JPH01229216A - Sunshine collection system - Google Patents

Sunshine collection system

Info

Publication number
JPH01229216A
JPH01229216A JP5350288A JP5350288A JPH01229216A JP H01229216 A JPH01229216 A JP H01229216A JP 5350288 A JP5350288 A JP 5350288A JP 5350288 A JP5350288 A JP 5350288A JP H01229216 A JPH01229216 A JP H01229216A
Authority
JP
Japan
Prior art keywords
light
section
reflecting
solar
lighting system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5350288A
Other languages
Japanese (ja)
Other versions
JPH0810291B2 (en
Inventor
Mitsuo Hayashibara
光男 林原
Moriaki Tsukamoto
守昭 塚本
Kotaro Inoue
孝太郎 井上
Takashi Ikeda
孝志 池田
Hisamichi Inoue
久道 井上
Goro Aoyama
吾朗 青山
Naohisa Watabiki
直久 綿引
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63053502A priority Critical patent/JPH0810291B2/en
Publication of JPH01229216A publication Critical patent/JPH01229216A/en
Publication of JPH0810291B2 publication Critical patent/JPH0810291B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Mounting And Adjusting Of Optical Elements (AREA)

Abstract

PURPOSE:To collect the sunshine with high accuracy by providing two rotary shafts for sunshine tracking to a light gathering part where the focuses of a light collection part and a reflection part are made incident with each other, and using one of them as the rotary shaft of the light gathering part and the other one as the rotary shaft of the integrated body of the light gathering part and reflection part. CONSTITUTION:Reflection mirrors 1 and 2 which constitute a light collection part has their focus coincident with each other and the reflection mirror 1 is rotated by a driving motor 4 around a rotary shaft 5 in an altitude direction. Further, the mirror can be rotated in an azimuth direction by a column 3 which has its center of rotation on a perpendicular containing the focus of the reflection mirror. The reflection mirror 2 is supported on a column 6, which is not coupled with the driving motor 4 and serves as a nonrotary shaft, so the reflection mirror 2 rotates only in the azimuth angle direction together with the reflection mirror 1 in one body as the column 3 rotates. The sunshine which is collected by the reflection mirror 1 is reflected by the reflection mirror 2 irrelevantly to the position of the reflection mirror 1 which tracks the sun and travels downward perpendicularly through the window 7 of the column 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は太陽光が直接入らない部屋などに太陽光を送り
こむシステムに係り、特に太陽光の多目的利用に好適な
、太陽光を高効率で採光、伝送する太陽光採光システム
に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a system for sending sunlight into rooms where sunlight does not directly enter, and is particularly suitable for the multipurpose use of sunlight and is highly efficient. Concerning daylighting and transmitting solar lighting systems.

〔従来の技術〕[Conventional technology]

集光した光を平行度の良い光にする点で本発明に近い公
知例としては「太陽光採光利用技術とそのシステム展開
」p43に記載の太陽光照明システムがある。また、集
光した光を鏡で伝送するシステムとして本発明に近い公
知例として特開昭52−12848号公報に記載の公知
例がある。
A known example that is similar to the present invention in terms of converting collected light into well-parallelized light is a solar lighting system described in "Solar Lighting Utilization Technology and Its System Development" p. 43. Further, as a known example of a system for transmitting condensed light using a mirror, there is a known example described in JP-A-52-12848, which is similar to the present invention.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記公知例の前者は4枚の反射鏡を用いるものであるが
、一般に鏡を1枚使うと10%以上の光が鏡の吸収、乱
反射により損失となることが知られており、4枚の鏡を
用いると採光部だけで少なくとも入射光の65%に光強
度が減衰する。さらに、この公知例の場合、最も簡単な
制御方法は可動平面鏡を中心に太陽追尾を行なう場合で
あるがその場合でも回転放物面反射鏡と平面鏡とをそれ
ぞれ連動させ、しかも異なる角速度で回転させる必要が
有り、制御機構が複雑である。一般に集光した光を伝送
するシステムでは、建屋内で数10m伝送するため、光
のわずかな角度誤差が大きな変位誤差となって現れる。
The former of the above known examples uses four reflecting mirrors, but it is generally known that when one mirror is used, more than 10% of the light is lost due to mirror absorption and diffuse reflection. When a mirror is used, the light intensity is attenuated to at least 65% of the incident light just in the lighting section. Furthermore, in the case of this known example, the simplest control method is when tracking the sun using a movable plane mirror as the center, but even in that case, the rotating parabolic reflector and the plane mirror are linked and rotated at different angular velocities. The control mechanism is complicated. In general, in a system that transmits focused light, it is transmitted several tens of meters within a building, so a slight angular error in the light results in a large displacement error.

従って本公知例の場合、角度の制御に極めて高精度な技
術が必要でコスト高になる。一方、上記公知例の後者は
、放物面の焦点に平面鏡からの光を集め、集光した光を
伝送するものであるが、平面鏡からの反射光は各平面鏡
内の一点で反射された光を除いて全て焦点から外れ、放
物面鏡で反射した光は放物面鏡の光軸方向から最大3o
〜40度外れる。例えばこの光を光ダクトで伝送する場
合を考えると、平行度が極めて悪いため光ダクト内で多
数回反射を受けることになり光のほとんどが減衰する。
Therefore, in the case of this known example, extremely high precision technology is required to control the angle, resulting in high costs. On the other hand, in the latter of the above-mentioned known examples, the light from the plane mirror is collected at the focal point of the paraboloid and the focused light is transmitted, but the reflected light from the plane mirror is the light reflected at one point within each plane mirror. The light reflected by the parabolic mirror is out of focus except for
~40 degrees off. For example, if we consider the case where this light is transmitted through a light duct, since the parallelism is extremely poor, it will be reflected many times within the light duct and most of the light will be attenuated.

