JPH01229229A - Thin-film transistor of amorphous silicon and production thereof - Google Patents

Thin-film transistor of amorphous silicon and production thereof

Info

Publication number
JPH01229229A
JPH01229229A JP63055877A JP5587788A JPH01229229A JP H01229229 A JPH01229229 A JP H01229229A JP 63055877 A JP63055877 A JP 63055877A JP 5587788 A JP5587788 A JP 5587788A JP H01229229 A JPH01229229 A JP H01229229A
Authority
JP
Japan
Prior art keywords
polymer layer
layer
heat
organic polymer
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63055877A
Other languages
Japanese (ja)
Inventor
Sakae Tanaka
栄 田中
Yoshiaki Watanabe
渡辺 善昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seikosha KK
Original Assignee
Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seikosha KK filed Critical Seikosha KK
Priority to JP63055877A priority Critical patent/JPH01229229A/en
Publication of JPH01229229A publication Critical patent/JPH01229229A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78636Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device with supplementary region or layer for improving the flatness of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To flatten an inorg. insulating layer and to lower the generation probability of defective insulation in the step part of a gate electrode by forming a heat resistant org. high-polymer layer on an insulating substrate on which the gate electrode is formed and forming the inorg. insulating layer thereon. CONSTITUTION:The heat resistant org. high-polymer layer 3 having photosensitivity is coated on the insulating substrate 1 on which the gate electrode 2 is formed and thereafter, the peripheral part of the substrate is masked by a mask having a prescribed shape and said polymer layer is exposed by UV light 7. The exposed heat resistant org. high-polymer layer 3 is developed to remove the heat resistant org. high-polymer layer 3 in the peripheral part of the substrate. The heat resistant org. high-polymer layer 3 the film thickness of which as an extremely gentle step between the gate electrode 2 and the other part is then obtd. A silicon nitride layer 5 and a silicon oxide layer 6 are formed as the inorg. insulating layer 4 thereon at the size larger than the size of the heat resistant org. high-polymer layer 3. Since the inorg. insulating layer 4 is flattened in such a manner, the generation probability of the defective insulation in the step part of the gate electrode is lowered and the yield is improved.

Description

【発明の詳細な説明】 [産業−1二の利用分W] 本発明は、アクティブマトリクス型ifk品表示器のス
イッチング素子等に用いられる、非晶質シリコン(以下
、a−3iという)薄膜トランジスタ(以下、TPTと
いう)およびその製造方法に関するものである。
Detailed Description of the Invention [Industry-12 Applications W] The present invention relates to an amorphous silicon (hereinafter referred to as A-3I) thin film transistor (hereinafter referred to as A-3I) used as a switching element of an active matrix type IFK product display. (hereinafter referred to as TPT) and its manufacturing method.

[従来の技術] a−5iTFTは、アクティブマトリクス型液晶表示器
のスイッチング素子として、各所で研究開発か行われて
いる。
[Prior Art] A-5i TFT is being researched and developed in various places as a switching element for active matrix liquid crystal displays.

第6図は、上記アクティブマトリクス型液晶表示器の構
成例を示した電気回路図である。ゲート配線2−のうち
例えばXlが選択されると、これに連なるTPT21の
ゲートは一斉にオンし、これらオンしたTPT21のソ
ースを通して、ソース配線11より画像情報に対応した
信号電圧かTPT21のトレインに伝達される。このド
レインには画素電極12が接続され、この画素電極12
と、液晶層22を挟んで対向した基板上に形成された対
向電極23との電圧差により、液晶層22の光透過率を
変化させて画像表示を行う。また、上記ゲートがオフし
た後も、1−副画素電極12と対向電極23との電圧差
は、次に同一のTPT21か選択されるまで、液晶層2
2の容M成分により保持されるため、液晶層22は原理
的にスタティック駆動されることになり、高品質の画像
表示を得ることができる。
FIG. 6 is an electrical circuit diagram showing an example of the configuration of the active matrix type liquid crystal display. When, for example, Xl is selected among the gate wirings 2-, the gates of the TPTs 21 connected to it are turned on all at once, and a signal voltage corresponding to image information is transmitted from the source wiring 11 to the train of the TPTs 21 through the sources of these turned-on TPTs 21. communicated. A pixel electrode 12 is connected to this drain, and this pixel electrode 12
The light transmittance of the liquid crystal layer 22 is changed by a voltage difference between the liquid crystal layer 22 and a counter electrode 23 formed on a substrate opposite to each other with the liquid crystal layer 22 in between, thereby displaying an image. Further, even after the gate is turned off, the voltage difference between the 1-subpixel electrode 12 and the counter electrode 23 remains constant until the same TPT 21 is selected next time.
Since the liquid crystal layer 22 is held by the capacity M component of 2, the liquid crystal layer 22 is statically driven in principle, and a high-quality image display can be obtained.

