JPH01230241A - Method for detecting defect in embedded diffused layer - Google Patents

Method for detecting defect in embedded diffused layer

Info

Publication number
JPH01230241A
JPH01230241A JP5502688A JP5502688A JPH01230241A JP H01230241 A JPH01230241 A JP H01230241A JP 5502688 A JP5502688 A JP 5502688A JP 5502688 A JP5502688 A JP 5502688A JP H01230241 A JPH01230241 A JP H01230241A
Authority
JP
Japan
Prior art keywords
rosette
wafer
light
wavelength
diffusion layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5502688A
Other languages
Japanese (ja)
Inventor
Ryoichi Matsumoto
良一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP5502688A priority Critical patent/JPH01230241A/en
Publication of JPH01230241A publication Critical patent/JPH01230241A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE:To make it possible to check the rosette of a silicon substrate automatically and to improve productivity, by projecting ultraviolet rays and infrared rays having the different transmittances on a defective rosette and an oxide film on a wafer, and detecting the intensity of the reflected ultraviolet rays or the reflected infrared rays. CONSTITUTION:Light that is emitted from a Deep UV light source 12 in a defect checking device at an embedded diffused layer is made to be infrared rays in the wavelength range of 180-220nm through a bandpass filter 13. The Deep UV light having the central wavelength of 200nm that is reflected from a half mirror 14 is projected on the surface of a wafer 11. The reflected light from the wafer 11 is received with a Deep UV sensor 15 through the mirror 14. A sample stage 16 on which the wafer 11 is mounted is moved with a sample-stage moving system 17 in a two-dimensional pattern, and the entire surface of the wafer 11 is scanned. When a rosette 45 is present in the wafer 11, the intensities of the received reflected light are detected with the sensor 15 based on the difference in transmittances for the infrared rays having the wavelength of 200nm between the rosette 45 and an oxide film 42 on a silicon substrate 41. Thus, the automatic check of the rosette 45 can be performed.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は半導体集積回路の埋込拡散層に発生する欠陥
検出方法、特に欠陥ロゼツトとウェハ上の酸(1,膜に
対し、それぞれ透過率の異なる紫外光もしくは赤外光を
用いるか、また前記欠陥ロゼツトが有する吸収帯をカバ
ーする範囲の波長走査赤外光を用いて光学的に欠陥を検
出する方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for detecting defects occurring in a buried diffusion layer of a semiconductor integrated circuit, and in particular, a method for detecting defects occurring in a buried diffusion layer of a semiconductor integrated circuit. The present invention relates to a method for optically detecting defects using ultraviolet light or infrared light having different wavelengths, or using scanning infrared light having a wavelength that covers the absorption band of the defective rosette.

[従来の技術] 従来半導体集積回路、特にバイポーラ素子を使用した集
積回路の製造において、コレクタシリーズ抵抗低下のた
め埋込拡散層にN+拡散が行われる。この埋込拡散層の
形成時に欠陥が発生することがあり、例えば″イオン注
入によるsb拡散・ロゼツト欠陥の抑制効果”(198
5年秋季、京都大学における第46回応用物理学会学術
講演会講演予稿集3a−W−7、小林能1名)にロゼツ
ト欠陥が報告されている。これはスピンオン拡散で特に
ドーパントとしてsbやAsを用いた場合に、酸化膜中
に“ロゼツト”と呼ばれる欠陥が発生することであり、
このロゼツトはSik而にも到達し、素子の特性を低下
させることもある。
[Prior Art] Conventionally, in the manufacture of semiconductor integrated circuits, particularly integrated circuits using bipolar devices, N+ diffusion is performed in a buried diffusion layer to reduce collector series resistance. Defects may occur during the formation of this buried diffusion layer.
A rosette defect was reported in the Proceedings of the 46th Japan Society of Applied Physics Academic Conference 3a-W-7 (Noh Kobayashi, 1 person) held at Kyoto University in the fall of 2015. This is because defects called "rosettes" occur in the oxide film during spin-on diffusion, especially when SB or As is used as a dopant.
These rosettes may also reach the SiK and degrade the characteristics of the device.

第4図はロゼツト発生を示す断面図である。同図(a)
において、41はシリコン基板でP型シリコンを使用す
る。42は酸化膜であり、シリコン基板上にパターン化
されている。
FIG. 4 is a sectional view showing the formation of rosettes. Figure (a)
41 is a silicon substrate made of P-type silicon. 42 is an oxide film, which is patterned on a silicon substrate.