従って伝送効率が非常に悪い。仮にこの公知例において
伝送部を光ファイバーで構成した場合を考えると、放物
面鏡から出る光は高々10倍程度に集光された低エネル
ギー密度の光のため光ファイバーを多数必要とし極めて
高コストとなる。加えて、このシステムでは平行度が悪
いため光ファイバーの光軸から外れる割合が高く、光フ
アイバー人口での光の反射損失が大きくなり効率的にも
極めて悪い。さらに、上記公知例において、平面鏡の代
わりに放物面鏡を使い、あらかじめ集光した光を用いる
場合も容易に類推できるが、その場合は太陽の位置によ
り放物面鏡が焦点を結ばなくなり、最終的に平行度の悪
い光が出るため効率が悪い。また、放物面鏡の焦点から
の外れを少なくするため各平面鏡を小さくした場合(こ
れは多数の平面鏡で構成した大きな鏡の形を変えて太陽
を追尾し放物面鏡の焦点に光を集光している場合に相当
)も容易に考えられるが、各平面鏡はそれぞれ独立に異
なる角度に制御する必要があり、制御が複雑であり多数
の駆動部を必要とするためコスト高でもある。
Therefore, the transmission efficiency is very poor. If we consider the case where the transmission section in this known example is composed of optical fibers, the light emitted from the parabolic mirror is focused at most 10 times as much and has a low energy density, so a large number of optical fibers would be required and the cost would be extremely high. Become. In addition, in this system, since the parallelism is poor, there is a high percentage of the optical fibers deviating from the optical axis, and the reflection loss of light at the optical fibers becomes large, making it extremely inefficient. Furthermore, in the above known example, it can be easily assumed that a parabolic mirror is used instead of a plane mirror and pre-focused light is used, but in that case, the parabolic mirror will not focus depending on the position of the sun, In the end, light with poor parallelism is emitted, resulting in poor efficiency. In addition, in order to reduce the deviation from the focus of the parabolic mirror, each plane mirror is made smaller (this is done by changing the shape of a large mirror made up of many plane mirrors to track the sun and direct the light to the focus of the parabolic mirror). Although it is easy to think of a case where the light is condensed), each plane mirror needs to be controlled independently to a different angle, and the control is complicated and requires a large number of drive parts, which is expensive.

本発明の目的は、高効率で太陽光を集光して採光するこ
とができる太陽光採光システムを提供することにある。
An object of the present invention is to provide a sunlight lighting system that can collect and collect sunlight with high efficiency.

また、上記に加えて、平行度の保持したまま太陽追尾を
単純な制御(低コスト)で行える太陽光採光システムを
提供することにある。
In addition to the above, another object of the present invention is to provide a sunlight lighting system that can perform solar tracking with simple control (at low cost) while maintaining parallelism.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明は、太陽光を高エネル
ギー密度の平行光線にする採光部と集光された平行光線
を伝送する伝送部から太陽光採光=8− システム構成するとともに、採光部を、太陽光集光のた
めの焦点を有する1個の光学要素からなる集光部と集光
した光を平行光線にするための焦点を有する1個の光学
要素からなる反射部とで構成し、集光部と反射部の焦点
を一致させた構成とし、採光部に太陽追尾をするための
2つの回転軸を設け、その内の1つを集光部の回転軸と
し、焦点を通る線上に設けたことを特徴とする。
In order to achieve the above object, the present invention has a solar lighting = 8- system configuration consisting of a lighting section that converts sunlight into parallel rays with high energy density and a transmission section that transmits the concentrated parallel rays. consists of a condensing section consisting of one optical element having a focal point for concentrating sunlight and a reflecting section consisting of one optical element having a focal point for converting the condensed light into parallel rays. , the focal point of the condensing part and the reflecting part are made to match, and the lighting part is provided with two rotation axes for tracking the sun, one of which is the rotation axis of the condensing part, and the focus is on the line passing through the focal point. It is characterized by the fact that it is provided in

また、上記において、2つの回転軸の残り1つを、集光
部と反射部からなる一体物の回転軸とし、この軸を焦点
を通る線上に設けるか、この軸を反射部の光軸と平行な
線上に設ける。
In addition, in the above, the remaining one of the two rotation axes is the rotation axis of the integrated unit consisting of the condensing part and the reflection part, and this axis is provided on a line passing through the focal point, or this axis is set as the optical axis of the reflection part. Place on parallel lines.

また、上記の他に、2つの回転軸の残り1つを、集光部
の回転軸とし、この軸を焦点を通る線上に設けるように
しても良い。
Further, in addition to the above, the remaining one of the two rotation axes may be used as the rotation axis of the condenser, and this axis may be provided on a line passing through the focal point.

また、上記において、採光部を太陽光を集光する1枚の
曲面鏡と集光した光を平行光にする1枚の曲面鏡で構成
するか、採光部を太陽光を集光する1枚のレンズと集光
した光を平行光にする1枚の曲面鏡で構成する。
In addition, in the above, the daylighting section is composed of one curved mirror that collects sunlight and one curved mirror that converts the collected light into parallel light, or the daylighting section is made up of one curved mirror that collects sunlight. It consists of a lens and a curved mirror that converts the collected light into parallel light.

また、上記において、前記2つの回転軸の内、集光部と
反射部からなる一体物の回転軸は鉛直方向とするのが好
ましい。
Moreover, in the above, it is preferable that of the two rotation axes, the rotation axis of the integral body consisting of the light condensing part and the reflection part is in the vertical direction.

また、上記において、前記2つの回転軸の内、集光部の
回転軸と同軸の非回転軸を設け、それに反射部を固定し
支持することは有効である。
Moreover, in the above, it is effective to provide a non-rotating shaft coaxial with the rotating shaft of the condensing section among the two rotating shafts, and to fix and support the reflecting section on this non-rotating shaft.

また、上記において、回転軸2つを焦点を通るようにさ
せた場合、反射部を固定することは有効である。
Further, in the above, when the two rotation axes are made to pass through the focal point, it is effective to fix the reflecting section.

〔作用〕[Effect]

太陽光採光システムの場合、高効率化、低コスト化が実
用化上の重要な技術課題である。上記公知例の効率につ
いて考えると、採光部の鏡での反射回数が多いため光の
減衰が激しい、あるいは集光した光の平行度が悪いため
光伝送部での反射回数が多い、などの理由でシステム効
率は高々30%程度である。従って、採光部での反射回
数を少なくし、平行度の良い集光した光を得ることで、
高効率光伝送が可能になり、従来技術の効率面の問題点
を解決できる。さらに、コストについて考えてみると、
一般に集光した光の伝送はコスト的には光ファイバーよ
りも光ダク1へあるいは鏡の方がはるかに有利である。
In the case of solar lighting systems, high efficiency and low cost are important technical issues for practical application. Considering the efficiency of the above-mentioned known examples, reasons include the large number of reflections on the mirror in the lighting section, resulting in severe attenuation of the light, or the poor parallelism of the condensed light, which causes a large number of reflections on the light transmission section. The system efficiency is about 30% at most. Therefore, by reducing the number of reflections at the lighting section and obtaining focused light with good parallelism,
Highly efficient optical transmission becomes possible, and the efficiency problems of conventional technology can be solved. Furthermore, when considering the cost,
Generally, in terms of cost, it is far more advantageous to transmit concentrated light to the optical duct 1 or to a mirror than to use an optical fiber.