第7図は、上記TPTに用いられるa−8iTFTの一
例を示した断面図である。同図において、1は絶縁性基
板、2はゲート電極、4はケート絶縁層となる無機絶縁
層、8は非晶質シリコン層、9はソース電極、10はド
レイン電極、11はソース配線、12は画素電極である
FIG. 7 is a sectional view showing an example of an a-8i TFT used in the TPT. In the figure, 1 is an insulating substrate, 2 is a gate electrode, 4 is an inorganic insulating layer serving as a gate insulating layer, 8 is an amorphous silicon layer, 9 is a source electrode, 10 is a drain electrode, 11 is a source wiring, 12 is the pixel electrode.

[発明が解決しようとする課題] 」1記a−3iTFTでは、ゲート電極2とソース電極
9、ゲート電極2とドレイン電極1oのオーバーラツプ
部分で絶縁不良を生じることがあり、a−3iTFTの
歩留りに対し悪影響をIjえている。特にゲート電極2
の段差部分では、無機絶縁層4の膜厚が薄くなるため、
」1記絶縁不良を生じる確率が、他の部分に比べて圧倒
的に高い。
[Problems to be Solved by the Invention] In the a-3i TFT described in 1., insulation defects may occur in the overlapped portions of the gate electrode 2 and the source electrode 9, and the gate electrode 2 and the drain electrode 1o, which reduces the yield of the a-3i TFT. On the other hand, it has a negative impact. Especially gate electrode 2
Because the thickness of the inorganic insulating layer 4 becomes thinner in the stepped portion,
``The probability of occurrence of insulation failure in item 1 is overwhelmingly higher than in other parts.

また、a−8iTFTをアクティブマトリクス型液晶表
示器に用いる場合、ゲート配線とソース配線の交差部で
も絶縁不良を生じる。
Furthermore, when the a-8i TFT is used in an active matrix type liquid crystal display, insulation failure also occurs at the intersection of the gate wiring and the source wiring.

第8図は上記ゲート配線とソース配線の交差部を示した
断面図である。同図において1は絶縁性基板、2′はゲ
ート配線、4は無機絶縁層、11はソース配線である。
FIG. 8 is a sectional view showing the intersection of the gate wiring and the source wiring. In the figure, 1 is an insulating substrate, 2' is a gate wiring, 4 is an inorganic insulating layer, and 11 is a source wiring.

この場合においても、絶縁破壊の生じる部分は、ゲート
配線2′の段差部が圧倒的に多い。
Even in this case, the portion where dielectric breakdown occurs is overwhelmingly the stepped portion of the gate wiring 2'.

以上述べたように、ゲート電極あるいはゲート配線(以
下、特にことわらない限り、両者をまとめてゲート電極
という)の段差部での絶縁破壊は、a−8iTFTの製
造歩留りを大幅に低下させていた。
As mentioned above, dielectric breakdown at the stepped portion of the gate electrode or gate wiring (hereinafter, unless otherwise specified, both are collectively referred to as the gate electrode) significantly reduced the manufacturing yield of a-8i TFTs. .