同図(b)において、43はスピオンsbドーピング酸
化膜であり、シリコン基板41の表面と酸化膜42の上
に塗布により形成する。
In the figure (b), 43 is a spion sb doped oxide film, which is formed on the surface of the silicon substrate 41 and the oxide film 42 by coating.

同図(c)は同図(b)の素子を1200−1250℃
で30〜700分の熱処理(Sb拡散)したときの状態
図である。図において44はスピンオンsbドーピング
酸化膜より固相拡散で形成したN+埋込拡散層である。
Figure (c) shows the element shown in figure (b) at 1200-1250°C.
It is a state diagram when heat treatment (Sb diffusion) is performed for 30 to 700 minutes. In the figure, 44 is an N+ buried diffusion layer formed by solid phase diffusion from a spin-on SB doped oxide film.

45はロゼツトと呼ばれる欠陥であり、酸化膜42が結
晶化したものである。また46は異状拡散層である。酸
化物の結晶化したものには、一般にクリストバライト(
正方晶系)とトリジマイト(六方晶系)があるといわれ
ている。
45 is a defect called a rosette, which is the crystallization of the oxide film 42. Further, 46 is an abnormal diffusion layer. Crystallized oxides generally include cristobalite (
It is said that there are two types: tetragonal system) and tridymite (hexagonal system).

第5図はロゼツトのSEM写真の模写図であり、スピン
オンsbドーピング酸化膜により埋込拡散層形成時に発
生したロゼツト(5000倍)を示す。同図によればs
bロゼツトは六方晶系でありトリジマイトと推定される
。これらの結晶化した5IO2は文献、例えば“シリコ
ン集積素子技術の基礎″(地人書館、R,M、バーガー
、R,P、  トノファン編121頁4.4項)によれ
ば、酸化膜より緻密で酸化膜との境界は多孔質的な性質
を有する。従って不純物の拡散速度が速く、酸化膜42
が結晶化したロゼツト45の下部のシリコン基板41表
面にN反転した異状拡散層4Bが形成されると考えられ
る。
FIG. 5 is a reproduction of a SEM photograph of a rosette, showing a rosette (5000x magnification) generated when a buried diffusion layer was formed by a spin-on SB doped oxide film. According to the same figure, s
The b rosette has a hexagonal crystal system and is presumed to be tridymite. These crystallized 5IO2 are more dense than oxide films, according to literature such as "Fundamentals of Silicon Integrated Device Technology" (Chijinshokan, edited by R.M., Berger, R.P., Tonofan, p. 121, Section 4.4). The boundary with the oxide film has porous properties. Therefore, the diffusion rate of impurities is fast, and the oxide film 42
It is considered that an anomalous diffusion layer 4B with N inversion is formed on the surface of the silicon substrate 41 below the rosette 45 where the crystallized rosette 45 is formed.

このロゼツトが形成されると素子特性が低下し、集積回
路の製造歩留りが極度に低下するため、埋込拡散の管理
上ロゼツトを検出することが必要である。そこで一般に
熱処理後、シリコン基板41を5%程度の弗酸でライト
エッチを行い、埋込拡散層の不良に代る特性の1つとし
て、ロゼツト数を金属顕微鏡や走査型電子顕微鏡により
検出していた。
When these rosettes are formed, the device characteristics deteriorate and the manufacturing yield of integrated circuits is extremely reduced. Therefore, it is necessary to detect rosettes in order to manage buried diffusion. Therefore, after heat treatment, the silicon substrate 41 is generally light-etched with approximately 5% hydrofluoric acid, and the number of rosettes is detected using a metallurgical microscope or a scanning electron microscope, as one of the characteristics that can replace defects in the buried diffusion layer. Ta.

[発明が解決しようとする課題] 上記のような従来の金属顕微鏡によるロゼツト検出では
、ロゼツトの発生個数が通常0.1〜10個/ c4と
少ないため、少なくとも1〜1Oc−程度の大面積の外
観検査が必要で、1つ酸化膜もロゼツトも共に基本的に
可視光では透明な物質であり、屈折率のわずかな差から
生じる干渉色の違いが少ないという光学的明瞭度が低い
点や、干渉色に再現性がないことから自動検出装置の導
入が困難で、肉眼による検出が必要であった。
[Problems to be Solved by the Invention] In rosette detection using the conventional metallurgical microscope as described above, the number of rosettes generated is usually as small as 0.1 to 10/c4. Visual inspection is required, and one point is that both the oxide film and the rosette are basically transparent materials in visible light, and their optical clarity is low, with little difference in interference color caused by slight differences in refractive index. Due to the lack of reproducibility in interference colors, it was difficult to introduce automatic detection equipment, and detection with the naked eye was necessary.