しかし光ダクトや鏡の場合、わずかの角度誤差が反射回
数の増加あるいは伝送空間からの漏洩につながるため、
従来技術では高精度で複雑な制御機構を必要としコスト
低減に結びつかなかった。しかし採光部における駆動部
を少なくし、光の進行方向を可能な限り幾何学的形状や
配置で決まる構成とし、原理的に駆動部が生みだす誤差
を少なくすれば、常に一定方向に集光した光を容易に送
り込むことが可能となる。
However, in the case of optical ducts and mirrors, a slight angular error can lead to an increase in the number of reflections or leakage from the transmission space.
Conventional technology requires a highly accurate and complex control mechanism and does not lead to cost reduction. However, if you reduce the number of driving parts in the lighting section, make the direction of light travel determined by the geometric shape and arrangement as much as possible, and reduce the errors produced by the driving parts in principle, the light will always be focused in a fixed direction. can be easily sent.

従って、駆動制御が簡単になり、効率低下を引き起こす
ことなく光ダクトなどによる伝送が可能となるためコス
ト面の問題点を解決できる。
Therefore, drive control becomes simple, and transmission via an optical duct or the like becomes possible without causing a decrease in efficiency, so that cost problems can be solved.

〔実施例〕〔Example〕

本発明の採光部の基本構成を第1図を用いて説明する。 The basic configuration of the lighting section of the present invention will be explained using FIG. 1.

採光部は2枚の回転放物面鏡で構成し、反射鏡1は太陽
光を集光をし、反射鏡2は反射鏡1から来る光を平行に
し、常に一定方向に送る。
The lighting section is composed of two parabolic mirrors of revolution.Reflector 1 collects sunlight, and reflector 2 makes the light coming from reflector 1 parallel and always sends it in a fixed direction.

反射鏡1により太陽光を1点に集光するためには反射鏡
1の光軸を常に太陽に向けておく必要があり、一般にこ
の駆動操作を太陽追尾と呼んでいる。
In order for the reflecting mirror 1 to focus sunlight on one point, the optical axis of the reflecting mirror 1 must always be directed toward the sun, and this driving operation is generally called solar tracking.

第2図を用いて本発明における太陽追尾法について説明
する。太陽が第2図の一点鎖線上を進行する場合を考え
ると、反射鏡1が太陽追尾をするためには方位角方向な
らびに高度方向の2つの回転操作で太陽の方向に反射鏡
1の光軸を一致できることがわかる。そこで、採光部は
2つの回転軸を有する構造とする。反射鏡1は第1図に
示す様に回転軸5を中心に駆動モータ4により高度方向
の回転を行ない、回転軸5は反射鏡1の焦点を含む線上
に設置する。一方、方位角方向は反射鏡1の焦点を含む
鉛直線上に回転中心を有する支柱3により回転可能な構
成とする。次に、反射鏡2は支柱6により支持し支柱6
は駆動モータ4とは連結せず、非回転軸とする。従って
、反射鏡2は支柱3の回転に伴う方位角方向の回転のみ
を行なう構成とする。支柱3には集光した光を取り入れ
る窓7をつけ、架台8内部の駆動部9も光の通路を確保
するため中空とし、採光部はゴミ、ホコリの影−12= 響をできるだけ除くためドーム16内に収めている。次
に第3図を用いて本発明の幾何学的構成について説明す
る。反射鏡1と反射鏡2はそれぞれの焦点を一致させ、
反射鏡1の高度方向回転軸および反射鏡1及び2の方位
角方向の回転軸は、ともに焦点を通る線上に設けておく
。この構成の場合、反射鏡1を太陽追尾のために方位角
方向あるいは高度方向に回転させたとしても、回転軸が
焦点を通っているため焦点位置は変わらない。さらに本
発明の反射鏡2の光軸は鉛直方向に固定しておくが、第
4図に示すように、放物面鏡の場合、焦点を通った光を
必ず光軸方向に反射されるため、反射鏡2で反射した光
は太陽追尾をする反射鏡1の位置に無関係に鉛直下方へ
進行する。その際、反射鏡2として焦点の短いものを用
いれば高集光が行なえるとともに、反射鏡2で反射した
光を焦点の鉛直線上もしくはその近傍に反射でき、常に
窓7へ集光した平行光を送り込める。また、本発明を太
陽高度が高い地域で使用する場合も考えられ、その場合
は第1図に示すように反射鏡2で反射した光の通路を確
保するため反射鏡1に開放部21を設けておく。次に第
5図に本発明の光伝送部の基本構成図を示す。本発明の
場合平行度が高いため光ダクトあるいは反射鏡による光
伝送が可能である。集光した光は光ダクト10内を空間
伝送させ、各部屋に導く際に鏡11を用いてその一部を
取り出し、各部屋に伝送する。鏡11としては入射光の
数10%を反射するハーフミラ−あるいは鏡面の一部の
みを伝送部に出し、伝送される光の一部を部屋に導く方
式とする。そして部屋に導かれた光は散乱体12により
部屋の内部に均一に散乱させ取り入れる。
The sun tracking method according to the present invention will be explained using FIG. 2. Considering the case where the sun moves along the dot-dashed line in Fig. 2, in order for the reflector 1 to track the sun, the optical axis of the reflector 1 must be rotated in the azimuth direction and the altitude direction in the direction of the sun. It can be seen that it is possible to match the Therefore, the lighting section has a structure having two rotation axes. As shown in FIG. 1, the reflecting mirror 1 is rotated in the altitude direction by a drive motor 4 about a rotating shaft 5, and the rotating shaft 5 is placed on a line that includes the focal point of the reflecting mirror 1. On the other hand, the structure is such that it can be rotated in the azimuth direction by a support 3 having its rotation center on a vertical line that includes the focal point of the reflecting mirror 1. Next, the reflector 2 is supported by the support 6 and
is not connected to the drive motor 4 and is a non-rotating shaft. Therefore, the reflecting mirror 2 is configured to rotate only in the azimuth direction as the support column 3 rotates. The pillar 3 is equipped with a window 7 to let in the concentrated light, and the drive part 9 inside the pedestal 8 is also hollow to ensure a passage of light. It is kept within 16. Next, the geometric configuration of the present invention will be explained using FIG. Reflector 1 and reflector 2 have their respective focuses aligned,
The rotational axis of the reflecting mirror 1 in the altitude direction and the rotational axis of the reflecting mirrors 1 and 2 in the azimuth direction are both provided on a line passing through the focal point. In the case of this configuration, even if the reflecting mirror 1 is rotated in the azimuth direction or the altitude direction for solar tracking, the focal point position does not change because the axis of rotation passes through the focal point. Furthermore, the optical axis of the reflecting mirror 2 of the present invention is fixed in the vertical direction, but as shown in FIG. 4, in the case of a parabolic mirror, the light passing through the focal point is always reflected in the optical axis direction. , the light reflected by the reflecting mirror 2 travels vertically downward regardless of the position of the reflecting mirror 1 that tracks the sun. In this case, if a reflector 2 with a short focal point is used, it is possible to achieve a high concentration of light, and the light reflected by the reflector 2 can be reflected on or near the vertical line of the focal point, and the focused parallel light is always sent to the window 7. I can put it in. Furthermore, the present invention may be used in areas where the solar altitude is high, and in that case, as shown in FIG. I'll keep it. Next, FIG. 5 shows a basic configuration diagram of the optical transmission section of the present invention. In the case of the present invention, since the degree of parallelism is high, it is possible to transmit light using a light duct or a reflecting mirror. The collected light is spatially transmitted through the light duct 10, and when guided to each room, a portion of the light is taken out using the mirror 11 and transmitted to each room. The mirror 11 is a half mirror that reflects several tens of percent of the incident light, or only a part of the mirror surface is output to the transmission section, and a part of the transmitted light is guided into the room. The light guided into the room is uniformly scattered and taken into the room by the scatterer 12.