本発明は、上記従来の課題に対してなされたものであり
、ゲート電極の段差部での絶縁破壊の生じる確率を低減
させることをl」的としている。
The present invention has been made to solve the above-mentioned conventional problems, and its objective is to reduce the probability of dielectric breakdown occurring at the stepped portion of the gate electrode.

[課題を解決するための手段] 本発明は、ゲート電極か形成された絶縁性」1(板−1
−に、耐熱性何機高分子層が、−1−化ゲート電極によ
る段差を平坦化するようにして形成され、この耐熱性有
機高分子層」二に、無機絶縁層か形成されていることを
特徴とする非晶質シリコン薄膜トランジスタを提供する
ことにより、−に記課題を解決するものである。
[Means for Solving the Problems] The present invention provides an insulating material 1 (plate-1) formed with a gate electrode.
- a heat-resistant organic polymer layer is formed to flatten the step caused by the -1- gate electrode; and second, an inorganic insulating layer is formed. By providing an amorphous silicon thin film transistor characterized by the following, the problems described in - are solved.

この場合、無機絶縁層を耐熱性何機高分子層よりもオー
バーサイズで形成することが好ましく、また耐熱性有機
高分子層を感光性のものとし、基板裏面より光を照射し
て露光し、現像することによりゲート電極上の同層を除
去することがゲート電極段差を平坦化する」二でより好
ましい。
In this case, it is preferable to form the inorganic insulating layer in an oversized size than the heat-resistant organic polymer layer, and the heat-resistant organic polymer layer is photosensitive, and the layer is exposed to light from the back side of the substrate. It is more preferable to remove the same layer on the gate electrode by developing to flatten the gate electrode step.

さらに無機絶縁層として少なくとも窒化シリコン層を用
いることにより信頼性がより向」ニする。
Furthermore, reliability is further improved by using at least a silicon nitride layer as the inorganic insulating layer.

[実施例] 以下、本発明における実施例を図面に基いて説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

第1図および第2図において、1は絶縁性基板、2はゲ
ート電極、3は耐熱性有機高分子層、4は無機絶縁層、
5は無機絶縁層の第1層を形成する窒化シリコン層、6
は第2層を形成する酸化シリコン層、7は紫外光、13
はマスクである。
1 and 2, 1 is an insulating substrate, 2 is a gate electrode, 3 is a heat-resistant organic polymer layer, 4 is an inorganic insulating layer,
5 is a silicon nitride layer forming the first layer of the inorganic insulating layer; 6
is a silicon oxide layer forming the second layer, 7 is ultraviolet light, 13
is a mask.

以下、第1図および第2図における(a)、(b)、(
c)で示した工程順に従い説明を行う。
Hereinafter, (a), (b), (
The explanation will be given according to the process order shown in c).

(a)クロム等を用いた厚さ200 n mのゲート電
極2か形成された絶縁性基板1上に、感光性を有した耐
熱性有機高分子層3として、耐熱性ポリイミド溶液をス
ピナーにより塗布し、これを窒素雰囲気中、80°Cで
30分間プリベークした後、所定の形状を有したマスク
13により基板周辺部をマスクして、紫外光7により露
光する。
(a) A heat-resistant polyimide solution is applied using a spinner as a photosensitive heat-resistant organic polymer layer 3 on an insulating substrate 1 on which a 200 nm thick gate electrode 2 made of chromium or the like is formed. After prebaking this at 80° C. for 30 minutes in a nitrogen atmosphere, the peripheral portion of the substrate is masked with a mask 13 having a predetermined shape, and exposed to ultraviolet light 7.