一方走査型電子顕微鏡によるロゼツト検出では、像のコ
ントラストは良好であるが、試料表面が酸化膜のような
絶縁膜で覆われているため、チャージアップ現象防止の
ため金コートが必要であり、破壊検査となるので生産ラ
インへの導入が困難であった。従って以上のいずれの方
法でも生産ラインでの多量のシリコン基板の検査には長
時間を要し、技術的に満足できるものではなかった。
On the other hand, when detecting rosettes using a scanning electron microscope, the contrast of the image is good, but since the sample surface is covered with an insulating film such as an oxide film, a gold coating is required to prevent charge-up phenomenon, which leads to damage. Since it requires inspection, it was difficult to introduce it into the production line. Therefore, in any of the above methods, it takes a long time to inspect a large number of silicon substrates on a production line, and these methods are not technically satisfactory.

この発明はかかる問題点を解決するためになされたもの
で、生産ラインでの多量のシリコン基板のロゼツト検査
を可能とし、埋込拡散層の不良を防止し、製造過程での
歩留りの同上を計れる優れた検査方法を得ることを目的
とする。
This invention was made to solve these problems, and it enables rosette inspection of a large number of silicon substrates on a production line, prevents defects in buried diffusion layers, and improves yield in the manufacturing process. The purpose is to obtain an excellent inspection method.

[課題を角了決するだめの手段] この発明に係る埋込拡散層の不良検出方法では、第1及
び第2の方法として、欠陥ロゼツトとウェハ上の酸化膜
に対し、それぞれ透過率の異なる紫外光及び赤外光を前
記ウェハに照射し、紫外反射光の強弱を検出するか、又
は赤外透過光の強弱を検出することにより、前記埋込拡
散層のロゼツトを検出する方法を実施するものである。
[Means for resolving the problem] In the method for detecting defects in a buried diffusion layer according to the present invention, ultraviolet light having different transmittances is applied to the defective rosette and the oxide film on the wafer, respectively, as the first and second methods. A method for detecting rosettes in the embedded diffusion layer by irradiating the wafer with light and infrared light and detecting the intensity of reflected ultraviolet light or detecting the intensity of transmitted infrared light. It is.

また第3の方法としては、欠陥ロゼツトが資する吸収帯
(波長2.5μm〜3,0μm)をカバーする範囲の波
長走査赤外線を前記ウェハに照射し、該ウェハ及びその
上の酸化膜を透過した波長走査透過光を前記波長走査と
同期して検出し、前記欠陥ロゼツトに対する吸収帯の有
無を判断して、前記埋込拡散層のロゼツトを検出する方
法を実施するものである。
A third method is to irradiate the wafer with wavelength-scanning infrared rays that cover the absorption band (wavelength 2.5 μm to 3.0 μm) contributed by defective rosettes, and transmit the wafer and the oxide film thereon. A method is implemented in which the wavelength-scanned transmitted light is detected in synchronization with the wavelength scanning, and the presence or absence of an absorption band for the defective rosette is determined to detect the rosette of the buried diffusion layer.

[作用] この発明においては、埋込拡散層の不良検出法として、
ロゼツトを形成している六か晶系の結晶石英と通常の酸
化膜か紫外光領域及び赤外光領域てd過度が異なること
を利用し、前記紫外光又は赤外光をウェハに照射し、前
記ウェハからの紫外反射光又は赤外透過光の強弱により
ロゼツトを検出する。
[Function] In this invention, as a defect detection method of a buried diffusion layer,
Utilizing the fact that the hexagonal crystalline quartz forming the rosette and the normal oxide film have different d excesses in the ultraviolet light region and the infrared light region, irradiating the wafer with the ultraviolet light or infrared light; Rosettes are detected based on the intensity of ultraviolet reflected light or infrared transmitted light from the wafer.

またロゼツトかaする吸収帯(波長2,5μm〜3.0
IJm)をカバーする範囲の波長走査赤外光をウェハに
照射し、前記ウェハからの透過した波長走査透過光を前
記波長走査と同期して赤外光センサで受光し、その受光
波長及び信号強度から前記吸収帯のhmを判断すること
によりロゼツトを検出する。
There is also an absorption band (wavelength 2.5 μm to 3.0 μm) that has a rosette.
A wafer is irradiated with wavelength scanning infrared light in a range that covers IJm), and the wavelength scanning transmitted light transmitted from the wafer is received by an infrared light sensor in synchronization with the wavelength scanning, and the received light wavelength and signal intensity are A rosette is detected by determining the hm of the absorption band from .

