned disadvantages are unlikely to occur.

ここで、上記貫通孔8aの大きさは、O,1〜10 i
n程度の直径とすることが好ましい。また。
Here, the size of the through hole 8a is O, 1 to 10 i
The diameter is preferably about n. Also.

この貫通孔8aに対する封口処理は、電解液を注入し、
正極中及び電池容器内の水分と負極中のリチウムが反応
するまで放置した後に行なうものであるが、この際の放
置時間は1時間乃至1週間程度である。
The sealing process for this through hole 8a is performed by injecting an electrolytic solution,
This is carried out after the moisture in the positive electrode and battery container is left to react with the lithium in the negative electrode, and the standing time in this case is about 1 hour to 1 week.

この第2図に示したQoき方法は、電池容器が大きくな
る程好適に採用され、またこれによって得られた第1図
に示す如き電池は、充放電時に正極が膨張、収縮しても
、電池容器がレーザー封口によって強固になり、変形が
生し難いため、負暎用の集電俣及びリート線を使用せず
、かつ負極と電池容器とを溶接しなくても、負極と電池
容器との接触によって十分長期的に通電が可能であり、
電池作製時の手間を簡略化し得る。
The Qo method shown in FIG. 2 is more suitable for use as the battery container becomes larger, and the resulting battery as shown in FIG. Since the battery container is made stronger by laser sealing and is less likely to be deformed, the negative electrode and the battery container can be connected easily without using a current collecting pole or wire for negative damage, and without welding the negative electrode and the battery container. It is possible to conduct electricity for a sufficiently long time by contacting the
It is possible to simplify the labor during battery production.

なお、第2図に示した如き2段階封口処理において、端
子に貫通孔を設ける代わりに蓋体自体に貫通孔を設け、
最終的にこの貫通孔を封口処理するなどのこともでき、
また貫通孔の封口処理もレーザー溶接の代わりに他の方
法を採用してもよく、2段階封口処理は上述した方法に
限定されるものではない。
In addition, in the two-step sealing process as shown in FIG. 2, instead of providing a through hole in the terminal, a through hole is provided in the lid body itself,
Finally, it is also possible to seal this through hole.
Also, other methods may be used for sealing the through holes instead of laser welding, and the two-step sealing treatment is not limited to the method described above.

発明の詳細 な説明したように、本発明は、導電性ポリマーを正極、
リチウム又はリチウム合金を負極、リチウムイオンを含
む非水溶媒を電解質とする′rは池を製造する場合に、
容器本体と蓋体とをレーザー溶接により封口処理するよ
うにしたので、確実な封口処理がなされ、電池容器内が
長期に亘り密封状態に保持される。従って、外部からの
不純物の侵入が防止され、また内部からの液漏れもなく
、優れた保持特性及びサイクル特性を有する電池が得ら
れるものである。
DETAILED DESCRIPTION OF THE INVENTION As described above, the present invention uses a conductive polymer as a positive electrode,
When manufacturing a pond using lithium or a lithium alloy as a negative electrode and a non-aqueous solvent containing lithium ions as an electrolyte,
Since the container body and the lid are sealed by laser welding, the sealing process is performed reliably and the inside of the battery container is maintained in a sealed state for a long period of time. Therefore, impurities are prevented from entering from the outside, and there is no leakage of liquid from the inside, making it possible to obtain a battery with excellent retention and cycle characteristics.

以下、実施例及び比較例を示し、本発明を具体的に説明
するが、本発明は下記の実施例に制限されるものではな
い。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples and Comparative Examples, but the present invention is not limited to the Examples below.

〔実施例1〕 長さ180nwn、巾34■、厚さ200−のアルミニ
ウム板の両面に長さ180nwn、巾30mm。
[Example 1] A length of 180 nwn and a width of 30 mm were placed on both sides of an aluminum plate with a length of 180 nwn, a width of 34 cm, and a thickness of 200 mm.

厚さ200声と長さ140 m、巾30 mm 、厚さ
200癖のリチウム板をそれぞれ1枚ずつ積層して合金
化したリチウム−アルミニウム合金を負極に使用し、正
極にはステンレススチール上で電解重合したポリアニリ
ンを使用し、長さ200 urn 。
A lithium-aluminum alloy made by laminating one lithium plate with a thickness of 200 mm, a length of 140 m, a width of 30 mm, and a thickness of 200 mm is used for the negative electrode, and the positive electrode is electrolyzed on stainless steel. Made of polymerized polyaniline, length 200 urns.