(b)露光された耐熱性有機高分子層3を、N−メチル
−ピロリドン溶液により現像して、基板周辺部の耐熱性
有機高分子層3を除去し、イソプロピルアルコールによ
りリンスを行い、乾燥後、窒素雰囲気中、200°Cて
30分間仮焼成し、さらに400°Cて1時間本焼成を
する。
(b) The exposed heat-resistant organic polymer layer 3 is developed with an N-methyl-pyrrolidone solution to remove the heat-resistant organic polymer layer 3 around the substrate, rinsed with isopropyl alcohol, and dried. , pre-baking at 200°C for 30 minutes in a nitrogen atmosphere, and then main firing at 400°C for 1 hour.

本焼成後の耐熱性高分子層3の膜厚はゲート電極21ユ
て70 n m、これ以外の部分で200 n mであ
り、両者間の段差は非常に緩かになっている。
The film thickness of the heat-resistant polymer layer 3 after main firing is 70 nm at the gate electrode 21 and 200 nm at other parts, and the difference in level between the two is very gentle.

なお、本焼成の温度は、以後のTPT作成の最高温度(
通常は300°C前後)よりも高くすることが重要であ
る。
The temperature of the main firing is the highest temperature for subsequent TPT production (
It is important to keep the temperature higher than 300°C (usually around 300°C).

(c)無機絶縁層4として、窒化シリコン層5を7Qn
m、酸化シリコン層6を2Q Q n m、基板温度3
00°Cにて、プラズマCVD法により形成する。この
時、上記無機絶縁層4は、耐熱性何機高分子層3よりも
オーバーサイズで形成する。
(c) As the inorganic insulating layer 4, the silicon nitride layer 5 is 7Qn
m, silicon oxide layer 6 2Q Q n m, substrate temperature 3
It is formed by plasma CVD method at 00°C. At this time, the inorganic insulating layer 4 is formed to be larger than the heat-resistant organic polymer layer 3.

これは以後のエツチング工程のとき無機絶縁層4により
、エツチング液から耐熱性有機高分子層3を保護するた
めである。また窒化シリコン層5は、耐熱性有機高分子
層3に含まれるアルカリイオンの移動を遮断するために
設けられたものであり、a−3iTFTの信頼性の観点
から重要である。
This is to protect the heat-resistant organic polymer layer 3 from the etching solution by the inorganic insulating layer 4 during the subsequent etching process. Furthermore, the silicon nitride layer 5 is provided to block movement of alkali ions contained in the heat-resistant organic polymer layer 3, and is important from the viewpoint of reliability of the a-3i TFT.

なお、無機絶縁層4は必ずしも多層にする必要はないか
、少なくとも窒化シリコン層は、」L記理由により設け
ることか好ましい。
Note that the inorganic insulating layer 4 does not necessarily have to be multilayered, or at least a silicon nitride layer is preferably provided for the reasons listed in "L."

第3図および第4図は、」−記第1の実施例によりゲー
ト絶縁層を形成したときのa−8iTFTの断面図と、
ゲート配線の断面図である。8は非晶質シリコン層、9
はソース電極、10はトレイン電極、11はソース配線
、12は画素電極である。耐熱性有機高分子層3を設け
たことにより、無機絶縁層4が平坦化されるため、ケー
ト電極2およびゲート配線2′の段差部においても、無
機絶縁層の膜厚はほぼ均一である。従って上記段差部で
の絶縁不良の発生確率は大幅に低減する。
3 and 4 are cross-sectional views of an a-8i TFT when a gate insulating layer is formed according to the first embodiment, and
FIG. 3 is a cross-sectional view of gate wiring. 8 is an amorphous silicon layer, 9
1 is a source electrode, 10 is a train electrode, 11 is a source wiring, and 12 is a pixel electrode. Since the inorganic insulating layer 4 is planarized by providing the heat-resistant organic polymer layer 3, the thickness of the inorganic insulating layer is almost uniform even at the stepped portions of the gate electrode 2 and the gate wiring 2'. Therefore, the probability of occurrence of insulation failure at the stepped portion is significantly reduced.

第5図は、本発明における第2の実施例を示した工程断
面図である。
FIG. 5 is a process sectional view showing a second embodiment of the present invention.