[実施例] 第1図は本発明の第1の実施例を示す構造図であり、1
1はウェハ、12はDeep U V光源、13は波長
帯域200 nm±20nmのバンドパスフィルタ、1
4はハーフミラ−115はDecpUVセンサ、16は
試料台、17は試料台移動系である。
[Example] FIG. 1 is a structural diagram showing a first example of the present invention.
1 is a wafer, 12 is a deep UV light source, 13 is a bandpass filter with a wavelength band of 200 nm±20 nm, 1
4 is a half mirror, 115 is a Decp UV sensor, 16 is a sample stage, and 17 is a sample stage moving system.

第1図の動作を説明する。Deep U V先FAI2
からのDcepUV光を波長帯域20Onm±20nm
の干渉型バンドパスフィルタ13を通し、ハーフミラ−
14で反射した中心波長200 nmのDeepUV光
をウェハ11の表面に照射する。ウェハ11からの反射
光はハーフミラ−14を介し、DeepUVセンサ15
で受光される。DoepUVセンサ15は受光信号を光
電変換し電気信号を出力する。試料台IBは試料台移動
系17により2次元的に移動されるので、ウェハ11の
全面にわたってDeep U V光で走査することがで
きる。
The operation shown in FIG. 1 will be explained. Deep U V destination FAI2
Dcep UV light from wavelength band 20Onm±20nm
Through the interference type band pass filter 13, the half mirror
The surface of the wafer 11 is irradiated with the deep UV light having a center wavelength of 200 nm reflected by the wafer 14 . The reflected light from the wafer 11 passes through the half mirror 14 and is sent to the deep UV sensor 15.
The light is received by The Doep UV sensor 15 photoelectrically converts the received light signal and outputs an electric signal. Since the sample stage IB is moved two-dimensionally by the sample stage moving system 17, the entire surface of the wafer 11 can be scanned with the deep UV light.

文献例えば“分光学的性質を主とした基礎物性図表″ 
(工藤恵栄粁、共立出版株式会社)によると、ウェハ1
1の表面に形成されている通常の酸化膜と同一の性質を
持つ水晶(溶融)の波長200 niでの透過度は厚さ
6.4G關で85%である。しかしロゼツトである六方
晶系の結晶石英と同一の性質を持つ水晶(結晶)の同一
波長での透過度は厚さ2.0mmで29%であり、また
シリコンの波長200 nmでの反射率は65%で、且
つ酸化膜表面での表面反射量は45%である。そこでも
しウェハ11にロゼツトが存在している場合には、ロゼ
ツト45とシリコン基板41上の酸化膜42とが波長2
00 nmの紫外光に対する透過度の差により、Dec
pUVセンサ15に受光される反射光に強弱があり、コ
ントラストの高い検出信号が得られ、ロゼツトは容易に
検出される。このロゼツトの検出は通常その形状や大き
さよりも、111位面積当りの発生数量を主目的ととし
て検出するため、DeepUVセンサ15は通常のしき
い値を設定し、充電変換された出力電圧がこのしきい値
以下となったらロゼツトFA出出力を発生する方法でよ
い。
Documents such as “Charts of basic physical properties focusing on spectroscopic properties”
According to (Keiko Kudo, Kyoritsu Publishing Co., Ltd.), wafer 1
The transmittance of quartz crystal (molten), which has the same properties as the normal oxide film formed on the surface of 1, at a wavelength of 200 ni is 85% at a thickness of 6.4G. However, the transmittance at the same wavelength of quartz (crystal), which has the same properties as the hexagonal crystalline quartz that is the rosette, is 29% at a thickness of 2.0 mm, and the reflectance of silicon at a wavelength of 200 nm is 65%, and the amount of surface reflection on the oxide film surface is 45%. Therefore, if there is a rosette on the wafer 11, the rosette 45 and the oxide film 42 on the silicon substrate 41 will have a wavelength of 2
Dec
The reflected light received by the pUV sensor 15 has different strengths, so a detection signal with high contrast is obtained, and the rosette is easily detected. Usually, the main purpose of detecting these rosettes is the number of rosettes generated per 111 area, rather than their shape or size. A method of generating a rosette FA output when the value falls below a threshold value may be used.

第2図は本発明の第2の実施例を示す構造図であり、1
1及び17は第1図の機器と全く同一のものである。2
2は赤外先光源、23は波長帯域4μm±0.1LII
nのバンドパスフィルタ、24はサファイア製試料台、
25は赤外光センサである。
FIG. 2 is a structural diagram showing a second embodiment of the present invention, and 1
1 and 17 are exactly the same as the equipment shown in FIG. 2
2 is an infrared light source, 23 is a wavelength band of 4 μm ± 0.1 LII
n bandpass filter, 24 a sapphire sample stand,
25 is an infrared light sensor.

