JPH01230984A - Hot static hydraulic pressurizing device and cooling operation for the same device - Google Patents
Hot static hydraulic pressurizing device and cooling operation for the same deviceInfo
- Publication number
- JPH01230984A JPH01230984A JP5583888A JP5583888A JPH01230984A JP H01230984 A JPH01230984 A JP H01230984A JP 5583888 A JP5583888 A JP 5583888A JP 5583888 A JP5583888 A JP 5583888A JP H01230984 A JPH01230984 A JP H01230984A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- flow
- cooling
- passage
- stirring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 47
- 230000003068 static effect Effects 0.000 title 1
- 239000007789 gas Substances 0.000 claims abstract description 119
- 239000000112 cooling gas Substances 0.000 claims abstract description 24
- 238000000034 method Methods 0.000 claims abstract description 21
- 238000003756 stirring Methods 0.000 claims description 25
- 230000008569 process Effects 0.000 claims description 13
- 230000000694 effects Effects 0.000 abstract description 4
- 230000001105 regulatory effect Effects 0.000 abstract description 4
- 239000000126 substance Substances 0.000 abstract 2
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 8
- 238000012545 processing Methods 0.000 description 8
- 238000005192 partition Methods 0.000 description 7
- 238000009413 insulation Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000005338 heat storage Methods 0.000 description 1
- 238000001513 hot isostatic pressing Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B30—PRESSES
- B30B—PRESSES IN GENERAL
- B30B11/00—Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
- B30B11/001—Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a flexible element, e.g. diaphragm, urged by fluid pressure; Isostatic presses
- B30B11/002—Isostatic press chambers; Press stands therefor
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は熱間静水圧加圧(以下、HIPと略記する。)
装置に関し、詳しくは、HIP処理後の冷却工程におい
て、その冷却時間を短縮してなお、HIP処理体を均等
に冷却し得、もって稼動率の向上とHIP処理体の品質
安定化とを併せ可能とする上記HIP装置ならびに同装
置を用いた冷却運転方法に関するものである。Detailed Description of the Invention (Industrial Application Field) The present invention relates to hot isostatic pressing (hereinafter abbreviated as HIP).
Regarding the equipment, in detail, in the cooling process after HIP processing, the cooling time can be shortened and the HIP processing object can be cooled evenly, thereby improving the operating rate and stabilizing the quality of the HIP processing object. The present invention relates to the above-mentioned HIP device and a cooling operation method using the same.
(従来の技術)
従来、HIP装置は基本的に高圧容器と、上蓋および下
蓋とによって画成される高圧容器内の高圧室に断熱層と
、その内側ヒータに囲繞された処理空間、すなわち炉室
にて被処理体を高温・高圧処理することを基本構成とさ
れており、断熱性能、均熱性の重要なことより、これら
に関し種々の改良が提案されている。(Prior Art) Conventionally, HIP equipment basically includes a high-pressure chamber defined by a high-pressure container, an upper lid, and a lower lid, a heat insulating layer, and a processing space surrounded by a heater inside the high-pressure chamber, that is, a furnace. The basic configuration is to treat the object to be treated at high temperature and high pressure in a chamber, and various improvements have been proposed in relation to heat insulation performance and heat uniformity, which are important.
一方、このHIP処理は1サイクルに要する時間が長時
間に及ぶ難点があり、その重要な一因子として冷却工程
がある。On the other hand, this HIP process has the disadvantage that one cycle takes a long time, and one of the important factors is the cooling process.
このことは、HIP装置の基本的な構成、即ちHIP処
理に要する高温なる熱から高圧容器の構成部材を保護す
るため、断熱層にて被処理体を含む炉室を被包し厳重に
熱遮閉した構成に起因するもので、その冷却工程におい
て断熱層に被包された炉室内の熱は、断熱層の熱遮断効
果により、外部に放散することを妨げられるからである
。This is due to the basic structure of the HIP equipment, which is to protect the components of the high-pressure vessel from the high-temperature heat required for HIP processing. This is due to the closed configuration, and the heat within the furnace chamber enclosed by the heat insulating layer during the cooling process is prevented from dissipating to the outside due to the heat blocking effect of the heat insulating layer.
そのため、断熱層と被処理体を含む炉室とを一体的に高
圧容器より取り出し、その冷却工程をHip装置外に設
けた装置に賦課させてHIP装置の稼動率を高めるシス
テム、所謂、モジュラ−型HIPシステム等が開発され
ると共に、HIP装置内の構成や構成部材等に種々の工
夫を加え、その冷却速度を高めんとする試みがなされて
いる。Therefore, a so-called modular system is developed, in which the heat insulating layer and the furnace chamber containing the object to be processed are taken out of the high-pressure container as a unit, and the cooling process is imposed on a device installed outside the Hip device, thereby increasing the operating rate of the HIP device. Along with the development of type HIP systems and the like, attempts have been made to improve the cooling rate of the HIP apparatus by making various improvements to the internal structure and components of the HIP apparatus.
一般に、熱伝達方式には対流、輻射、伝導の3つの形態
があることは周知であるが、HIP装置の圧媒ガスを介
した高温・高圧下では特に対流が熱伝達の主体となる。Generally, it is well known that there are three types of heat transfer methods: convection, radiation, and conduction, but convection is the main type of heat transfer, especially under high temperature and high pressure via the pressure medium gas of a HIP device.
従って、HIP装置において冷却時間の短縮を図るため
には対流する圧媒ガスの流れ、あるいはまた強制的に形
成した圧媒ガスの流れを利用するのが有効である。Therefore, in order to shorten the cooling time in a HIP device, it is effective to utilize a convection flow of pressure medium gas or a forced flow of pressure medium gas.
また、一方、冷却中、被処理体が上下方向に不均一に冷
却されると被処理体に歪が生じ、例えば薄物品のような
場合には処理後の被処理体が該歪によって使用に耐えな
くなるとか、また被処理体上下の冷却速度差により内外
組織に差を生じさせ、目的とする製品特性が部分的にし
か得られなくなるなどの品質低下を招来する。On the other hand, if the object to be processed is cooled unevenly in the vertical direction during cooling, distortion will occur in the object. In addition, the difference in the cooling rate between the upper and lower parts of the object to be processed causes a difference between the internal and external structures, leading to deterioration in quality such as the desired product characteristics being only partially obtained.
そして、上記欠点は被処理体が大型である程、またその
高さが高い程、助長され、顕著となる。The above disadvantages are exacerbated and become more noticeable as the object to be processed becomes larger and taller.