第6図に本発明の具体的な一実施例を示す。太陽追尾を
する反射鏡1は直径1mとし、中心を通る断面形状はY
=aX”型の回転放物面とする。
FIG. 6 shows a specific embodiment of the present invention. The reflector 1 that tracks the sun has a diameter of 1 m, and the cross-sectional shape passing through the center is Y.
=aX'' type paraboloid of revolution.

そして、焦点距離を0.75m とする。(回転放物面
の断面形状はy=o、aa3x”となる。)−方、反射
鏡2も回転放物面鏡とし、焦点距離は0.05m 、断
面形状はY = 5 X2とする。そして反射鏡1と反
射1It2の配置は第7図に示す配置とする。反射鏡1
は第6図に示すように、方位角方向の回転を行なう支柱
3で支持し、支柱13を反射鏡1の周辺部で固定する。
The focal length is then set to 0.75m. (The cross-sectional shape of the paraboloid of revolution is y=o, aa3x''.) On the other hand, the reflecting mirror 2 is also a paraboloid of revolution, the focal length is 0.05 m, and the cross-sectional shape is Y=5X2. The arrangement of the reflecting mirror 1 and the reflecting mirror 1It2 is as shown in Fig. 7.Reflecting mirror 1
As shown in FIG. 6, the reflector 1 is supported by a support 3 that rotates in the azimuth direction, and a support 13 is fixed at the periphery of the reflecting mirror 1.

さらに支柱13は駆動モータ4により高度方向の回転を
行なう。駆動モータ4および駆動モータ14は、年月日
および時刻から太陽位置を求める制御演算回路を有する
制御電源]5によって制御し、駆動モータ4は人力AC
100V、5W程度のものを用い、ギア比1000〜3
000の減速ギアで減速しておく。
Further, the support column 13 is rotated in the altitude direction by the drive motor 4. The drive motor 4 and the drive motor 14 are controlled by a control power source]5 having a control calculation circuit that calculates the sun position from the date and time, and the drive motor 4 is controlled by a human-powered AC
Use about 100V, 5W, gear ratio 1000-3
Reduce the speed using the 000 reduction gear.

一方、駆動モータ14も同様に入力AC100V。On the other hand, the drive motor 14 also has an input AC of 100V.

10W程度のものを用い、ギア比1000〜3000の
減速ギアで減速しておく。反射鏡1はアルミニウムに反
射率の良い銀をコーティングしたものを用い、厚みを1
mm程度としておく。その際の反射鏡の重量は3.5k
g程度であり、駆動モータ4およびアルミ製の支柱13
を加えても10kg未満である。従って、支柱3として
は鉄製の断面が数dのものを用いる。そして、採光部は
直径1.5m、厚さ5m程度のアクリル製のドーム16
内に収める。また、反射鏡2で反射された光はφ20−
の窓7を通して光伝送部へ送る。次に第8図に本発明の
集光器から出てくる光の平行度の計算結果を示す。この
結果からおおよそ平行度としては±2度程度が得られる
。また、集光比100程度の光が得られることも計算に
より確認できる。第9図はこの結果に基づいた実施例で
ある。光伝送部は直径20cil+程度の内面に反射膜
17をコーティングした光ダクトとし、各部屋にはこの
光ダクト10で伝送する。そして、直進する光を各部屋
に導くためには第10図に示すような部分的に反射膜1
7をつけた鏡、あるいは光ダクト内の一部に反射鏡を突
き出し、入射光の一部を取り出す方法もしくは入射光の
一部のみを反射するハーフミラ−を用いる。本発明のシ
ステム効率は、各部屋までの距離をおよそ20mとする
と先の平行度の計算結果から集光された光の多く(〜7
0%)はダクト10内部では1回反射以内で伝送され、
鏡によって各部屋に運ばれるため、光伝送部の光の損失
は25%程度である。集光した光の内、各部屋に運ばれ
る光の割合(システム効率)は約55%が達成できる。
Use a power source of about 10 W and reduce the speed using a reduction gear with a gear ratio of 1000 to 3000. Reflector 1 is made of aluminum coated with silver, which has good reflectance, and has a thickness of 1
Set it to about mm. The weight of the reflector at that time is 3.5k.
g, and the drive motor 4 and aluminum support 13
Even if it is added, it is less than 10 kg. Therefore, the pillar 3 is made of iron and has a cross section of several d. The lighting part is an acrylic dome 16 with a diameter of 1.5 m and a thickness of about 5 m.
Keep it inside. Also, the light reflected by the reflecting mirror 2 is φ20−
The signal is sent to the optical transmission section through the window 7. Next, FIG. 8 shows the calculation result of the parallelism of light coming out from the condenser of the present invention. From this result, approximately ±2 degrees of parallelism can be obtained. It can also be confirmed by calculation that light with a condensing ratio of about 100 can be obtained. FIG. 9 shows an example based on this result. The light transmission section is a light duct with a diameter of about 20 cil+ coated with a reflective film 17 on the inner surface, and the light is transmitted to each room through this light duct 10. In order to guide the light traveling straight to each room, a reflective film 1 is partially installed as shown in Figure 10.
7, or a reflecting mirror is protruded from a part of the light duct to take out part of the incident light, or a half mirror that reflects only part of the incident light is used. The system efficiency of the present invention is that if the distance to each room is approximately 20 m, most of the focused light (~7
0%) is transmitted within the duct 10 within one reflection,
Since the light is carried to each room by mirrors, the loss of light in the light transmission section is about 25%. The proportion of light that is transported to each room (system efficiency) of the collected light can be achieved at approximately 55%.