(a)クロム等を用いた厚さ200nmのゲート電極2
が形成された透光性の絶縁性基板1にに、感光性を有し
た耐熱性有機高分子層3として、耐熱性ポリイミド溶液
をスピナーにより塗布し、これを窒素雰囲気中、80°
Cて30分間プリベークし、絶縁性基板1の裏面より紫
外光7を照射する。このとき耐熱性有機高分子層3は、
紫外光7を遮断するゲート電極2か形成された部分以外
が露光される。
(a) Gate electrode 2 with a thickness of 200 nm using chromium etc.
A heat-resistant polyimide solution is applied as a photosensitive heat-resistant organic polymer layer 3 to the light-transmissive insulating substrate 1 on which is formed a heat-resistant polyimide solution using a spinner.
After prebaking for 30 minutes at C, ultraviolet light 7 is irradiated from the back surface of the insulating substrate 1. At this time, the heat-resistant organic polymer layer 3 is
The portion other than the portion where the gate electrode 2 that blocks ultraviolet light 7 is formed is exposed.

(b)露光された耐熱性有機高分子層3を、N−メチル
−ピロリドン溶液により現像して、ゲート電極2上の耐
熱性有機高分子層3を除去し、イソプロピルアルコール
によりリンスを行って、乾燥後、窒素雰囲気中、200
°Cて30分間仮焼成し、さらに400°Cで1時間本
焼成する。本焼成後の耐熱性有機高分子層3の膜厚は2
00nmであり、これはゲート電極2の膜jψと等しい
(b) Developing the exposed heat-resistant organic polymer layer 3 with an N-methyl-pyrrolidone solution to remove the heat-resistant organic polymer layer 3 on the gate electrode 2, rinsing with isopropyl alcohol, After drying, in a nitrogen atmosphere, 200
Preliminary firing was performed at 400°C for 30 minutes, and then main firing was performed at 400°C for 1 hour. The film thickness of the heat-resistant organic polymer layer 3 after main firing is 2
00 nm, which is equal to the film jψ of the gate electrode 2.

(c)無機絶縁層4として、窒化シリコン層5を70n
m、酸化シリコン層6を200nm、基板温度300°
Cにて、プラズマCVD法により形成する。
(c) As the inorganic insulating layer 4, a silicon nitride layer 5 of 70nm is used.
m, silicon oxide layer 6 200 nm, substrate temperature 300°
It is formed by plasma CVD method at C.

以1−のようにして形成されたものは、ゲート電極2」
二の耐熱性有機高分子層3が除去されているため、無機
絶縁層4は、はぼ完全な平坦化か可能となる。従って実
施例1よりもさらに絶縁不良対策として有効である。
The gate electrode 2 is formed as described in 1- below.
Since the second heat-resistant organic polymer layer 3 is removed, the inorganic insulating layer 4 can be almost completely planarized. Therefore, this embodiment is more effective than the first embodiment as a countermeasure against insulation defects.

[発明の効果] 本発明によれば、耐熱性有機高分子層を設けることによ
り、無機絶縁層の平坦化がはがれるため、ゲート電極の
段差部での絶縁不良の発生確率が大幅に減少するため、
製造歩留りを大幅に向上することができる。
[Effects of the Invention] According to the present invention, by providing a heat-resistant organic polymer layer, the flattening of the inorganic insulating layer is peeled off, so the probability of occurrence of insulation failure at the stepped portion of the gate electrode is significantly reduced. ,
Manufacturing yield can be significantly improved.

また、無機絶縁層を耐熱性有機高分子層よりもオーバー
サイズで形成することにより、エツチング工程での耐熱
性有機高分子層の保護が可能となる。
Furthermore, by forming the inorganic insulating layer to be larger than the heat-resistant organic polymer layer, the heat-resistant organic polymer layer can be protected during the etching process.