巾34 +nm 、厚さ1mのポリアニリンシートをセ
パレーターであるポリプロピレン製多孔質膜に袋詰めに
し、正極と負極とをアルミニラ11の露出部分が一番外
側になるように巻き上げ、これを直径23n畦、高さ4
3m+++の有底円筒状SUS製容器本体に挿入した。
A polyaniline sheet with a width of 34 + nm and a thickness of 1 m was packed in a polypropylene porous membrane as a separator, and the positive and negative electrodes were rolled up so that the exposed part of the aluminum 11 was the outermost part, and this was wrapped into a 23 nm diameter ridge. height 4
It was inserted into a 3m++ bottomed cylindrical SUS container body.

一方、貫通孔を有する正極端子と絶縁体とからなる正極
端子部をSUS製蓋体の透孔にスポットi8接し、該蓋
体を容器本体の上端開口部を覆って配設し、容器本体と
蓋体とをYAGレーザー溶接により封口処理した。
On the other hand, a positive terminal part consisting of a positive terminal having a through hole and an insulator is in spot i8 contact with the through hole of the SUS lid body, and the lid body is arranged to cover the upper end opening of the container body, and the lid body is arranged to cover the upper end opening of the container body. The lid was sealed by YAG laser welding.

次に、正極端子部に設けた貫通孔より電池容器内を1n
ynHgの減圧にし、該減圧容器内へ3mol/QのL
iBF4/プロピレンカーボネート・ジメトキシエタン
1:1(容積比)電解液を5.6mQ汁液した。2日間
放置し、水素ガスが発生しないことを確認した後、貫通
孔内に直径0.7no、長さ10nrnのステンレスス
チールを挿入し、貫通孔をレーザー溶接し、第1図に示
す如き円筒型ポリマー二次電池を構成した。なお、上記
作成作業は全てアルゴンガス不活性雰囲気中で行なった
。また、貫通孔の直径は0.7noであった。
Next, the inside of the battery container was inspected for 1n through the through hole provided in the positive electrode terminal.
Reduce the pressure to ynHg and add 3 mol/Q of L into the vacuum container.
A 5.6 mQ solution of iBF4/propylene carbonate/dimethoxyethane 1:1 (volume ratio) electrolyte was prepared. After leaving it for 2 days and confirming that no hydrogen gas is generated, a piece of stainless steel with a diameter of 0.7 mm and a length of 10 nm is inserted into the through hole, and the through hole is laser welded to form a cylindrical shape as shown in Figure 1. A polymer secondary battery was constructed. Note that all of the above preparation operations were performed in an argon gas inert atmosphere. Further, the diameter of the through hole was 0.7 no.

この二次電池を60°Cオーブン中で1週間真空乾燥し
たところ重量減は全くなく、次いで充電電流50mA、
上限電圧3.3V、放電電流50mA、下限電圧2vの
条件で充放電試験を行なったところ、第7図に示すよう
に200サイクル経過後も初期の90%の古里を保持し
ていた。
When this secondary battery was vacuum dried in a 60°C oven for one week, there was no weight loss at all, and the charging current was 50mA.
When a charge/discharge test was conducted under the conditions of an upper limit voltage of 3.3 V, a discharge current of 50 mA, and a lower limit voltage of 2 V, as shown in FIG. 7, 90% of the initial value was retained even after 200 cycles.

〔比較例〕[Comparative example]

電池容器の封口処理をかしめ加工により行なった以外は
実施例と同様にして円筒型ポリマー二次電池を構成した
。なお、電解液注入はかしめ加工前に行なった。
A cylindrical polymer secondary battery was constructed in the same manner as in the example except that the battery container was sealed by caulking. Note that the electrolytic solution was injected before caulking.

次に、この二次電池を60℃オーブン中で1週間真空乾
燥したところ、約10■の重量減があった。次いで、実
施例と同様な充放電試験を行なったところ、第7図に示
すように200サイクル目で初期の73%の容量に低下
した。
Next, when this secondary battery was vacuum dried in a 60°C oven for one week, it lost about 10 square centimeters of weight. Next, a charge/discharge test similar to that in the example was conducted, and as shown in FIG. 7, the capacity decreased to 73% of the initial capacity at the 200th cycle.