そこで叙上の如き事情を勘案し、圧媒ガスの流れを利用
して冷却速度を高めると共に、被処理体を均一に冷却す
る試みとして例えば第5図に示す実願昭61−2467
6号装置が提案されるに至った。Therefore, in consideration of the above-mentioned circumstances, as an attempt to increase the cooling rate and uniformly cool the object to be processed using the flow of pressure medium gas, for example, Utility Model Application No. 61-2467 as shown in Fig. 5 was proposed.
The No. 6 device was proposed.
この装置は同第5図に示すように、高圧筒(1)。As shown in FIG. 5, this device has a high pressure cylinder (1).
および上M (2) 、下蓋(3)にて画成された高圧
室(a)内に断熱層(4)およびヒータ(5)を収設す
ることによって炉室l2I11を形成しており、被処理
体(7)が下M(3)上の断熱炉床(6)上に!!!置
されてHIP処理が行われるもので、同装置の断熱層(
4)は外側及び内側の両倒立コツプ形ケーシング(8)
(9)と、中間の倒立コツプ形ケーシング(至)がそ
の下端において金属リング(4A)に溶接等により気密
に結合されていて各ケーシング間には断熱材0湯が充填
されており、更に、外側ケーシング(8)の上面にガス
通路θ0)が、また中間のケーシングOaの上面にはガ
ス通路θωが夫々設けられ、上蓋(2)に装設された流
体シリンダー〇如き駆動装置02)の軸下端に取り付け
られた弁(It)を、その上下動と共に上下移動せしめ
て前記通路00)を開閉せしめるようになしていると共
に、ケーシング下端部において断熱層(4)とガスの充
満する高圧室内とを連通ずるガス通路06)が、下蓋上
で架台(4B)により支持され、各ケーシング(8)(
9)(14)の下端部を結合する金属リング(4A)の
内側ケーシング(9)と中間ケーシング圓との間の位置
に設けられている。and upper M (2), a furnace chamber l2I11 is formed by accommodating a heat insulating layer (4) and a heater (5) in a high pressure chamber (a) defined by a lower lid (3), The object to be processed (7) is on the adiabatic hearth (6) above the lower M (3)! ! ! The HIP process is performed by placing the device in a
4) Both outer and inner inverted cup-shaped casing (8)
(9) and the intermediate inverted cup-shaped casing (to) are airtightly connected to the metal ring (4A) at the lower end by welding or the like, and the space between each casing is filled with a heat insulating material, and further, A gas passage θ0) is provided on the upper surface of the outer casing (8), and a gas passage θω is provided on the upper surface of the intermediate casing Oa. A valve (It) attached to the lower end is moved up and down as the valve (It) moves up and down to open and close the passage 00, and at the lower end of the casing, the heat insulating layer (4) and the inside of the high pressure chamber filled with gas are connected. A gas passage 06) communicating with each casing (8) is supported by a pedestal (4B) on the lower lid.
9) It is provided at a position between the inner casing (9) and the intermediate casing circle of the metal ring (4A) that connects the lower end of (14).
又、同装置における前記被処理体(7)を載置保持する
断熱炉床(6)は下M(3)上にほぼ気密に結合された
架台(21)によって下蓋(3)から所要の空間を存し
て支持されていて、該空間に連通して上下方向に延びる
開孔(26)が穿設され、その上に該開孔(26)に連
通ずる開孔(27)を下面に有する被処理体収納用の収
納ケーシング(22)が載置保持されて被処理体(7)
を同ケーシング(22)内に収容してHIP処理する如
くなっていると共に、収納ケーシング(22)内では収
納時、被処理体(7)と収納ケーシング(22)との間
には後述するガスの流通する空隙が確保された構造とな
っている。In addition, the adiabatic hearth (6) on which the object to be processed (7) is mounted and held in the same apparatus is equipped with a pedestal (21) that is almost airtightly connected to the lower M (3) so that the required distance can be removed from the lower lid (3). A hole (26) is formed in the hole (26), which is supported in a space, and communicates with the space and extends in the vertical direction. A storage casing (22) for storing the object to be processed is placed and held to hold the object to be processed (7).
is housed in the casing (22) for HIP processing, and when the body is housed in the casing (22), there is a gas between the object to be processed (7) and the casing (22), which will be described later. The structure ensures a space for the flow of water.
そして、また、上記断熱炉床(6)の下部の空間におい
てモータ(25)により駆動される炉内ガスの撹拌用フ
ァン(24)が収設されていると共に、これを囲繞する
前記断熱炉床(1)の架台(21)側面に炉室C!0と
架台(21)内部とを連通ずる開孔(28)が設けられ
ている外、上記撹拌用ファン(24)とは別に断熱層内
の冷却用ガスを強制循環せしめるファン(31)が撹拌
用ファン(24)と同軸に結合され、同一駆動装置(2
5)によって駆動されて付設され、これと共に断熱層下
端の金属リング(4A)と案内筒(23)下端とを下蓋
上で支持する別の架台(4B)が図示の如く設けられ、
断熱層(4)下端の開孔0ωへの直接のガス流入を遮断
すると共に下M(3)の上面に開孔(32)が設けられ
、又、更に炉床(6)の架台(21)が区画板(34)
によって上下両半部に仕切られ、該区画板(34)と下
蓋(3)との間に冷却用ガスの流れる開孔(33)が設
けられている。Further, a furnace gas stirring fan (24) driven by a motor (25) is housed in the space below the adiabatic hearth (6), and the adiabatic hearth surrounding this fan (24) is provided. Furnace chamber C on the side of the mount (21) in (1)! 0 and the inside of the pedestal (21), and in addition to the agitation fan (24), a fan (31) for forcibly circulating the cooling gas in the heat insulating layer is used for stirring. The fan (24) is connected coaxially with the same drive device (24).
As shown in the figure, another pedestal (4B) is driven and attached by 5) and supports the metal ring (4A) at the lower end of the heat insulating layer and the lower end of the guide tube (23) on the lower cover.
A hole (32) is provided on the upper surface of the lower M (3) to block direct gas inflow to the opening 0ω at the lower end of the heat insulating layer (4), and a frame (21) for the hearth (6). is the partition board (34)
The opening (33) through which cooling gas flows is provided between the partition plate (34) and the lower lid (3).
かくして、上記装置を用い、所要の冷却を行うにあたっ
ては、同第5図において撹拌用ファン(24)によって
強制的に炉室QOを流れるガス流(A)と、循環用ファ
ン(31)によって強制的に断熱層(4)内を上昇して
通路Oωを経て高圧筒(1)内壁に沿って流下するガス
流(B)とを内側倒立コツプ形ケーシング(9)を介し
て熱交換させ、前者流れ(A)をもって炉室I2Φ内の
均熱化を達成し、後者流れ(B)をもって速い冷却速度
を達成する。Thus, in order to perform the required cooling using the above device, in FIG. 5, the gas flow (A) forced to flow through the furnace chamber QO by the stirring fan (24) and The gas flow (B) which rises inside the heat insulating layer (4) and flows down along the inner wall of the high pressure cylinder (1) via the passage Oω is exchanged with the gas flow (B) through the inner inverted cup-shaped casing (9), and the former The flow (A) achieves uniform heat in the furnace chamber I2Φ, and the latter flow (B) achieves a high cooling rate.