さらに、無機絶縁層の少なくとも1層を窒化シリコン層
とすることにより、耐熱性有機高分子層に含まれるアル
カリイオンの遮断が可能となり、非晶質シリコン薄膜ト
ランジスタの信頼性を損うことはない。
Furthermore, by using a silicon nitride layer as at least one of the inorganic insulating layers, alkali ions contained in the heat-resistant organic polymer layer can be blocked, and the reliability of the amorphous silicon thin film transistor is not impaired.

感光性を有した耐熱性有機高分子層を基板裏面より露光
して、ゲート電極上の耐熱性有機高分子層を除去する工
程を有して製造される非晶質シリコンNIM!トランジ
スタでは、無機絶縁層をほぼ完全に平坦化することが可
能となるため、絶縁不良の確率はさらに減少し、−層の
歩留り向」二が達成できる。
Amorphous silicon NIM manufactured by exposing a photosensitive heat-resistant organic polymer layer from the back side of the substrate and removing the heat-resistant organic polymer layer on the gate electrode! In transistors, it is possible to almost completely planarize the inorganic insulating layer, so the probability of insulation defects is further reduced, and an improved layer yield ratio can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における第1の実施例を示した工程の断
面図、第2図は工程の斜視図、第3図および第4図はそ
れぞれ上記第1の実施例における工程で形成された非晶
質シリコン薄膜トランジスタおよびゲート配線の断面図
、第5図は本発明における第2の実施例を示した工程の
断面図、第6図はアクティブマトリクス型液晶表示器の
構成を示した電気回路図、第7図および第8図はそれぞ
れ従来技術によるゲート絶縁層を用いた非晶質シリコン
薄膜トランジスタおよびゲート配線の断面図である。 1・・・絶縁性基板 2・・ゲート電極 3・・・耐熱性有機高分子層 4・・・無機絶縁層 5・・・窒化シリコン層 6・・・酸化シリコン層 7・・・紫外光 ぐ−〈フ一一
Fig. 1 is a cross-sectional view of the process showing the first embodiment of the present invention, Fig. 2 is a perspective view of the process, and Figs. 3 and 4 are each formed in the process of the above first embodiment. 5 is a sectional view of an amorphous silicon thin film transistor and gate wiring, FIG. 5 is a sectional view of a process showing a second embodiment of the present invention, and FIG. 6 is an electric circuit diagram showing the configuration of an active matrix liquid crystal display. , 7 and 8 are cross-sectional views of an amorphous silicon thin film transistor using a gate insulating layer and a gate wiring according to the prior art, respectively. 1... Insulating substrate 2... Gate electrode 3... Heat resistant organic polymer layer 4... Inorganic insulating layer 5... Silicon nitride layer 6... Silicon oxide layer 7... Ultraviolet light −〈Fuichiichi

Claims (7)