第2図の動作を説明する。赤外光光源22からの赤外光
を波長帯域4−±0.1μmのバンドパスフィルタ23
を通して中心波長4−の赤外光となし、サファイア製の
試料台24を通してウェハ11の裏面側に照射する。ウ
ェハ11からの透過光は赤外光センサ25に受光される
。赤外光センサ25は受光信号を光電変換し電気信号を
出力する。また試料台24は試料台移動系17により2
次元的に移動されるので、ウェハ11の全面を走査する
ことができる。第1図の説明で引用した文献によると、
ウェハ11の表面に形成されている通常の酸化膜と同一
性質を持つ水晶(溶融)の波長4μmの透過度は厚さ6
.46mmで70%である。しかしロゼツトである六方
晶系の結晶石英と同一の性質を持つ水晶(結晶)の同一
波長での透過度は厚さ2,0關で20%であり、またシ
リコンの透過度は厚さ2,5順で55%である。半導体
集積回路で使用されるシリコンMlの厚さは通常0.4
〜0.7 m11であり、波長41JII+の赤外光は
十分に透過できる。従ってロゼツト45とシリコン基板
41及び酸化膜42とか波長4IJI11の赤外光に対
する透過度の差により、赤外光センサ25はウェハ11
を透過する赤外光の強弱を検出し、ロゼツトを容易に検
出することかできる。赤外光センサ25の検出法はDe
ep U Vセンサ15のロゼツト検出法と同様にしき
い値の設定によるレベル検出でよい。
The operation shown in FIG. 2 will be explained. The infrared light from the infrared light source 22 is passed through a bandpass filter 23 with a wavelength band of 4-±0.1 μm.
The infrared light with a center wavelength of 4- is transmitted through the sample stage 24 made of sapphire and irradiated onto the back side of the wafer 11. The transmitted light from the wafer 11 is received by the infrared light sensor 25. The infrared light sensor 25 photoelectrically converts the received light signal and outputs an electric signal. In addition, the sample stage 24 is moved between two locations by the sample stage moving system 17.
Since it is moved dimensionally, the entire surface of the wafer 11 can be scanned. According to the literature cited in the explanation of Figure 1,
The transmittance at a wavelength of 4 μm of crystal (molten), which has the same properties as the normal oxide film formed on the surface of the wafer 11, is at a thickness of 6
.. It is 70% at 46 mm. However, the transmittance of quartz (crystal), which has the same properties as the hexagonal crystalline quartz that is the rosette, at the same wavelength is 20% at a thickness of 2.0 mm, and the transmittance of silicon is 20% at a thickness of 2.0 mm. It is 55% in 5th order. The thickness of silicon Ml used in semiconductor integrated circuits is usually 0.4
~0.7 m11, and infrared light with a wavelength of 41JII+ can be sufficiently transmitted. Therefore, due to the difference in transmittance of the rosette 45, the silicon substrate 41, and the oxide film 42 to the infrared light having the wavelength 4IJI11, the infrared light sensor 25 detects the wafer 11.
Rosettes can be easily detected by detecting the intensity of infrared light transmitted through the rosette. The detection method of the infrared light sensor 25 is De
Similar to the rosette detection method of the ep UV sensor 15, level detection may be performed by setting a threshold value.

第′う図は本発明の第3の実施例を示す構造図であり、
11.17.22.24.25は第2図の機器と全く同
一のものである。33は回折格子、34は回折格子走査
系である。
Fig. 1 is a structural diagram showing a third embodiment of the present invention;
11.17.22.24.25 are exactly the same as the equipment shown in FIG. 33 is a diffraction grating, and 34 is a diffraction grating scanning system.