本発明によれば、55%近い効率で太陽光を集光し伝送
でき、これは従来技術(〜30%)を上回る。さらに、
集光部の機構が簡単であり、光伝送部を光ダクトと鏡に
より構成しているため、極めて安価に(集光し伝送した
単位光エネルギー当たりのコストで評価すると従来シス
テムの1/3〜1/2)製造でき、制御機構が原理的に
簡単なため、メインテナンス、信頼性の面からも有利で
ある。
According to the present invention, sunlight can be collected and transmitted with an efficiency close to 55%, which is higher than the prior art (~30%). moreover,
The mechanism of the condensing part is simple, and the light transmission part is composed of a light duct and a mirror, making it extremely inexpensive (1/3 to 1/3 of the cost of conventional systems when evaluated in terms of cost per unit of light energy collected and transmitted). 1/2) Since it can be manufactured and the control mechanism is simple in principle, it is advantageous in terms of maintenance and reliability.

次に第11図に太陽光を追尾する光学要素としてレンズ
を用いた場合を示す。集光用のレンズ18としては直径
1mのフレネルレンズを用いる。
Next, FIG. 11 shows a case where a lens is used as an optical element for tracking sunlight. A Fresnel lens with a diameter of 1 m is used as the condensing lens 18.

レンズの焦点距離は0.75m とする。反射鏡18と
しては焦点距離5■の回転放物面鏡を用い、高度方向の
回転軸を焦点を通る軸上に設ける。反射鏡2は非回転軸
19により支持し、反射鏡2の光軸は鉛直下方に向けて
おき、集光器の胴体部20は光路を確保しておくため、
下端部に開放部21を設けるかもしくは胴体部をアクリ
ル等の透明体で構成する。また、架台22.制御電源2
3゜駆動モータ24ならびに光伝送系は、第6図および
第9図と全く同様にしておく。近年フレネルレンズもか
なり集光効率の良い物が現れており、第11図に示す集
光部は75%近い効率が達成でき、コスト的にも第7図
の実施例とほぼ同程度であると考えられる。本実施例の
場合、反射鏡の場合と異なり太陽追尾をする光学要素が
、集光した光の通路を遮ることがないため、入射光を有
効に利用できる効果があり、本システムも55%近い効
率が達成可能である。
The focal length of the lens is 0.75m. As the reflecting mirror 18, a parabolic mirror of revolution with a focal length of 5 cm is used, and the axis of rotation in the altitude direction is set on the axis passing through the focal point. The reflecting mirror 2 is supported by a non-rotating shaft 19, the optical axis of the reflecting mirror 2 is directed vertically downward, and the body part 20 of the condenser secures an optical path.
An open part 21 is provided at the lower end, or the body part is made of a transparent material such as acrylic. In addition, the pedestal 22. Control power supply 2
The 3° drive motor 24 and optical transmission system are exactly the same as in FIGS. 6 and 9. In recent years, Fresnel lenses with fairly high light collection efficiency have appeared, and the light collection section shown in Figure 11 can achieve an efficiency of nearly 75%, and is approximately the same in cost as the embodiment shown in Figure 7. Conceivable. In the case of this example, unlike in the case of a reflector, the optical element that tracks the sun does not block the path of the focused light, so the effect of effectively using the incident light is that this system also achieves approximately 55% Efficiency is achievable.

次に第12図に本発明の集光器の変形例を示す集光した
光を平行にし、所定の方向に反射する反射鏡26は太陽
追尾をする反射鏡25と焦点位置を一致させかつ太陽追
尾をする反射鏡25は焦点を中心に太陽追尾をする。そ
して、反射鏡26は支持27で固定し、反射鏡26の光
軸は斜め下方向に向け、窓28から建屋内に光を入れる
構成とする。本変形例によれば、反射鏡25で集光した
光は常に焦点を通過し、太陽位置によらず反射鏡26の
光軸方向に集光した平行度の良い光をできるため、架台
の回転軸以外の点にも集光した光を伝送できる効果があ
る。例えば本変形例を利用したシステムとしては第13
図に示す様に多数の集光器からの光を一点に集光し、円
錐もしくは多角錐状の鏡29による1回反射で集光した
光を1つの光ダクト30にまとめて伝送することが可能
であり、システムコスト的にも効率面からも有利なシス
テムとなる。
Next, FIG. 12 shows a modified example of the concentrator of the present invention. A reflecting mirror 26 that makes the focused light parallel and reflects it in a predetermined direction is aligned with the focal position of the reflecting mirror 25 that tracks the sun, and The tracking reflector 25 tracks the sun around the focal point. The reflecting mirror 26 is fixed with a support 27, the optical axis of the reflecting mirror 26 is directed diagonally downward, and light is introduced into the building through the window 28. According to this modification, the light focused by the reflecting mirror 25 always passes through the focal point, and the light with good parallelism is focused in the optical axis direction of the reflecting mirror 26 regardless of the position of the sun, so that the mount can be rotated. This has the effect of transmitting the focused light to points other than the axis. For example, as a system using this modification, the 13th
As shown in the figure, it is possible to condense light from a number of condensers to one point, and transmit the condensed light together into one optical duct 30 by one reflection by a conical or polygonal pyramid-shaped mirror 29. This makes the system advantageous both in terms of system cost and efficiency.