【特許請求の範囲】[Claims] (1)ゲート電極が形成された絶縁性基板上に耐熱性有
機高分子層が、上記ゲート電極による段差を平坦化する
ようにして形成され、この耐熱性有機高分子層上に、無
機絶縁層が形成されていることを特徴とする非晶質シリ
コン薄膜トランジスタ。
(1) A heat-resistant organic polymer layer is formed on the insulating substrate on which the gate electrode is formed so as to flatten the step caused by the gate electrode, and an inorganic insulating layer is formed on the heat-resistant organic polymer layer. An amorphous silicon thin film transistor characterized in that it is formed with.
(2)上記無機絶縁層が、上記耐熱性有機高分子層より
もオーバーサイズで形成されていることを特徴とする請
求項1記載の非晶質シリコン薄膜トランジスタ。
(2) The amorphous silicon thin film transistor according to claim 1, wherein the inorganic insulating layer is formed to be larger than the heat-resistant organic polymer layer.
(3)上記耐熱性有機高分子層が感光性を有しているこ
とを特徴とする請求項1または2記載の非晶質シリコン
薄膜トランジスタ。
(3) The amorphous silicon thin film transistor according to claim 1 or 2, wherein the heat-resistant organic polymer layer is photosensitive.
(4)上記耐熱性有機高分子層が耐熱性ポリイミドによ
り形成されていることを特徴とする請求項1または2記
載の非晶質シリコン薄膜トランジスタ。
(4) The amorphous silicon thin film transistor according to claim 1 or 2, wherein the heat-resistant organic polymer layer is formed of heat-resistant polyimide.
(5)上記無機絶縁層が、窒化シリコン層を有する少な
くとも1層以上の絶縁層により形成されていることを特
徴とする請求項1または2記載の非晶質シリコン薄膜ト
ランジスタ。
(5) The amorphous silicon thin film transistor according to claim 1 or 2, wherein the inorganic insulating layer is formed of at least one insulating layer including a silicon nitride layer.
(6)ゲート電極が形成された絶縁性基板上に、感光性
を有した有機高分子層を形成する工程と、この耐熱性有
機高分子層を所定の形状に露光、現像する工程と、この
露光、現像された耐熱性高分子層上に、無機絶縁層を、
上記露光、現像された耐熱性有機高分子層よりもオーバ
ーサイズで形成する工程とからなる非晶質シリコン薄膜
トランジスタの製造方法。
(6) A step of forming a photosensitive organic polymer layer on the insulating substrate on which the gate electrode is formed, a step of exposing and developing this heat-resistant organic polymer layer into a predetermined shape, and An inorganic insulating layer is placed on the exposed and developed heat-resistant polymer layer.
A method for manufacturing an amorphous silicon thin film transistor comprising the step of forming an oversized heat-resistant organic polymer layer than the exposed and developed heat-resistant organic polymer layer.
(7)ゲート電極が形成された透光性の絶縁性基板上に
、感光性を有した耐熱性有機高分子層を形成する工程と
、上記透光性の絶縁性基板の裏面より光を照射して、上
記ゲート電極が形成されていない部分の上記耐熱性有機
高分子層を露光する工程と、この耐熱性有機高分子層を
現像する工程と、この現像された有機高分子層上に無機
絶縁層を形成する工程とからなる非晶質シリコン薄膜ト
ランジスタの製造方法。
(7) Forming a photosensitive, heat-resistant organic polymer layer on the light-transmitting insulating substrate on which the gate electrode is formed, and irradiating light from the back side of the light-transmitting insulating substrate. Then, a step of exposing the heat-resistant organic polymer layer in the portion where the gate electrode is not formed, a step of developing this heat-resistant organic polymer layer, and an inorganic polymer layer on the developed organic polymer layer. A method for manufacturing an amorphous silicon thin film transistor, which comprises a step of forming an insulating layer.
JP63055877A 1988-03-09 1988-03-09 Thin-film transistor of amorphous silicon and production thereof Pending JPH01229229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63055877A JPH01229229A (en) 1988-03-09 1988-03-09 Thin-film transistor of amorphous silicon and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63055877A JPH01229229A (en) 1988-03-09 1988-03-09 Thin-film transistor of amorphous silicon and production thereof

Publications (1)

Publication Number Publication Date
JPH01229229A true JPH01229229A (en) 1989-09-12

Family

ID=13011325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63055877A Pending JPH01229229A (en) 1988-03-09 1988-03-09 Thin-film transistor of amorphous silicon and production thereof

Country Status (1)