第3図の動作を説明する。赤外光光源22からの赤外光
は、回折格子33および回折格子走査系34により分光
した波長2〜3μmの範囲で高速に波長走査される赤外
光に変換され、サファイア製の試料台24を通してウェ
ハitの裏面側に照射される。ウェハ11からの波長走
査透過光は赤外光センサ25により、回折格子の走査系
と同期して透過光の波長に対する受光強度が光電変換さ
れ電気信号となり出力される。また試料台24は試料台
移動系17により2次元的に移動されるので、波長2〜
3−の赤外光によりウェハ11の全面を走査することが
できる。第1図の説明で引用した文献によると、ウェハ
11の表面に形成されている通常の酸化膜と同一性質を
持つ水晶(溶融)の波長2〜3μmの赤外光の透過度は
厚さ6 、46 m11で90〜85%であり、平坦な
特性である。しかしロゼツトである六方晶系の結晶石英
と同一の性質を持つ水晶(結晶)は波長2.5〜3μm
に吸収帯があるので、波長2.0〜3.0μmでの赤外
光の透過度は低下している。またシリコンの透過度は厚
さ2.5mmで55%であり、波長2〜31JInの間
では平坦な特性である。一般に集積回路で使用されるシ
リコン基板の厚さ0.4〜0.7報であり、波長2〜3
μmの赤外光は十分透過する。
The operation shown in FIG. 3 will be explained. The infrared light from the infrared light source 22 is converted into infrared light that is scanned at high speed in a wavelength range of 2 to 3 μm by a diffraction grating 33 and a diffraction grating scanning system 34. The back side of the wafer IT is irradiated through the wafer IT. The wavelength-scanned transmitted light from the wafer 11 is subjected to photoelectric conversion of the received light intensity for the wavelength of the transmitted light by an infrared light sensor 25 in synchronization with the scanning system of the diffraction grating, and is output as an electrical signal. In addition, since the sample stage 24 is moved two-dimensionally by the sample stage moving system 17,
The entire surface of the wafer 11 can be scanned with the infrared light of 3-. According to the literature cited in the explanation of FIG. , 46 m11 and 90 to 85%, which is a flat characteristic. However, crystals with the same properties as the hexagonal crystalline quartz that is the rosette have a wavelength of 2.5 to 3 μm.
Since there is an absorption band in the wavelength range of 2.0 to 3.0 μm, the transmittance of infrared light is reduced. Further, the transmittance of silicon is 55% at a thickness of 2.5 mm, and the characteristics are flat between wavelengths of 2 and 31JIn. Generally, the thickness of silicon substrate used in integrated circuits is 0.4 to 0.7, and the wavelength is 2 to 3.
Infrared light of μm is sufficiently transmitted.

従ってロゼツト検出光として波長2〜3−の赤外光を高
速で波長走査させなからウェハ11に照射し、ウェハ1
1の透過光の中から赤外光センサ25が受光波長及びそ
の受光強度を検出し、ロゼツトが有する波長2.5〜3
.0umの吸収帯の有無を判断することによりロゼツト
を検出することができる。このロゼツト検出法は、ロゼ
ツトの状態による吸収帯の移動による影響、試料上の塵
埃、赤外光の走査ムラ等の影響を除去した外乱に強い検
出方法である。
Therefore, the wafer 11 is irradiated with infrared light having a wavelength of 2 to 3-3 as the rosette detection light without scanning the wavelength at high speed.
The infrared light sensor 25 detects the received light wavelength and the received light intensity from the transmitted light of 1, and detects the wavelength 2.5 to 3 that the rosette has.
.. Rosettes can be detected by determining the presence or absence of a 0 um absorption band. This rosette detection method is a detection method that is resistant to external disturbances and eliminates the effects of movement of the absorption band due to the state of the rosette, dust on the sample, uneven scanning of infrared light, and the like.

[発明の効果] 以上のようにこの発明によれば、埋込拡散層の不良検出
法として、欠陥ロゼツトとウエノ1上の酸化膜に対し、
それぞれ透過率の異なる紫外光もしくは赤外光の照射に
よる反射光又は透過光の強弱を検出する方法か、又は欠
陥ロゼツトが有する吸収帯をカバーする波長走査赤外線
の照射による透過光から前記吸収帯の存在を検出するる
方法を採用したので、生産ラインでの多量のシリコン基
板の自動的ロゼツト検査を可能として、生産性の向上に
効果がある。
[Effects of the Invention] As described above, according to the present invention, as a defect detection method for a buried diffusion layer, the defective rosette and the oxide film on the wafer 1 are
A method of detecting the intensity of reflected light or transmitted light by irradiation with ultraviolet light or infrared light, each having a different transmittance, or a method of detecting the intensity of reflected light or transmitted light by irradiation with wavelength-scanning infrared light that covers the absorption band of the defective rosette. Since a method of detecting the presence of rosettes is adopted, it is possible to automatically inspect rosettes of a large amount of silicon substrates on a production line, which is effective in improving productivity.