(発明が解決しようとする課題)
しかしながら、上述の如き第5図に示す同一軸で2つの
ファン(24) (31)を回転させるときは炉室Q(
D内を流れるガス流(A)の流量と高圧筒(1)内壁を
流下するガス流(B)の流量とを夫々独立に制御するこ
とは困難である。例えば、冷却開始初期においては後者
ガス流(B)のガス温度は高く、上蓋(2)内面および
高圧筒(1)内壁の過昇温防止のため流量を極く僅かに
するか、あるいは弁(10を断続的に開閉する必要があ
る。(Problem to be Solved by the Invention) However, when rotating the two fans (24) and (31) on the same axis as shown in FIG. 5 as described above, the furnace chamber Q (
It is difficult to independently control the flow rate of the gas flow (A) flowing inside D and the flow rate of the gas flow (B) flowing down the inner wall of the high-pressure cylinder (1). For example, at the beginning of cooling, the gas temperature of the latter gas flow (B) is high, and the flow rate may be minimized to prevent excessive temperature rise of the inner surface of the upper lid (2) and the inner wall of the high-pressure cylinder (1), or the 10 must be opened and closed intermittently.
しかし、この場合でも前者ガス流(A)の流量は一定量
を確保する必要があり、撹拌用ファン(24)の回転数
を落とすことはできない。従って、弁(11)を断続的
に開閉するにしろ、弁(II)あるいはガス流(B)の
流路中に可変絞りを設けて流量を小さくするにしろ、循
環用ファン(31)ひいてはモータ(25)に大きな負
荷が加わり、モータの短寿命化あるいは最悪の場合、モ
ータトリップで破損を惹起する原因となる。However, even in this case, it is necessary to ensure a constant flow rate of the former gas flow (A), and the rotation speed of the stirring fan (24) cannot be reduced. Therefore, whether the valve (11) is opened and closed intermittently or a variable throttle is provided in the valve (II) or the gas flow path (B) to reduce the flow rate, the circulation fan (31) and the motor A large load is applied to (25), which shortens the life of the motor or, in the worst case, causes damage to the motor due to tripping.
通常、モータ(25)は圧力容器内という限られた空間
内に配置されるもので、出力に余裕をみた設計はコスト
アップにつながり、好ましくなく、父上M(2)下面と
、外側倒立コツプ型ケーシング(8)との空間に蓄熱器
を設けてガスの温度を下げ、絞り又は弁の開閉動作を不
要とする方法はやはり限られた圧力容器内の有効面積を
狭め、炉室QOを小さくして了うことから一般的に用い
られるべきではなく、しかも、この方法は熱抵抗が大き
くなるのみならず、前記2つのガスの流れ(A) (B
)を制御しているわけではない。Normally, the motor (25) is placed in a limited space inside the pressure vessel, and a design with a margin for output will lead to increased costs, which is undesirable. The method of lowering the temperature of the gas by installing a heat storage device in the space with the casing (8) and eliminating the need for opening and closing operations of a throttle or valve also reduces the effective area within the limited pressure vessel and reduces the QO of the furnace chamber. Furthermore, this method not only increases the thermal resistance but also reduces the flow rate of the two gases (A) and (B).
) is not controlled.
かくて、本発明は上記の如き実状に対処し、冷却中、モ
ータに過負荷を与えることなく、上記2つのガス流(A
) (B)を制御し、もって迅速かつ均一な冷却を達成
させることを目的とするものである。Thus, the present invention addresses the above-mentioned situation and allows the above-mentioned two gas streams (A
) The purpose is to control (B) and thereby achieve rapid and uniform cooling.
(課題を解決するための手段)
即ち、上記目的を達成する本発明の特徴とするところは
、第1に機構上、第1図に示すように前記第5図に示す
構成に加え、前記冷却用ガスの流路中、架台(4B)内
部の本質的に冷たい位置に弁(40)を備え、開閉可能
なガス通路(41)を設け、冷却用ガスの流れの一部又
は全部を該ガス通路を経て本質的に冷たい場所のみで循
環させることを可能ならしめた装置にあり、また、請求
項2は上記装置における同軸の撹拌用ファンと循環用フ
ァンを駆動する駆動装置を可変速ならしめてより効果的
とした構成にある。(Means for Solving the Problems) That is, the features of the present invention for achieving the above object are as follows: firstly, in terms of mechanism, as shown in FIG. 1, in addition to the structure shown in FIG. In the cooling gas flow path, a valve (40) is provided at an essentially cold position inside the frame (4B), and a gas passageway (41) that can be opened and closed is provided to direct part or all of the cooling gas flow to the cooling gas. An apparatus is provided that enables circulation through a passage only in an essentially cold place, and claim 2 further provides a device in which a driving device for driving a coaxial stirring fan and a circulation fan in the apparatus is made variable speed. It has a more effective configuration.
そして、請求項3および4は上記装置を用いる冷却運転
方法に関し、前者は駆動装置の可変速操作を利用し、外
側ケーシング上部のガス通路を開とし、同時に駆動装置
を動かして撹拌用ガスと循環用ガスを循環させる冷却工
程において撹拌用ガスの流量を上記駆動装置の可変速操
作によって、一方、冷却用ガスの流量を本質的に冷たい
位置に設けられたガス通路を開閉することによって夫々
調節し、冷却の効率化を達成することにあり、また後者
は特に、上記冷却工程の初期において外側ケーシング上
部の通路より出る冷却用ガスが高温にすぎ、ためにこの
通路が閉じた場合には下部の本質的に冷たい位置のガス
通路を開ならしめることにある。Claims 3 and 4 relate to a cooling operation method using the above device, and the former utilizes variable speed operation of the drive device to open the gas passage in the upper part of the outer casing, and simultaneously moves the drive device to circulate stirring gas and In the cooling process in which the stirring gas is circulated, the flow rate of the stirring gas is adjusted by variable speed operation of the drive device, and the flow rate of the cooling gas is adjusted by opening and closing gas passages provided at essentially cold positions. The purpose of the latter is to achieve cooling efficiency, and the latter is particularly important when the cooling gas exiting from the upper passage of the outer casing is too high in temperature at the beginning of the cooling process, and when this passage is closed, the lower part of the cooling gas is The purpose is to open gas passages in essentially cold locations.