Country Link
JP (1) JPH01229229A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5550390A (en) * 1991-08-08 1996-08-27 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and manufacturing method thereof
US5859444A (en) * 1991-08-08 1999-01-12 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
US6018181A (en) * 1990-10-12 2000-01-25 Mitsubishi Denki Kabushiki Kaisha Thin film transistor and manufacturing method thereof
JP2004241528A (en) * 2003-02-05 2004-08-26 Ricoh Co Ltd Organic semiconductor device and display element having it
US6975296B1 (en) 1991-06-14 2005-12-13 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method of driving the same
JP2007513512A (en) * 2003-12-08 2007-05-24 コミッサリヤ ア レネルジ アトミック Method for molecular crosslinking of electronic components on polymer films
US7973905B2 (en) 1996-11-26 2011-07-05 Samsung Electronics Co., Ltd. Liquid crystal displays using organic insulating material and manufacturing methods thereof
CN103943633A (en) * 2014-03-06 2014-07-23 京东方科技集团股份有限公司 Array substrate and manufacturing method and display device thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61151614A (en) * 1984-12-26 1986-07-10 Semiconductor Energy Lab Co Ltd Manufacture of semiconductor device
JPS61173286A (en) * 1985-01-29 1986-08-04 株式会社東芝 Display unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61151614A (en) * 1984-12-26 1986-07-10 Semiconductor Energy Lab Co Ltd Manufacture of semiconductor device
JPS61173286A (en) * 1985-01-29 1986-08-04 株式会社東芝 Display unit

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6018181A (en) * 1990-10-12 2000-01-25 Mitsubishi Denki Kabushiki Kaisha Thin film transistor and manufacturing method thereof
US6975296B1 (en) 1991-06-14 2005-12-13 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method of driving the same
US5550390A (en) * 1991-08-08 1996-08-27 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and manufacturing method thereof
US5859444A (en) * 1991-08-08 1999-01-12 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
US7973905B2 (en) 1996-11-26 2011-07-05 Samsung Electronics Co., Ltd. Liquid crystal displays using organic insulating material and manufacturing methods thereof
JP2004241528A (en) * 2003-02-05 2004-08-26 Ricoh Co Ltd Organic semiconductor device and display element having it
JP2007513512A (en) * 2003-12-08 2007-05-24 コミッサリヤ ア レネルジ アトミック Method for molecular crosslinking of electronic components on polymer films
CN103943633A (en) * 2014-03-06 2014-07-23 京东方科技集团股份有限公司 Array substrate and manufacturing method and display device thereof

Similar Documents

Publication Publication Date Title
US6734940B2 (en) Semiconductor device, electro-optical device substrate, liquid crystal device substrate and manufacturing method therefor, liquid crystal device, and projection liquid crystal display device and electronic apparatus using the liquid crystal device
KR101776655B1 (en) Array substrate, the manufacturing method of the same, and the display apparatus comprising the array substrate
KR100355713B1 (en) Top gate type TFT LCD and Method of forming it
JP5528475B2 (en) Active matrix substrate and manufacturing method thereof
JP2001085702A (en) Method for manufacturing top gate-type polysilicon thin film transistor
US8349737B2 (en) Manufacturing method of array substrate using lift-off method
JPH10307305A (en) Array substrate, liquid crystal display device and production of those
JP2009128761A (en) Substrate device and method for manufacturing the same, and display device
KR20070004229A (en) A thin film transistor substrate and a fabricating method the same
WO2015096307A1 (en) Oxide thin-film transistor, display device and manufacturing method for array substrate
WO2013123786A1 (en) Thin film transistor array substrate and producing method thereof
JPH01229229A (en) Thin-film transistor of amorphous silicon and production thereof
WO2013071838A1 (en) Color film substrate, tft array substrate, manufacturing method thereof and liquid crystal display panel
JP2000243834A (en) Semiconductor device, its manufacture and electrooptic device
JP2002182587A (en) Active matrix substrate and method for manufacturing the same
TWI303886B (en) Thin film transistor and method for formingthereof
KR910009039B1 (en) Method of manufacturing an amorphous silicon thin film transistor
JP2001051297A (en) Array substrate and production thereof
US6462793B1 (en) Liquid crystal display device and method of fabricating the same
KR100476055B1 (en) a method for manufacturing of reflexible TFT LCD panel
JPH01205460A (en) Manufacture of amorphous silicon thin film transistor array substrate
KR20020028014A (en) Method for fabricating tft-lcd
JP2004226858A (en) Liquid crystal display device and its manufacturing method
JPH09113935A (en) Liquid crystal display device and its production
JPH02295132A (en) Manufacture of thin-film transistor