また上記自動的ロゼツト検査により製造過程での歩留り
が向上し経済的効果がある。
Furthermore, the automatic rosette inspection described above improves the yield in the manufacturing process and has an economical effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例の構造図、第2図は本発
明の第2の実施例の構造図、第3図は本発明の第3の実
施例の構造図、第4図はロゼツト発生を示す断面図、第
5図はロゼツトのSEM写真の模写図である。 図において、11はウェハ、12はDeep U V光
源、13はバンドパスフィルタ、14はハーフミラ−1
15はDC!0pUVセンサ、16は試料台、17は試
料台移動系、22は赤外光光源、23はバンドパスフィ
ルタ、24はサファイア製試料台、25は赤外光センサ
、33は回折格子、34は回折格子走査系、41はシリ
コン基板、42は酸化膜、43はスピオンsbドーピン
グ酸化膜、44は埋込拡散層、45はロゼツト、4Bは
異状拡散層である。 口e−6t h 化’!c %示すwrWJ12g第4
FIG. 1 is a structural diagram of a first embodiment of the present invention, FIG. 2 is a structural diagram of a second embodiment of the present invention, FIG. 3 is a structural diagram of a third embodiment of the present invention, and FIG. The figure is a cross-sectional view showing the generation of rosettes, and FIG. 5 is a reproduction of an SEM photograph of the rosette. In the figure, 11 is a wafer, 12 is a deep UV light source, 13 is a band pass filter, and 14 is a half mirror 1.
15 is DC! 0pUV sensor, 16 is a sample stage, 17 is a sample stage moving system, 22 is an infrared light source, 23 is a band pass filter, 24 is a sapphire sample stage, 25 is an infrared light sensor, 33 is a diffraction grating, 34 is a diffraction 41 is a silicon substrate, 42 is an oxide film, 43 is a spion sb doped oxide film, 44 is a buried diffusion layer, 45 is a rosette, and 4B is an anomalous diffusion layer. Mouth e-6t h conversion'! c % wrWJ12g 4th
figure

Claims (3)

【特許請求の範囲】[Claims] (1)半導体集積回路の埋込拡散層に発生する欠陥ロゼ
ットを検出する方法に於て、 デープ(Deep)UV光源から出射される光をバンド
パスフィルタを介して波長180nmから220nmま
での範囲の紫外光とし、該紫外光を前記埋込拡散層を形
成したウェハ表面に照射し、前記ウェハ上の酸化膜及び
ロゼットを透過して反射される反射光を受光し、前記酸
化膜及びロゼットの前記紫外光に対する透過率の差に起
因する反射光の強弱を検出することにより、前記ロゼッ
トを検出することを特徴とする埋込拡散層の不良検出方
法。
(1) In a method for detecting defective rosettes that occur in a buried diffusion layer of a semiconductor integrated circuit, light emitted from a deep UV light source is passed through a bandpass filter to a wavelength range of 180 nm to 220 nm. The ultraviolet light is applied to the surface of the wafer on which the buried diffusion layer is formed, and the reflected light transmitted through and reflected by the oxide film and the rosette on the wafer is received. A method for detecting defects in an embedded diffusion layer, characterized in that the rosette is detected by detecting the intensity of reflected light caused by a difference in transmittance to ultraviolet light.
(2)半導体集積回路の埋込拡散層に発生する欠陥ロゼ
ットを検出する方法において、 赤外光光源より出射される光をバンドパスフィルタを介
して波長3.5μmから4.5μmまでの範囲の赤外光
とし、該赤外光を前記埋込拡散層を形成したウェハに照
射し、前記ウェハ並びに酸化膜及びロゼットを透過した
透過光を受光し、前記酸化膜及びロゼットの前記赤外光
に対する透過率の差に起因する透過光の強弱を検出する
ことにより、前記ロゼットを検出することを特徴とする
埋込拡散層の不良検出方法。
(2) In a method for detecting defective rosettes occurring in a buried diffusion layer of a semiconductor integrated circuit, light emitted from an infrared light source is passed through a bandpass filter with a wavelength ranging from 3.5 μm to 4.5 μm. The infrared light is applied to the wafer on which the buried diffusion layer is formed, and the transmitted light transmitted through the wafer, the oxide film, and the rosette is received, and the oxide film and the rosette respond to the infrared light. A method for detecting defects in a buried diffusion layer, characterized in that the rosette is detected by detecting the intensity of transmitted light due to a difference in transmittance.
(3)半導体集積回路の埋込拡散層に発生する欠陥ロゼ
ットを検出する方法において、 赤外光光源より出射される光を回折格子及び回折格子走
査系を介して波長2.0μmから3.0μmまでの範囲
を走査する走査赤外光とし、該走査赤外光を前記埋込拡
散層を形成したウェハに照射し、前記ウェハ並びに酸化
膜及びロゼットを透過した走査透過光を受光し、前記透
過光の波長及び信号強度を前記回折格子走査系と同期し
て検出し、前記ロゼットが赤外光領域に有する波長2.
5μmから3.0μmまでの範囲の吸収帯の有無を判断
し、前記ロゼットを検出することを特徴とする埋込拡散
層の不良検出方法。
(3) In a method for detecting defective rosettes occurring in a buried diffusion layer of a semiconductor integrated circuit, light emitted from an infrared light source is passed through a diffraction grating and a diffraction grating scanning system to a wavelength of 2.0 μm to 3.0 μm. The scanning infrared light is applied to the wafer on which the buried diffusion layer is formed, and the scanning transmitted light that has passed through the wafer, the oxide film, and the rosette is received, and the transmitted infrared light is The wavelength and signal intensity of light are detected in synchronization with the diffraction grating scanning system, and the wavelength 2. that the rosette has in the infrared light region is detected.
A method for detecting defects in a buried diffusion layer, comprising determining the presence or absence of an absorption band in a range from 5 μm to 3.0 μm, and detecting the rosette.
JP5502688A 1988-03-10 1988-03-10 Method for detecting defect in embedded diffused layer Pending JPH01230241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5502688A JPH01230241A (en) 1988-03-10 1988-03-10 Method for detecting defect in embedded diffused layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5502688A JPH01230241A (en) 1988-03-10 1988-03-10 Method for detecting defect in embedded diffused layer