(作用)
上記の本発明によれば炉室内を流れるガス流(A)は速
度可変モータの回転数によって調節し、一方高圧筒内壁
に沿って流下するガス流(B)の流量は下方のガス通路
(41)に設けられた弁(40)によって調節する。(Function) According to the present invention, the gas flow (A) flowing inside the furnace chamber is adjusted by the rotation speed of the variable speed motor, while the flow rate of the gas flow (B) flowing down along the inner wall of the high-pressure cylinder is controlled by the lower gas flow. It is regulated by a valve (40) provided in the passage (41).
そこで、以下、冷却過程を説明すると、炉室内を一定の
速度で冷却するためには前記2つのガス流(八)と(B
)との交換熱量が時間に対して略一定であることが必要
である。ところが、両ガス流(A)(B)の温度差は時
間とともに小さくなるのでガス流CB)の流量は時間と
共に多くならなければならない。一方、炉室内を均一に
冷却するためにはガス流(八)の流量は時間と共に多く
ならなければならないが、この流量増加量は一般にはガ
ス流(B)の流量増加量に比べて小さく、モータの回転
数を増すことで充分、対応可能である。Therefore, to explain the cooling process below, in order to cool the inside of the furnace chamber at a constant rate, the two gas flows (8) and (B
) is required to be approximately constant over time. However, since the temperature difference between the two gas streams (A) and (B) decreases with time, the flow rate of the gas stream CB) must increase with time. On the other hand, in order to uniformly cool the inside of the furnace chamber, the flow rate of gas flow (8) must increase over time, but this increase in flow rate is generally smaller than the increase in flow rate of gas flow (B). It is possible to deal with this problem by increasing the rotation speed of the motor.
従って、ガス流(B)の流量が冷却終了付近でも十分な
量が得られるようファンおよび流路を設計し、それ以前
においては下部の1個又は複数個の弁(40)を順次閉
じることによって流量を調節する。Therefore, the fan and flow path are designed so that a sufficient flow rate of the gas flow (B) can be obtained even near the end of cooling, and before that, one or more valves (40) at the bottom are sequentially closed. Adjust the flow rate.
次に冷却開始初期においては、ガス流(B)が高温であ
るために上部の弁(lりの開閉を繰り返すように通常設
計されているが、このとき、弁01)の閉止に連動して
下部の弁(40)を開け、モータに過負荷を加えないよ
うにする。そして、弁01)の開いたときは弁(40)
を閉じる。なお、弁(40)は弁(11)が開閉を繰り
返している間、開放したままとすることもある。Next, at the beginning of cooling, the gas flow (B) is at a high temperature, so the upper valve (usually designed to open and close repeatedly, but at this time, the valve 01) is closed. Open the lower valve (40) to avoid overloading the motor. Then, when valve 01) opens, valve (40)
Close. Note that the valve (40) may remain open while the valve (11) repeats opening and closing.
(実施例)
以下、更に添付図面を参照し、本発明の詳細な説明する
。(Example) The present invention will be described in detail below with further reference to the accompanying drawings.
第1図および第2図は本発明に係るHIP装置の1例を
示し、第1図は上部弁が開いた場合、第2図は開弁が閉
じた場合である。1 and 2 show an example of the HIP device according to the present invention, in which FIG. 1 shows a case where the upper valve is open, and FIG. 2 shows a case where the valve is closed.
これら図において、その装置構成は本発明の要部とする
下部のガス通路を除いては前述の第5図の装置と略同様
であり、同一部分は同一符号をもって示し、詳細は省略
する。唯、これら図においては架台(4B)内部の区画
板(34)で仕切られた本質的に冷たい位置において下
M(3)上部の開孔(32)を形成する仕切板(42)
に1個又は複数の弁(40)を備えたガス通路(41)
が設けられており、区画板(34)と仕切板(42)と
の間と、前記開孔(32)とを連通させて開孔(33)
より出る冷却用ガスの流れの一部又は全部をガス通路(
41)を介して開孔(32)に循環せしめるようになし
ている。In these figures, the configuration of the device is substantially the same as that of the device shown in FIG. 5 described above, except for the lower gas passage which is the essential part of the present invention, and the same parts are designated by the same reference numerals and details will be omitted. However, in these figures, the partition plate (42) that forms the opening (32) in the upper part of the lower M (3) is located in the essentially cold position partitioned by the partition plate (34) inside the frame (4B).
a gas passageway (41) with one or more valves (40);
is provided, and the aperture (33) is provided to communicate between the partition plate (34) and the partition plate (42) and the aperture (32).
A part or all of the cooling gas flow coming out from the gas passage (
41) to circulate through the aperture (32).
かくしてモータ(25)により駆動されて撹拌用ファン
(24)が作動すると断熱炉床(6)の開花(26)及
び被処理体(7)の収納ケーシング(22)の下面に設
けられた開孔(27)を通過した炉室内ガスは第1図矢
視(A)の如く被処理体(7)と収納ケーシング(22
)との空隙を通り、被処理体(7)の側面を経て熱を奪
い、炉室c2(Il上部で反転して断熱層(4)の内側
ケーシシグ(4)で断熱層内を通過する冷却用ガスと熱
交換しながら流下し、下蓋(3)上に結合された架台(
21)の開孔(28)からファン(24)を収設した炉
床下部の空間に還戻する。Thus, when the stirring fan (24) is activated by the motor (25), the adiabatic hearth (6) blooms (26) and the opening provided in the lower surface of the storage casing (22) for the object to be treated (7) is caused. (27), the gas inside the furnace passes through the object to be treated (7) and the storage casing (22) as shown in the arrow view (A) in Figure 1.
), heat is taken away through the side surface of the object to be processed (7), and the cooling is reversed at the top of the furnace chamber c2 (Il) and passed through the heat insulating layer at the inner casing (4) of the heat insulating layer (4). The gas flows down while exchanging heat with the gas, and the pedestal (
21) through the opening (28) into the space below the hearth where the fan (24) is housed.
一方、断熱N(4)内を通過して熱を奪い、高圧筒(1
)の内壁に沿って流下しつつ放冷する撹拌用冷却ファン
は前記第1図における炉室内ガスとは別に矢視(B)の
如く下蓋(3)に設けた開孔(32)を通過して循環用
ファン(31)の作用により該ファン部に流入し、区画
板(34)下部の開孔(33)を経て断熱層の下部の開
孔θ0に向かい強制的に循環されるが、このとき、この
ガス流(B)の流量は下部の弁(40)の開閉によって
更に別のガス流(B′)として流れ、iJR節がなされ
る。On the other hand, it passes through the insulation N (4) and removes heat, and the high pressure cylinder (1
) The stirring cooling fan, which cools the air while flowing down along the inner wall of the furnace, passes through the opening (32) provided in the lower cover (3) as shown by the arrow (B), separately from the gas in the furnace shown in FIG. The air flows into the fan section by the action of the circulation fan (31), and is forcibly circulated through the opening (33) at the bottom of the partition plate (34) toward the opening θ0 at the bottom of the heat insulating layer. At this time, the flow rate of this gas flow (B) flows as another gas flow (B') by opening and closing the lower valve (40), and the iJR clause is established.