〔実施例2〕 第4図に示した長さ65 no、 rl]20 mm、
厚さ6m、肉圧0.5mwnのステンレススチール(S
US304)製容器本体1(開口部5X]9nn)と第
5図に上記容器本体1の開口部13を閉寒する長さ19
mm、巾5 ntn 、厚み1 mnのステンレススチ
ール(SUS  304)製蓋体2とからなる電池容器
14を用意した。なお、蓋体2にはその中央部に穿設さ
れた透孔6に固着された筒状絶縁体7(融点325℃の
ポリテトラフルオロエチレン樹脂製)内に貫通孔8aを
有するステンレススチール(SUS  316L)製の
正極端子8が固着されている。
[Example 2] Length shown in Fig. 4: 65 no, rl] 20 mm,
Stainless steel (S) with a thickness of 6m and a wall pressure of 0.5mwn
US304) container body 1 (opening 5X] 9nn) and the length 19 that closes the opening 13 of the container body 1 in FIG.
A battery container 14 made of stainless steel (SUS 304) and having a width of 5 ntn and a thickness of 1 mm was prepared. The lid body 2 is made of stainless steel (SUS) having a through hole 8a in a cylindrical insulator 7 (made of polytetrafluoroethylene resin with a melting point of 325°C) fixed to a through hole 6 drilled in the center of the lid body 2. A positive electrode terminal 8 made of 316L) is fixed.

次いで、第6図に示したように長さ240IIn。Then, as shown in FIG. 6, the length is 240 IIn.

巾18+IIn、JTI:さ0.anwnのアルミニウ
ム板15の片面に長さ230nn、 Ill 15nv
n、厚さQ、2+m+のリチウム板16をIMmしてl
 OOkg/ciの圧力でプレスし、リチウム板側が内
側になるように5ケ所で折り曲げ、負極4とした。また
、正極としてポリアニリンをステンレススチールメツシ
ュ上に電解重合して析出させた厚さ1mのポリアニリン
−ステンレス複合体を長さ120+nm、中18 nn
に切り出したものを用い、中央部にリード線9をスポッ
ト溶接し、セパレーターであるポリプロピレン製多孔質
膜からなる袋に袋詰めした(正極3)。
Width 18+IIn, JTI: 0. Length 230nn, Ill 15nv on one side of anwn aluminum plate 15
A lithium plate 16 of n, thickness Q, 2+m+ is IMm and l
It was pressed at a pressure of OO kg/ci and bent at five places so that the lithium plate side was on the inside to form a negative electrode 4. In addition, as a positive electrode, a polyaniline-stainless steel composite with a thickness of 1 m, prepared by electrolytically polymerizing and depositing polyaniline on a stainless steel mesh, was used as a positive electrode with a length of 120 + nm and a medium of 18 nn.
A lead wire 9 was spot welded to the center of the electrode, and the electrode was placed in a bag made of a porous polypropylene membrane as a separator (positive electrode 3).

この正極3を二つ折りにして上記負極4の内側に挿入し
、まとめて上記容器本体1内に収容した3ここで、負極
4は容器本体1内面に導電状態で圧接される。次いで、
正へ3のリード線9とL記蓋体2の正極端子8とをスポ
ット溶接し、蓋体2で容器本体1開口部13を閉塞した
。この際、リード線9と電池容器14とが接触しないよ
うにポリプロピレン製の絶蒜キャップ17を電極と蓋体
2との間に挿入し、このキャップ17の中央部に穿設さ
れた透孔18中を通してリード線9を正極端子8に接続
した。この蓋体2と容器本体1の開口部13とをパルス
発振のYAGレーザーを使用して溶接10して第3図に
示した箱形電池19を組み立てた。なお、レーザー溶接
条件はスポット径0.5rrn、レーザー出力IJ/ρ
ulse、繰り返し速度20 pulse/ see 
、移動速度2 an / secで行い。
This positive electrode 3 was folded in half and inserted into the inside of the negative electrode 4, and then housed together in the container body 1. Here, the negative electrode 4 is pressed against the inner surface of the container body 1 in a conductive state. Then,
The lead wire 9 of the positive side 3 and the positive electrode terminal 8 of the L lid 2 were spot welded, and the opening 13 of the container body 1 was closed with the lid 2. At this time, a cap 17 made of polypropylene is inserted between the electrode and the lid 2 so that the lead wire 9 and the battery container 14 do not come into contact with each other. A lead wire 9 was connected to the positive electrode terminal 8 through the inside. This lid 2 and the opening 13 of the container body 1 were welded 10 using a pulsed YAG laser to assemble a box-shaped battery 19 shown in FIG. 3. The laser welding conditions are a spot diameter of 0.5rrn and a laser output of IJ/ρ.
pulse, repetition rate 20 pulse/see
, at a movement speed of 2 an/sec.