Publications (1)

Publication Number Publication Date
JPH01230241A true JPH01230241A (en) 1989-09-13

Family

ID=12987156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5502688A Pending JPH01230241A (en) 1988-03-10 1988-03-10 Method for detecting defect in embedded diffused layer

Country Status (1)

Country Link
JP (1) JPH01230241A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03225843A (en) * 1990-01-30 1991-10-04 Nec Corp Contact hole opening detection device
GB2380258B (en) * 2001-05-15 2005-11-09 Zeiss Carl Jena Gmbh Method and arrangement for determining product characteristics in a contact-free manner
JP2012083335A (en) * 2010-09-13 2012-04-26 Yazaki Corp Infrared light source
JP2020502492A (en) * 2016-10-26 2020-01-23 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム High-throughput, high-resolution optical metrology for reflective and transmissive nanophotonic devices

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03225843A (en) * 1990-01-30 1991-10-04 Nec Corp Contact hole opening detection device
GB2380258B (en) * 2001-05-15 2005-11-09 Zeiss Carl Jena Gmbh Method and arrangement for determining product characteristics in a contact-free manner
JP2012083335A (en) * 2010-09-13 2012-04-26 Yazaki Corp Infrared light source
JP2020502492A (en) * 2016-10-26 2020-01-23 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム High-throughput, high-resolution optical metrology for reflective and transmissive nanophotonic devices

Similar Documents

Publication Publication Date Title
US7714403B2 (en) Image sensor using back-illuminated photodiode and method of manufacturing the same
JPH0463533B2 (en)
TW200537079A (en) Ultraviolet sensor and method for manufacturing the same
JPH01230241A (en) Method for detecting defect in embedded diffused layer
JPH02106052A (en) Inspection method for junction wafer
JPS6245965B2 (en)
TW201727215A (en) Micro photoluminescence imaging with optical filtering
JPS63116458A (en) Semiconductor device with photosenser and signal processing circuit
JP2008181077A (en) Method of making grayscale reticle using step-over lithography for shaping microlens
JPH04212459A (en) Solid image pick-up element
JPH11214664A (en) Solid state image sensing element and manufacture thereof
RU2689972C1 (en) Method of producing a silicon photodiode
KR200207691Y1 (en) Wafer inspection system
JPH0855770A (en) Semiconductor manufacturing device
JPH0338063A (en) Color solid image pick-up element and manufacture thereof
JPH02191353A (en) Inspection of semiconductor substrate
JP2739943B2 (en) Method and apparatus for inspecting junction type semiconductor substrate
JPH0687478B2 (en) Wiring layer inspection method
JP3202886B2 (en) Method and apparatus for manufacturing chalcopyrite thin film
JPS61235738A (en) Pattern inspecting method for substrate
JPH02105090A (en) Radiant ray detecting device
EP1120832A1 (en) Solid state image sensing device and production method thereof
FR2573919A1 (en) METHOD OF MANUFACTURING GRIDS FOR INTEGRATED CIRCUIT
JPS59151456A (en) Photoelectric conversion element for hybrid integrated photosensor and manufacture thereof
JP5381065B2 (en) Method for inspecting SOI wafer and method for manufacturing SOI wafer