即ち、炉室Q[D内を一定の速度で冷却するためには、
ガス流(A) (B)の交換熱量が時間に対して略−定
であることが必要である。しかし、通常、両ガス流(A
) (B)の温度差は時間と共に小さくなるのでガス流
(B)の流量は時間と共に多くならなければならない。That is, in order to cool the inside of the furnace chamber Q[D at a constant rate,
It is necessary that the amount of heat exchanged between the gas streams (A) and (B) is approximately constant with respect to time. However, typically both gas streams (A
) Since the temperature difference in (B) decreases with time, the flow rate of the gas stream (B) must increase with time.
一方、炉室内を均一に冷却するためには、ガス流(A)
の流量は時間と共に多くならなければならないが、この
流量増加量は一般にはガス流(B)の流量増加量に比べ
て小さく、モータ(25)の回転数を増すことで対応可
能である。On the other hand, in order to uniformly cool the inside of the furnace chamber, the gas flow (A)
Although the flow rate of the gas flow (B) must increase with time, this flow rate increase is generally smaller than the flow rate increase of the gas flow (B), and can be handled by increasing the rotational speed of the motor (25).
従って、ガス流CB)の流量が冷却終了付近でも十分な
量が得られるようファン(31)および流路を設計し、
それ以前においては1個若しくは複数個の弁(40)を
順次閉じることによって流量を調節する。Therefore, the fan (31) and the flow path are designed so that a sufficient flow rate of the gas flow CB) can be obtained even near the end of cooling.
Before that, the flow rate is regulated by sequentially closing one or more valves (40).
即ち、弁(40)を開けることによって図に示す流れ(
B′)が生じ、前記ガス流(B)の流量を少なくするこ
ととなる。この弁(40)を複数個とするときは数段階
に分けてガス流(B)の流量を調節することができる。That is, by opening the valve (40), the flow shown in the figure (
B') occurs, reducing the flow rate of the gas flow (B). When a plurality of valves (40) are provided, the flow rate of the gas flow (B) can be adjusted in several stages.
また、冷却開始の初期段階においては、ガス流(B)の
温度が高く、そのために高圧筒(1)内壁の過昇温防止
の目的から弁θl)は開閉を繰り返すよう構成されるの
が通常であるが、このとき、第2図に示すように弁(1
1)が閉じるのに連動して弁(40)を開け、循環用フ
ァン(31)によるガスの流れを図中、矢視(B′)の
如くすることでモータ(25)に過負荷を加えないこと
ができる。なお、弁(川が開いたときは弁(40)を閉
じる。あるいは弁(40)は弁(11)が開閉を繰り返
している間、開き放しでもよく、何れの方法を選ぶかは
必要とするガス流(B)の流量による。しかし、後者の
方が一般に流量が少ない。In addition, at the initial stage of cooling, the temperature of the gas flow (B) is high, and therefore the valve θl) is normally configured to repeatedly open and close in order to prevent the inner wall of the high pressure cylinder (1) from rising excessively. However, at this time, as shown in Figure 2, the valve (1
1) is closed, the valve (40) is opened, and the gas flow by the circulation fan (31) is made as shown by the arrow (B') in the figure, thereby applying an overload to the motor (25). There can be no. In addition, the valve (when the river opens, close the valve (40). Alternatively, the valve (40) may be left open while the valve (11) repeats opening and closing; whichever method is chosen is necessary. It depends on the flow rate of the gas flow (B). However, the latter generally has a lower flow rate.
次に上記第1図、第2図の例において弁(40)を同心
円状等間隔に8個配置し冷却を行う場合の運転例を第3
図に示す。Next, a third example of operation in which cooling is performed by arranging eight valves (40) concentrically at equal intervals in the example shown in FIGS. 1 and 2 above is shown.
As shown in the figure.
即ち、冷却開始後、しばらくは弁01)は開閉を繰り返
し、ガス流(B)の温度が下がり弁(11)が開き放し
になった後は弁(40)を対称的に4個、6個、8個と
順次、閉じガス流(B)の流量を増加させて上段図表の
如く一定の冷却速度を確保する。That is, after cooling starts, valve 01) is repeatedly opened and closed for a while, and after the temperature of the gas flow (B) decreases and valve (11) is left open, valves (40) are opened symmetrically in four and six valves. , 8, and the flow rate of the closed gas flow (B) is increased one after another to ensure a constant cooling rate as shown in the upper diagram.
なお、均熱性については炉室向上部と下部の温度を測定
し、その差が一定範囲となるようモータ(25)の回転
数を増加することによって達成される。Note that thermal uniformity is achieved by measuring the temperatures of the upper and lower parts of the furnace chamber, and increasing the rotational speed of the motor (25) so that the difference between them is within a certain range.
以上の操作は手動によっても勿論、可能であるが、好ま
しくは、冷却速度及び均熱性を予め設定して、この設定
に従って自動的に運転されるよう構成するのが有用であ
る。Of course, the above operations can be performed manually, but preferably, it is useful to set the cooling rate and thermal uniformity in advance and to configure the system to be automatically operated according to these settings.
なお、弁(40)としては形状が小型であればよく、基
本的には温度の低い領域、通常、約100°Cの領域に
おかれるためDCソレノイドなどが用いられる。Note that the valve (40) only needs to be small in shape, and a DC solenoid or the like is used since it is basically placed in a low temperature region, usually in a region of about 100°C.
そして、この弁(観)の駆動機構は下蓋側であっても、
炉室側であっても差し支えない。And even if the drive mechanism of this valve (view) is on the lower lid side,
There is no problem even if it is on the furnace room side.
第4図は前記第1図、第2図の変形に係る実施例装置で
あり、前記各図と同一部分は同一符号で示しているが、
被処理体(7)を下M(3)上で下部断熱部(43a)
を備えた支持部材(43)上に載置してHIP処理を行
うと共にヒータ外側の案内筒(23)を廃している。FIG. 4 shows an embodiment of the device according to a modification of FIG. 1 and FIG.
Place the object to be treated (7) on the lower M (3) and lower the insulation part (43a).
The heater is placed on a support member (43) equipped with a heater for HIP processing, and the guide tube (23) outside the heater is eliminated.