総出力は20W、開口部2−周の8接時間は24sec
であった・ 次に、正極端子8に設けた貫通孔8aより電池容器内を
L rtrn Hg M圧にし、該減圧容器内へ3y*
o1/Q、のLiBF4/プロピレンカーボネート・ジ
メトキエタン1:1(容積比)電解液を2.4d注液し
た。2日間放置し、水素ガスが発生しないことを確認し
た後1貫通孔8a内に直径Q、7nwn。
Total output is 20W, 8 contact time between 2 openings and 2 laps is 24 seconds.
Next, the inside of the battery container was brought to L rtrn Hg M pressure through the through hole 8a provided in the positive electrode terminal 8, and the pressure was increased to 3y* into the reduced pressure container.
2.4 d of LiBF4/propylene carbonate/dimethoxyethane 1:1 (volume ratio) electrolyte of o1/Q was injected. After leaving it for 2 days and confirming that no hydrogen gas was generated, a diameter Q of 7nwn was formed in the first through hole 8a.

長さ10nnのステンレススチールを挿入し、貫通孔8
aをレーザー溶接12した。なお、上記作業は全てアル
ゴンガス不活性雰囲気中で行った。また、貫通孔8aの
直径は0.7mwaであった。
Insert a stainless steel piece with a length of 10 nn and open the through hole 8.
A was laser welded 12. Note that all of the above operations were performed in an argon gas inert atmosphere. Further, the diameter of the through hole 8a was 0.7 mwa.

この二次電池を60℃オーブン中で1週間真空乾燥した
ところ重量減は全くなく、また、絶縁体7の熱変形も認
められなかった。
When this secondary battery was vacuum dried in a 60° C. oven for one week, no weight loss was observed, and no thermal deformation of the insulator 7 was observed.

〔実施例3〕 絶縁体7として融点334℃のポリエーテルエーテルケ
トンを用いた以外は実施例2と同様にして箱形の二次電
池を構成した。
[Example 3] A box-shaped secondary battery was constructed in the same manner as in Example 2 except that polyetheretherketone having a melting point of 334° C. was used as the insulator 7.

この二次電池を60℃オーブン中で1週間真空乾燥した
ところ重量減は全くなく、また、絶?素体の熱変形も認
められなかった。
When this secondary battery was vacuum-dried in a 60°C oven for one week, there was no weight loss at all, and there was no loss of weight. No thermal deformation of the element body was observed.

なお、lI!AR休7とし体融点140℃のポリプロピ
レンを用いた以外は実施例2と同様にして箱形電池を組
み立てたが、この場合、電池開口部をレーザー溶接した
時点で絶縁体のポリプロピレンが溶融して正極端子8が
電池容器14内に落ち込んで蓋体2と接触してしまった
。そこで、絶縁体のポリプロピレンが溶融しないレーザ
ー溶接条件を種々検討したところ、スポット径Q、5u
wn、レーザー出力I J /pulse、 Wり返し
速度5 pulse/see、移動速度0.5wn/s
ecであり、総出力は5W、開口部−周の8接時間は9
6secとなり、長時間の溶接時間を要した。
In addition, lI! A box-shaped battery was assembled in the same manner as in Example 2, except that polypropylene with a body melting point of 140°C was used for AR heating. The positive electrode terminal 8 fell into the battery container 14 and came into contact with the lid 2. Therefore, we investigated various laser welding conditions that would not melt the polypropylene insulator, and found that the spot diameter was Q, 5u.
wn, laser output I J /pulse, W repetition speed 5 pulse/see, movement speed 0.5wn/s
ec, total output is 5W, 8 contact time between opening and circumference is 9
The welding time was 6 seconds, which required a long welding time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法により得られる電池の一例を示す断
面図、第2図A−Cは本発明方法の一実施工程を順次説
明する斜視図、第S3図は本発明方法により得られる電
池の他の例を示す一部断面斜視図、第4図は同電池を構
成する容器本体を示す斜視図、第5図は同電池を構成す
る蓋体を示し、Aは拡大平面図、BはA図のB−B線に
沿った断面図、第6図は同電池を構成する負極を示す斜
視図、第7図は本発明法により得られた電池と比較方法
によって得られた電池のサイクル数と放電容量を示すグ
ラフである。 1・容器本体、2・・蓋体、3 ・正暎、4・・負曙、
5・・セパレータ、8・・正極端子、8a・・・貫通孔
、10.12・・封口部。 出願人  株式会社 ブリデストン 代理人  弁理士  小 島 隆 司 B      c 第3図 第4図 第6図
FIG. 1 is a cross-sectional view showing an example of a battery obtained by the method of the present invention, FIG. 2 A-C is a perspective view sequentially illustrating one implementation step of the method of the present invention, and FIG. S3 is a battery obtained by the method of the present invention. FIG. 4 is a perspective view showing a container body constituting the battery, FIG. 5 is a lid constituting the battery, A is an enlarged plan view, and B is a perspective view showing another example of the battery. A cross-sectional view taken along line B-B in Figure A, Figure 6 is a perspective view showing the negative electrode constituting the same battery, and Figure 7 is a cycle of a battery obtained by the method of the present invention and a battery obtained by the comparative method. It is a graph showing the number and discharge capacity. 1. Container body, 2. Lid body, 3. Positive dawn, 4. Negative dawn,
5... Separator, 8... Positive electrode terminal, 8a... Through hole, 10.12... Sealing part. Applicant Brideston Co., Ltd. Agent Patent Attorney Takashi Kojima Bc Figure 3 Figure 4 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 1、正極に導電性ポリマー、負極にリチウム又はリチウ
ム合金、及び電解質としてリチウムイオンを含む非水溶
媒を用い、これらの電池要素を容器本体と蓋体とからな
る電池容器に収容し、容器本体と蓋体とを封口処理する
電池の製造方法において、上記封口処理をレーザー溶接
により行なうことを特徴とする電池の製造方法。
1. Using a conductive polymer for the positive electrode, lithium or lithium alloy for the negative electrode, and a non-aqueous solvent containing lithium ions as the electrolyte, these battery elements are housed in a battery container consisting of a container body and a lid. 1. A method of manufacturing a battery in which the lid and the lid are sealed, characterized in that the sealing treatment is performed by laser welding.
JP63138307A 1987-11-12 1988-06-07 Manufacture of battery Pending JPH01231261A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63138307A JPH01231261A (en) 1987-11-12 1988-06-07 Manufacture of battery
US07/269,449 US4939050A (en) 1987-11-12 1988-11-10 Electric cells
DE3838575A DE3838575A1 (en) 1987-11-12 1988-11-14 ELECTRIC CELL