先に第7図に示した実施例は焦点位置を中心に方位角方
向の太陽追尾を行なった例であるが、第14図では方位
角方向の回転中心に反射鏡上の一点とした例を示す。反
射鏡31と反射鏡32は同じ回転体33の上で方位角方
向の回転し、この回転中心は反射鏡32を通る線上とす
る。そして、駆動機構ならびに制御機構、伝送機構は第
6図と同様にする。この場合、効率、コストの面では第
6図に示す実施例と差はないが、集光された光の窓7へ
の入射位置は方位角方向の追尾ではほとんど動かず、常
に中心近傍を通過させることができ、光ダクト34を小
さくできる効果がある。
The embodiment shown in Fig. 7 is an example in which the sun is tracked in the azimuth direction with the focus position as the center, but in Fig. 14, the sun is tracked in the azimuth direction at a single point on the reflector at the rotation center in the azimuth direction. show. The reflecting mirror 31 and the reflecting mirror 32 rotate in the azimuth direction on the same rotating body 33, and the center of rotation is on a line passing through the reflecting mirror 32. The drive mechanism, control mechanism, and transmission mechanism are the same as those shown in FIG. In this case, there is no difference from the embodiment shown in FIG. 6 in terms of efficiency and cost, but the point of incidence of the focused light on the window 7 hardly moves during tracking in the azimuth direction, and always passes near the center. This has the effect of making the optical duct 34 smaller.

=19− 一般に、放物面鏡に比べて球面鏡の方が製造が容易でコ
スト的に安価である。ところが、球面鏡は第15図に示
すように中心近傍を通って入射した光は半径の1/2の
点に焦点を結ぶが、中心から離れた点を通った光は焦点
位置からの外れが大きくなる特性を有している。従って
、反射した光が焦点位置からほとんど外れない部分のみ
を使用して球面鏡を用いた集光部を構成できる。第16
図に実施例を示す。第16図の場合、球面鏡35の直径
を1mとし、その断面がY2+X2=1/2なる曲線で
表せる球面鏡を用いる。そして、反射鏡36についても
同様に曲面鏡を用い、反射鏡36は断面がY2+X2=
1/200なる曲面で表せる球面鏡を用いる。この場合
、球面鏡による反射の際の光角度の広がりをほぼ放物面
鏡と同程度にでき、効率的には、はぼ同等のものが構成
できる。
=19- Generally, spherical mirrors are easier to manufacture and cheaper than parabolic mirrors. However, as shown in Figure 15, with a spherical mirror, light that enters near the center focuses at a point half the radius, but light that passes through a point far from the center deviates significantly from the focal point. It has the following characteristics. Therefore, a condensing section using a spherical mirror can be constructed by using only the portion where the reflected light hardly deviates from the focal position. 16th
An example is shown in the figure. In the case of FIG. 16, the diameter of the spherical mirror 35 is 1 m, and a spherical mirror whose cross section can be represented by a curve of Y2+X2=1/2 is used. Similarly, a curved mirror is used for the reflecting mirror 36, and the cross section of the reflecting mirror 36 is Y2+X2=
A spherical mirror that can be represented by a curved surface of 1/200 is used. In this case, the spread of the light angle upon reflection by the spherical mirror can be made almost the same as that of a parabolic mirror, and in terms of efficiency, it is possible to construct something that is almost the same.

そして、球面鏡のコストは放物面鏡のコストに比べ数割
程度安いため、より安価にシステムが構成できる。上記
実施例は集光した光を平行光にする反射鏡として全て凹
面鏡を用いた例を示したが、凸面鏡でも同様の構成にで
きる。第17図に実施例を示す。太陽追尾をする反射鏡
37の焦点は凸型反射鏡の焦点と一致させてあり、焦点
を中心に太陽追尾をする。この場合も第6図に示す実施
例と同様の効果が生まれる。
Furthermore, since the cost of a spherical mirror is several times lower than that of a parabolic mirror, a system can be constructed at a lower cost. In the above embodiments, all concave mirrors are used as reflecting mirrors that convert the collected light into parallel light, but a convex mirror can also be used in the same configuration. An example is shown in FIG. The focus of the reflecting mirror 37 that tracks the sun is made to coincide with the focus of the convex reflecting mirror, and the sun is tracked around the focal point. In this case as well, effects similar to those of the embodiment shown in FIG. 6 are produced.

以上は集光部に的を絞った実施例ならびに変形例であっ
たが、次に制御、駆動機構に関する実施例および変形例
を述べる。すでに述べた実施例では年月日および時刻か
ら太陽高度を演算回路で求め、それの信号が駆動機構に
送り太陽を追尾するものであったが、太陽方向を検出す
るセンサを用いても同様のことができる。たとえば第1
8図に示す様にピンホール42を中心に4個以上の太陽
光センサ39を設置しその出力差から太陽に対してどの
方角を向いているか検知するセンサを、太陽追尾をする
放物面に付けて置く。そして、駆動モータ4oおよび駆
動モータ41はセンサ39の出力差に従って反射鏡43
を駆動する。従って、本実施例によれば簡単な機構で太
陽追尾が可能となり、システムのコスト低減につながる
The above embodiments and modifications focused on the light condensing section.Next, embodiments and modifications regarding the control and drive mechanism will be described. In the embodiment already described, the solar altitude is determined from the year, month, date, and time using an arithmetic circuit, and the signal is sent to the drive mechanism to track the sun, but the same method can be achieved using a sensor that detects the direction of the sun. be able to. For example, the first
As shown in Figure 8, four or more sunlight sensors 39 are installed around a pinhole 42, and the sensor that detects which direction the sun is facing with respect to the sun from the output difference is placed on a paraboloid that tracks the sun. Leave it on. Then, the drive motor 4o and the drive motor 41 drive the reflector 43 according to the output difference of the sensor 39.
to drive. Therefore, according to this embodiment, it is possible to track the sun with a simple mechanism, leading to a reduction in the cost of the system.

次に第6図では駆動機構の電源として外部電源を用いた
例を示したが、太陽電池あるいはバッテリーによっても
同様のことが行なえる。第19図に実施例を示す。集光
部44の近くに太陽電池パネル45を設置し、その出力
をバッテリー4Gを通して駆動モータ47および駆動モ
ータ48に供給する。これによって日射量によらず安定
した電力供給ができる。そして、バッテリー46の容量
は40Ahr、とじ、太陽電池パネル45は40W程度
のものを用いる。駆動モータ47および駆動モータ48
はそれぞれ定格DC24V、0.5A。
Next, although FIG. 6 shows an example in which an external power source is used as the power source for the drive mechanism, the same thing can be done using a solar cell or a battery. An example is shown in FIG. A solar panel 45 is installed near the light collecting section 44, and its output is supplied to the drive motor 47 and the drive motor 48 through the battery 4G. This allows stable power supply regardless of the amount of solar radiation. The battery 46 has a capacity of 40 Ahr, and the solar panel 45 has a capacity of about 40 W. Drive motor 47 and drive motor 48
are rated DC24V and 0.5A, respectively.