そして、この場合には第1図と異なりガス流(B)の流
れは下部にある循環用ファン(31)で駆動され炉室下
部でガス流(A)と直接接触して熱交換し、混合した流
れが収納ケーシング(22)内を上昇する間に被処理体
(7)より熱を奪い、一部は上方の通路05)、(lω
を経てガス流(B)となり、高圧筒(1)に放熱し、残
りの大部分は炉室C!Φを下降し、ガス流(A)となる
。In this case, unlike in Fig. 1, the flow of the gas stream (B) is driven by a circulation fan (31) located at the lower part of the furnace chamber, where it comes into direct contact with the gas stream (A), exchanges heat, and mixes. While the flow rises inside the storage casing (22), heat is taken away from the object to be processed (7), and some of the heat is absorbed into the upper passage 05), (lω
It becomes a gas flow (B) and radiates heat to the high pressure cylinder (1), with most of the remaining heat flowing into the furnace chamber C! It descends through Φ and becomes a gas flow (A).
この装置は前記第1図の装置に比較し、2つのガス流(
A) 、 (B)が直接混合されるために熱交換の効率
がよく、より速い冷却速度を得ることができるが、この
構成においても撹拌用ファン(24)と循環用ファン(
31)は同一軸でモータ(25)に直結されており、図
に示すように通路(41)および弁(4o)を1組若し
くは複数組設け、ガス流(B′)の流れを作って可変速
モータを用いることによりガス流(A)(B)の流量を
調節することができ、均一かつ一定速度で迅速に被処理
体を冷却することができる。Compared to the device shown in FIG. 1, this device has two gas flows (
Since A) and (B) are directly mixed, the efficiency of heat exchange is good and a faster cooling rate can be obtained, but even in this configuration, the stirring fan (24) and the circulation fan (
31) are directly connected to the motor (25) on the same shaft, and as shown in the figure, one or more sets of passages (41) and valves (4o) are provided to create a gas flow (B'). By using the variable speed motor, the flow rates of the gas flows (A) and (B) can be adjusted, and the object to be processed can be quickly cooled at a uniform and constant speed.
(発明の効果)
本発明は以上のように撹拌用ファンと循環用ファンを同
軸に設け、循環用ファンによって強制的に循環される冷
却用ガスと、撹拌用ファンによって循環される撹拌用ガ
スを熱交換し得るようにしたHIP装置において、更に
下部に弁を備え、開閉可能なガス通路を設けたものであ
り、モータを速度可変モータとすることにより炉室内を
流れるガス流の流量ならびに高圧筒内壁に沿って流下す
るガス流の流量の調節を容易ならしめ、HIP装置の冷
却中、モータに過負荷を与えることなく、ガス流の流れ
を制御し、一定速度で、がっ均一な冷却を迅速に達成す
ることができる顕著な効果を奏する。(Effects of the Invention) As described above, the present invention provides a stirring fan and a circulation fan coaxially, and the cooling gas forcibly circulated by the circulation fan and the stirring gas circulated by the stirring fan. A HIP device that allows heat exchange, is further equipped with a valve at the bottom and a gas passage that can be opened and closed, and by using a variable speed motor, it is possible to control the flow rate of the gas flow inside the furnace chamber and the high pressure cylinder. It makes it easy to adjust the flow rate of the gas stream flowing down along the inner wall, and controls the flow of the gas stream without overloading the motor during cooling of the HIP device, ensuring uniform cooling at a constant rate. It has a remarkable effect that can be quickly achieved.
殊に前記実願昭61−24676号によって提案された
装置にあっては被処理体の熱がガス流(A)→内側倒立
コツプ形ケーシング→還流ガス流(B)→高圧筒と伝わ
るために熱抵抗が太き(なるが本発明においては被処理
体の熱がガス流(A)→ガス流(B)→高圧筒となるた
め熱抵抗が小さく、より冷却速度は大となる。In particular, in the apparatus proposed in Utility Model Application No. 61-24676, the heat of the object to be treated is transmitted from the gas flow (A) to the inner inverted cup-shaped casing to the reflux gas flow (B) to the high-pressure cylinder. The thermal resistance is large (although in the present invention, the heat of the object to be processed is transferred from the gas flow (A) to the gas flow (B) to the high-pressure cylinder, so the thermal resistance is small and the cooling rate is higher.
しかも、本発明の場合、ガス流(B)の方向は冷たいガ
スが温められて上昇する自然対流の方向と同じであり、
強制的に同一流量を還流させる場合、逆方向に流すより
も少量の駆動力で済むという利点があると共に炉内下部
に流れるガスは既に筒壁により冷却されて冷たくなって
おり、上蓋下面には比較的高い温度のガスが存在するた
めに上蓋による熱放散も効率よく行えるという利点もあ
る。Moreover, in the case of the present invention, the direction of the gas flow (B) is the same as the direction of natural convection in which cold gas is warmed and rises.
When the same flow rate is forced to flow back, it has the advantage of requiring less driving force than flowing in the opposite direction, and the gas flowing to the bottom of the furnace is already cooled by the cylindrical wall, and the bottom surface of the top lid is There is also the advantage that heat dissipation through the top lid can be carried out efficiently because of the presence of relatively high temperature gas.
更に請求項3.4の運転によれば炉室内を均一に冷却す
るためのガス流(A)の流量の増加をモータの回転数の
増加により対応すると共にガス流(B)の流量の弁の閉
止によって順次調節できると共に、冷却開始初期におい
て循環用ファンによるガスの流れを(B′)の如くして
モータに過負荷を加えないようにすることができる。Furthermore, according to the operation of claim 3.4, the increase in the flow rate of the gas flow (A) for uniformly cooling the inside of the furnace chamber is responded to by increasing the rotational speed of the motor, and the flow rate valve of the gas flow (B) is increased. By closing, it is possible to sequentially adjust the gas flow, and at the beginning of cooling, the gas flow by the circulation fan can be made as shown in (B') to prevent overloading the motor.
か(して、本発明はHIP処理時における冷却工程で炉
室内に発生する上下方向温度不均一を低減し、平均化を
促進してガス循環による一層の効率的な冷却を可能とし
、HIP処理の実用化に求められる冷却工程の合理化を
進め、HIP装置の汎用化に格段の効用が期待される。(Thus, the present invention reduces vertical temperature nonuniformity that occurs in the furnace chamber during the cooling process during HIP processing, promotes averaging, and enables more efficient cooling through gas circulation. It is expected that the cooling process will be streamlined, which is required for the practical application of HIP equipment, and that it will have a significant effect on the general use of HIP equipment.