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP62-286000 1987-11-12
JP28600087 1987-11-12
JP63138307A JPH01231261A (en) 1987-11-12 1988-06-07 Manufacture of battery

Publications (1)

Publication Number Publication Date
JPH01231261A true JPH01231261A (en) 1989-09-14

Family

ID=26471380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63138307A Pending JPH01231261A (en) 1987-11-12 1988-06-07 Manufacture of battery

Country Status (1)

Country Link
JP (1) JPH01231261A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5451476A (en) * 1992-11-23 1995-09-19 The Trustees Of The University Of Pennsylvania Cathode for a solid-state battery
JP2004288616A (en) * 2003-03-21 2004-10-14 Varta Microbattery Gmbh Round shaped battery and manufacturing method of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5451476A (en) * 1992-11-23 1995-09-19 The Trustees Of The University Of Pennsylvania Cathode for a solid-state battery
JP2004288616A (en) * 2003-03-21 2004-10-14 Varta Microbattery Gmbh Round shaped battery and manufacturing method of the same

Similar Documents

Publication Publication Date Title
US4939050A (en) Electric cells
KR100354947B1 (en) Nonaqueous electrolyte secondary battery
US9859536B2 (en) Nonaqueous electrolyte battery including a sealed case, battery pack and storage battery apparatus
KR100661680B1 (en) Non-aqueous electrolyte secondary battery
US6713215B2 (en) Non-aqueous electrolyte rechargeable batteries
KR100390099B1 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary cell
EP0486704A1 (en) Organic electrolytic battery
JP2001325945A (en) Cell and manufacturing method of the same
JP2004139961A (en) Manufacturing method of battery and battery
JP3494558B2 (en) Battery
US20040219424A1 (en) Non-aqueous electrolyte secondary battery
JP3631407B2 (en) Nonaqueous electrolyte secondary battery
JPH08203482A (en) Whole solid lithium battery
JP4142921B2 (en) Lithium ion secondary battery
JP2002216843A (en) Manufacturing method of lithium polymer cell
JPH01231261A (en) Manufacture of battery
JP3632968B2 (en) Nonaqueous electrolyte secondary battery
JPH10112321A (en) Nonaqueous electrolyte secondary battery and its manufacture
JPH11339856A (en) Manufacture of sheet-type lithium-ion secondary battery
JP2000223159A (en) Nonaqueous electrolyte secondary battery, and its manufacture
JP4626021B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2757398B2 (en) Non-aqueous electrolyte secondary battery
JP3121902B2 (en) Manufacturing method of lithium secondary battery
JP3588412B2 (en) Thin rechargeable battery
JP3108142B2 (en) Non-aqueous electrolyte battery