定格DC24−V、0.2A程度のものを用いる。Use one with a rating of DC 24-V and about 0.2 A.

これにより外部電源を必要としない集光システムが構成
できる。本発明によれば外部電源が停電などによって止
まった場合においても集光した光を伝送できる効果があ
る。
This allows a light collection system that does not require an external power source to be constructed. According to the present invention, even if the external power supply is stopped due to a power outage or the like, there is an effect that the collected light can be transmitted.

また、第20図は外部電源とバッテリーの組み合わせた
実施例である。商用電源からの電力はコンバータ49を
通してDC24Vに変換し、バッテリー50および駆動
モータ47および駆動モータ48に供給する。そしてバ
ッテリー5oの電圧値から充電量を検知し、外部電源か
ら電力を供給し、バッテリー50を一定の充電状態にし
ておく。
Further, FIG. 20 shows an embodiment in which an external power source and a battery are combined. Electric power from a commercial power source is converted to DC 24V through a converter 49 and supplied to a battery 50 and drive motors 47 and 48. Then, the amount of charge is detected from the voltage value of the battery 5o, and power is supplied from an external power source to keep the battery 50 in a constant state of charge.

本発明によっても、外部電源が止まったとしても集光し
た光を伝送することができる効果がある。
The present invention also has the effect that the collected light can be transmitted even if the external power supply is stopped.

次に本発明の光伝送部の実施例、変形例を述べる。第9
図ではハーフミラ−あるいは反射体による各部屋への分
配方法の実施例を示したが、変形例を第21図に示す。
Next, embodiments and modifications of the optical transmission section of the present invention will be described. 9th
Although the figure shows an embodiment of the distribution method to each room using a half mirror or a reflector, a modified example is shown in FIG.

採光部52から送り込まれた光は光ダクト53を通して
建屋51内に送り込み、各部屋への分岐の際に光ファイ
バー54を用いる。これにより各部屋への分配が容易で
あるとともに、必要となる光ファイバーの長さが極めて
少ない(全て光ファイバーとして伝送する場合の173
〜1/4)ためあまりコストをあげることなく容易に光
分配が可能になる効果がある。
Light sent from the lighting section 52 is sent into the building 51 through a light duct 53, and an optical fiber 54 is used when branching to each room. This makes it easy to distribute to each room, and the length of optical fiber required is extremely small (173 mm when transmitting everything as optical fiber).
~1/4), which has the effect of making it possible to easily distribute light without increasing the cost too much.

反射鏡を用いた光集光および光伝送の場合、光のスペク
I〜ルはほぼ入射光に等しいが、用途によっては紫外線
などの特定波長をカットしたほうが良い場合、あるいは
植物栽培などでは植物の特定吸収波長の光を増化させた
方が有利な場合もありうる。そこで、第22図に吸収体
あるいは波長変換体を設けた場合の透過スペクトルの様
子を示す。
When concentrating and transmitting light using a reflecting mirror, the spectrum of light is almost equal to the incident light, but depending on the application, it may be better to cut out specific wavelengths such as ultraviolet rays, or when cultivating plants, it may be better to cut out specific wavelengths such as ultraviolet rays. In some cases, it may be advantageous to increase the amount of light with a specific absorption wavelength. Therefore, FIG. 22 shows the transmission spectrum when an absorber or a wavelength converter is provided.

紫外線吸収体としてはガラスなどの紫外線吸収特性を有
する板を光伝送部の一部に設ける。これにより、紫外線
はほとんど無くなり、屋内の紫外線による変色などの問
題は生じない。さらに第23図に示すようにエオシンな
どの波長変換体含むフィルター55を光伝送部の末端に
設置し、その部屋で植物栽培などを行なえば、比較的吸
収率の低い短波長側を吸収率の良い長波長に変換するた
め。
As the ultraviolet absorber, a plate having ultraviolet absorption properties such as glass is provided in a part of the light transmission section. As a result, ultraviolet rays are almost eliminated, and problems such as discoloration caused by indoor ultraviolet rays do not occur. Furthermore, as shown in FIG. 23, if a filter 55 containing a wavelength converter such as eosin is installed at the end of the optical transmission section and plants are cultivated in that room, the absorption rate will be reduced on the short wavelength side, which has a relatively low absorption rate. Good for converting to long wavelengths.

促成栽培などが可能になる。Forced cultivation becomes possible.

また、用途によっては必要に応じて光の調整が必要な場
合などもありうる。そこで、本発明を用いた場合の一実
施例を第24図に示す。光量を調整するための遮光体5
6は光デク1−5フ内に設置し、モータ58により回転
可能とし、制御スイッチ59を各部屋に取り付けて置く
。また、第25図は変形例であり、遮光体60を伝送部
の端部につけ光を調整するものである。いずれも必要に
応じて光量を調節できる効果がある。第26図は液晶シ
ャッター61を使った場合の実施例であり、機械的駆動
部がないため、信頼性が高い。
Furthermore, depending on the application, it may be necessary to adjust the light as necessary. FIG. 24 shows an embodiment in which the present invention is used. Light shielding body 5 for adjusting the amount of light
6 is installed in the optical deck 1-5 and is rotatable by a motor 58, and a control switch 59 is installed in each room. Further, FIG. 25 shows a modification in which a light shielding body 60 is attached to the end of the transmission section to adjust the light. Both have the effect of being able to adjust the amount of light as needed. FIG. 26 shows an embodiment in which a liquid crystal shutter 61 is used, and since there is no mechanical drive unit, the reliability is high.