第1図及び第2図は本発明に係る装置の1例を示す断面
概要図で、第1図は上部の弁を開放した状態、第2図は
向弁を閉鎖した状態である。第3図は上記装置の運転例
を示す図表、第4図は本発明装置の変形実施例に係る断
面概要図、第5図は従前のHIP装置例を示す断面概要
図である。
(1)・・・高圧容器、(2)・・・上蓋。
(3)・・・下蓋、(4)・・・断熱層。
(5)・・・ヒータ、(6)・・・炉床。
(7)・・・被処理体。
(8)・・・外側倒立コツプ形ケーシング。
(9)・・・内側倒立コツプ形ケーシング。
(14)・・中間倒立コツプ形ケーシング。
(10) (15) ・・・ケーシングの冷却用ガス
通路。
(11)・・・弁。
(16)・・断熱層下端冷却用ガス通路。
(20)・・炉室、 (23)・・・案内筒。
(24)・・炉室内ガス撹拌用ファン。
(25)・・駆動伝動機。
(26) (27) (28) (29) ・・・炉
室ガス循環開孔。
(31)・・冷却用ガス強制循環用ファン。
(32) (33) ・・・冷却用ガス循環用開孔。
(40)・・・弁、 (41)・・・ガス通路特許出
願人 株式会社 神戸製鋼所
第1図
第2図
第3図
茅4図1 and 2 are cross-sectional schematic diagrams showing one example of the device according to the present invention, in which FIG. 1 shows a state in which the upper valve is open, and FIG. 2 shows a state in which the opposite valve is closed. FIG. 3 is a chart showing an example of operation of the above device, FIG. 4 is a schematic cross-sectional view of a modified embodiment of the device of the present invention, and FIG. 5 is a schematic cross-sectional view showing an example of a conventional HIP device. (1)...High pressure container, (2)...Top lid. (3)...Lower lid, (4)...Insulating layer. (5)... Heater, (6)... Hearth. (7)...Object to be processed. (8)...Outside inverted cup-shaped casing. (9) Inner inverted cup-shaped casing. (14)...Intermediate inverted cup-shaped casing. (10) (15) ...Casing cooling gas passage. (11)...Valve. (16) Gas passage for cooling the lower end of the heat insulation layer. (20)... Furnace chamber, (23)... Guide cylinder. (24)...Fan for stirring gas inside the furnace. (25)...Drive transmission. (26) (27) (28) (29) Furnace chamber gas circulation holes. (31)...Fan for forced circulation of cooling gas. (32) (33) ...Opening holes for cooling gas circulation. (40)...Valve, (41)...Gas passage Patent applicant Kobe Steel, Ltd. Figure 1 Figure 2 Figure 3 Figure 4
Claims (4)
内に、断熱層と、その内側にヒータを周設して炉室とな
し、かつ前記断熱層を気密構造の外側ケーシングと、内
側ケーシングとの少なくとも2つの倒立コップ状ケーシ
ングを含んで構成し、外側ケーシング上部に開閉可能な
ガス通路を設け、この通路より流出したガスが高圧筒内
壁に沿って流下する間に上蓋および高圧筒に放熱するよ
うな冷却用ガスの流れを作り出すよう構成する一方、被
処理体を設置する炉室内炉床の下方に炉室内ガス撹拌用
のファンを設け、また被処理体を囲み、下方に気密に炉
床に接続された収納ケーシング円筒を配して撹拌用ガス
のガスの流れを作りだすよう構成し、更に前記撹拌用フ
ァンの下方に位置し撹拌用ファンと同軸に同一駆動装置
で駆動される循環用ファンを取り付け、該循環用ファン
によって強制的に循環される前記冷却用ガスが外側ケー
シングに設けられた前記ガス通路を経て高圧筒内側に沿
って流下し、反転して上昇する間に前記円筒外を流れる
撹拌用ガスと直接あるいは間接に接触し熱交換を可能と
した熱間静水圧加圧装置において、上記冷却用ガスの流
路中、本質的に冷たい位置に開閉可能なガス通路を少な
くとも1個設け、冷却用ガスの流れの一部若しくは全部
を上記ガス通路を経て本質的に冷たい場所のみで循環さ
せることを可能としたことを特徴とする熱間静水圧加圧
装置。1. In a high pressure chamber defined by a high pressure cylinder, an upper cover, and a lower cover, a heat insulating layer and a heater are provided around the inner side of the high pressure chamber to form a furnace chamber, and the heat insulating layer is connected to an airtight outer casing and an inner casing. A gas passageway is provided in the upper part of the outer casing, and the gas flowing out from the passageway radiates heat to the upper lid and the high-pressure cylinder while flowing down along the inner wall of the high-pressure cylinder. On the other hand, a fan for stirring the gas in the furnace is installed below the hearth in the furnace chamber where the object to be processed is installed, and the hearth is airtightly placed below the object to be processed. A storage casing cylinder connected to the stirring fan is disposed to create a gas flow of the stirring gas, and a circulation fan is located below the stirring fan and is driven coaxially with the stirring fan by the same drive device. The cooling gas, which is forcibly circulated by the circulation fan, flows down along the inside of the high-pressure cylinder through the gas passage provided in the outer casing, and while it reverses and rises, the cooling gas flows outside the cylinder. In a hot isostatic pressurizing device that enables heat exchange through direct or indirect contact with flowing stirring gas, at least one gas passage that can be opened and closed is provided in an essentially cold position in the cooling gas flow path. A hot isostatic pressurizing device, characterized in that the cooling gas flow is provided so that part or all of the cooling gas flow can be circulated through the gas passage only in an essentially cold place.
循環用ファンを駆動する同一の駆動装置を可変速とした
熱間静水圧加圧装置。2. 2. A hot isostatic pressurizing device according to claim 1, wherein the same drive device driving the coaxial stirring fan and circulation fan has variable speed.
シング上部のガス通路を開とし、同時に駆動装置を作動
して撹拌用ガスと循環用ガスを循環させる工程において
、撹拌用ガスの流量を駆動装置の可変速操作によって、
一方、冷却用ガスの流量を本質的に冷たい位置に設けら
れたガス通路の開閉によって夫々調節し、被処理体の均
一かつ一定速度の冷却をはかることを特徴とする熱間静
水圧加圧装置の冷却運転方法。3. Using the device according to claim 2, during the cooling process, the flow rate of the stirring gas is driven in the step of opening the gas passage in the upper part of the outer casing and simultaneously operating the drive device to circulate the stirring gas and the circulation gas. Due to the variable speed operation of the device,
On the other hand, a hot isostatic pressurizing device characterized in that the flow rate of the cooling gas is adjusted by opening and closing gas passages provided at essentially cold positions, thereby cooling the object to be processed uniformly and at a constant rate. cooling operation method.
中、外側ケーシング上部のガス通路を開とし、同時に駆
動装置を作動して撹拌用ガスと冷却用ガスを循環させる
工程の初期において、少なくとも外側ケーシング上部の
通路より出る冷却用ガスが高温にすぎ、ためにこの通路
が閉じた場合には本質的に冷たい位置に設けた通路を連
動的に開とする熱間静水圧加圧装置の冷却運転方法。4. Using the apparatus according to claim 1 or claim 2, during the cooling process, at least at the beginning of the step of opening the gas passage in the upper part of the outer casing and simultaneously operating the drive device to circulate the stirring gas and the cooling gas. Cooling of the hot isostatic pressurization device in which when the cooling gas exiting from the passage in the upper part of the outer casing is too high temperature and this passage is closed, the passage provided in an essentially cold position is opened in conjunction with the cooling gas. how to drive.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5583888A JPH0726787B2 (en) | 1988-03-09 | 1988-03-09 | Hot isostatic pressurizing device and cooling operation method of the device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5583888A JPH0726787B2 (en) | 1988-03-09 | 1988-03-09 | Hot isostatic pressurizing device and cooling operation method of the device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01230984A true JPH01230984A (en) | 1989-09-14 |
JPH0726787B2 JPH0726787B2 (en) | 1995-03-29 |
Family
ID=13010136
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5583888A Expired - Lifetime JPH0726787B2 (en) | 1988-03-09 | 1988-03-09 | Hot isostatic pressurizing device and cooling operation method of the device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0726787B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5251880A (en) * | 1991-03-04 | 1993-10-12 | Kabushiki Kaisha Kobe Seiko Sho | Cooling system and cooling method for hot isostatic pressurizing equipment |
WO2011082825A1 (en) * | 2010-01-07 | 2011-07-14 | Avure Technologies Ab | High-pressure press |
WO2012069090A1 (en) * | 2010-11-26 | 2012-05-31 | Avure Technologies Ab | Pressure vessel and method for cooling a pressure vessel |
JP2018179351A (en) * | 2017-04-07 | 2018-11-15 | 株式会社神戸製鋼所 | Hot isotropic pressurizing device |
CN111670113A (en) * | 2018-02-05 | 2020-09-15 | 昆特斯技术公司 | Method for processing articles and method for high-pressure treatment of articles |
WO2021043422A1 (en) * | 2019-09-06 | 2021-03-11 | Quintus Technologies Ab | A method of controlling the cooling rate in a hot pressing arrangement, a control module and a pressing arrangement per se |
WO2022048739A1 (en) * | 2020-09-02 | 2022-03-10 | Quintus Technologies Ab | A press apparatus |
-
1988
- 1988-03-09 JP JP5583888A patent/JPH0726787B2/en not_active Expired - Lifetime
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5251880A (en) * | 1991-03-04 | 1993-10-12 | Kabushiki Kaisha Kobe Seiko Sho | Cooling system and cooling method for hot isostatic pressurizing equipment |
WO2011082825A1 (en) * | 2010-01-07 | 2011-07-14 | Avure Technologies Ab | High-pressure press |
JP2013516324A (en) * | 2010-01-07 | 2013-05-13 | アブーレ・テクノロジーズ・エービー | High pressure press machine |
US8764432B2 (en) | 2010-01-07 | 2014-07-01 | Avure Technologies Ab | High-pressure press |
WO2012069090A1 (en) * | 2010-11-26 | 2012-05-31 | Avure Technologies Ab | Pressure vessel and method for cooling a pressure vessel |
CN103249549A (en) * | 2010-11-26 | 2013-08-14 | 艾维尔技术公司 | Pressure vessel and method for cooling pressure vessel |
JP2013543796A (en) * | 2010-11-26 | 2013-12-09 | アブーレ・テクノロジーズ・エービー | Pressure vessel and method for cooling a pressure vessel |
US9733020B2 (en) | 2010-11-26 | 2017-08-15 | Quintus Technologies Ab | Pressure vessel and method for cooling a pressure vessel |
JP2018179351A (en) * | 2017-04-07 | 2018-11-15 | 株式会社神戸製鋼所 | Hot isotropic pressurizing device |
KR20190122785A (en) * | 2017-04-07 | 2019-10-30 | 가부시키가이샤 고베 세이코쇼 | Hot isostatic pressurization device |
EP3608616A4 (en) * | 2017-04-07 | 2020-08-12 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Hot isostatic pressing device |
US11267046B2 (en) | 2017-04-07 | 2022-03-08 | Kobe Steel, Ltd. | Hot isostatic pressing device |
CN111670113A (en) * | 2018-02-05 | 2020-09-15 | 昆特斯技术公司 | Method for processing articles and method for high-pressure treatment of articles |
CN111670113B (en) * | 2018-02-05 | 2022-04-26 | 昆特斯技术公司 | Method for processing articles and method for high-pressure treatment of articles |
WO2021043422A1 (en) * | 2019-09-06 | 2021-03-11 | Quintus Technologies Ab | A method of controlling the cooling rate in a hot pressing arrangement, a control module and a pressing arrangement per se |
WO2022048739A1 (en) * | 2020-09-02 | 2022-03-10 | Quintus Technologies Ab | A press apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPH0726787B2 (en) | 1995-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5170981B2 (en) | Hot isostatic press | |
JP3916490B2 (en) | Hot isostatic pressing apparatus and hot isostatic pressing method | |
EP2222428B1 (en) | Hot isostatic pressing arrangement | |
US6423947B2 (en) | Thermal processing chamber for heating and cooling wafer-like objects | |
US7008210B2 (en) | Hot isostatic pressing apparatus | |
JP2000003918A (en) | Semiconductor heat-treating device and method | |
JP4280981B2 (en) | Cooling gas air path switching device for vacuum heat treatment furnace | |
JPH01230984A (en) | Hot static hydraulic pressurizing device and cooling operation for the same device | |
WO2006030504A1 (en) | Cooling gas passage switching equipment for vacuum heat treatment furnace | |
CN117344264A (en) | Controlled pressure cold nitriding furnace for atmosphere homogenization and nitriding method thereof | |
JPH0348780A (en) | Burn-in device and temperature control method for burn-in device | |
JPH0829069A (en) | Cooling method for hot isotropic pressure device | |
JPH04240389A (en) | Hot and isotropic pressurizing device | |
JPH0442719Y2 (en) | ||
JPH05157461A (en) | Heating furnace | |
JPH09133470A (en) | Hot isotropic pressure application device and cooling method of the device | |
JP6891348B2 (en) | Methods for processing articles and methods for high-pressure processing of articles | |
JPH0334638Y2 (en) | ||
JPH0512719Y2 (en) | ||
JP3274090B2 (en) | Heat treatment equipment capable of heating flat workpieces without wind | |
JP2702248B2 (en) | Cooling method and cooling device in hot isostatic pressing device | |
JPH0210092Y2 (en) | ||
JP2007023335A (en) | Heat-treatment furnace | |
JPH0744953Y2 (en) | Hot isotropic pressure press | |
JPH0514157Y2 (en) |