本発明の実施例で光ダクトから光を分配する方法として
、ハーフミラ−1部分的に突き出した反射鏡、光ファイ
バー、部分的に反射膜をつけた鏡などの例を示したが、
集光した光の分配比を変える際は新たなものと取り換え
るとか、取り付は位置を変えるなどの操作が必要である
。そこで、電気的に光の分配比を変えることが可能な光
学素子を用いれば、第27図に示すように光ダクトの分
岐点にこの光学素子62を取り付け、各用途に応じて利
用者が最適な分配を行なうことが可能となる。さらに、
簡単な演算機能を有する回路63と日射量を計測するセ
ンサ64とを組合せれば、その時刻の日射量に応じて最
適な分配比を計算し、建屋内に光を送ることが可能にな
るため、太陽光利用効率が向上すると考えられる。
In the embodiment of the present invention, as a method for distributing light from a light duct, examples such as a partially protruding reflecting mirror of the half mirror 1, an optical fiber, and a mirror partially coated with a reflecting film have been shown.
When changing the distribution ratio of the condensed light, operations such as replacing it with a new one or changing the mounting position are required. Therefore, if an optical element that can electrically change the light distribution ratio is used, this optical element 62 can be attached to the branch point of the optical duct as shown in Fig. 27, and the user can select the optimal one according to each application. This makes it possible to perform distribution. moreover,
By combining the circuit 63 with a simple calculation function and the sensor 64 that measures the amount of solar radiation, it becomes possible to calculate the optimal distribution ratio according to the amount of solar radiation at that time and send light into the building. , it is thought that the efficiency of solar utilization will improve.

〔発明の効果〕〔Effect of the invention〕

本発明では、集光部は2枚の鏡でのみ構成されているた
め、集光部では80%程度の高効率が達成でき、公知例
の従来技術のさらに3割増しとなる。加えて、本発明に
おける集光部の駆動は方位角方向および高度方向の2軸
のみである。そして、太陽追尾をしない反射鏡は高度方
向の回転は不要で、方位角方向については、焦点位置を
回転の中心軸とした場合は回転が不要であり、焦点以外
の点を回転の中心とした場合は太陽追尾をする反射鏡と
同一の回転体に固定するだけで良い。従って製作段階で
正確に位置決めをしておけば、原理的に常に集光した光
を同一方向に伝送できるため、精密な駆動機構を必要と
せず、機構が簡単な低コストシステムとなりつる。しか
も、方位角方向の回転軸を2枚の焦点をもつ光学部品(
第1図の場合は2枚の反射鏡)の間に取れるため太陽追
尾をする際の回転半径を小さくできる。従って、集光器
に一般に装着する透明なドームの径を小さくできるため
コスト的に有利であり、敷地利用の面からも有利である
。また、本発明は原理的には完全な平行光線が得られる
構成となっており、集光した光が平行光線から外れ、あ
る一定の進行方向の幅を有する原因となるのは入射太陽
光自体のばらつきに起因する。そのため、平行度の点で
は従来の光学系を使ったシステムの最高値をとりうる。
In the present invention, since the condensing section is composed of only two mirrors, the condensing section can achieve a high efficiency of about 80%, which is 30% higher than that of the known prior art. In addition, the light condensing section in the present invention is driven only in two axes: the azimuth direction and the altitude direction. Reflectors that do not track the sun do not require rotation in the altitude direction, and in the azimuth direction, rotation is not necessary if the focal point is the central axis of rotation, and if a point other than the focal point is the center of rotation. In this case, it is sufficient to simply fix it to the same rotating body as the reflector that tracks the sun. Therefore, if the positioning is done accurately at the manufacturing stage, in principle, the focused light can always be transmitted in the same direction, which eliminates the need for a precise drive mechanism, resulting in a simple and low-cost system. Moreover, the axis of rotation in the azimuth direction is an optical component with two focal points (
In the case of Figure 1, it can be placed between two reflecting mirrors), making it possible to reduce the radius of rotation when tracking the sun. Therefore, the diameter of the transparent dome that is generally attached to the concentrator can be reduced, which is advantageous in terms of cost and also in terms of site utilization. Furthermore, in principle, the present invention is configured to obtain perfectly parallel rays, and the reason why the condensed light deviates from the parallel rays and has a certain width in the traveling direction is the incident sunlight itself. This is due to the variation in Therefore, in terms of parallelism, it can achieve the highest value of systems using conventional optical systems.

実際、集光器から出る光は、数度程度の幅をもっている
が、この程度の広がりであれば鏡もしくは光ダクトによ
る光伝送が可能であり、一般的な建屋の場合、はとんど
の光を数回の反射で光を所定の場所に伝送できる。従っ
て、システム効率としては55%近くの効率が達成可能
で、集光型太陽光採光システムにおける従来技術の効率
(約30%)を上回る。そして、一般に光ファイバーを
用いた場合、光伝送部はシステムの3〜6割のコストを
占めるが、鏡もしくは光ダクトによる光伝送が可能なた
め光伝送部のコストは光ファイバーを用いた際の1割程
度となり、コスト的に極めて有利である。さらに、本発
明では太陽の完全追尾をしているため、晴天時は集光さ
れた光の強度が一定値をとり太陽光を利用する上で便利
であり、集光した光を伝送できるため高い光強度を必要
とする用途からあまり光強度を必要としない用途まで、
多目的に利用できる点で有利である。
In reality, the light emitted from the condenser has a width of several degrees, but if the width is this wide, it is possible to transmit the light using mirrors or optical ducts, and in the case of a typical building, most of the light Light can be transmitted to a specified location by reflecting it several times. Therefore, a system efficiency of nearly 55% can be achieved, which exceeds the efficiency of the prior art (approximately 30%) in concentrating solar lighting systems. Generally, when optical fibers are used, the optical transmission section accounts for 30 to 60% of the cost of the system, but since it is possible to transmit light using mirrors or optical ducts, the cost of the optical transmission section is only 10% of the cost when using optical fibers. This is extremely advantageous in terms of cost. Furthermore, since the present invention completely tracks the sun, the intensity of the concentrated light remains constant on clear skies, which is convenient for utilizing sunlight, and the intensity of the concentrated light can be transmitted, so the intensity is high. From applications that require high light intensity to applications that do not require much light intensity.
It is advantageous in that it can be used for multiple purposes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基本構成図、第2図は太陽追尾の説明
図、第3図は本発明の動作原理図、第4図は本発明の動
作原理図、第5図は本発明の基本構成図、第6図は本発
明の実施例を示す図、第7図は本発明の実施例を示す図
、第8図は平行度の計算結果を示す図、第9図は本発明
の実施例を示す図、第10図は本発明の構成要素の説明
図、第11図は本発明の実施例を示す図、第12図は本
発明の実施例を示す図、第13図は本発明の実施例を示
す図、第14図は本発明の実施例を示す図、第15図は
球面鏡の説明図、第16図は本発明の実施例を示す図、
第17図は本発明の実施例を示す図、第18図は本発明
の実施例を示す図、第19図は本発明の実施例を示す図
、第20図は本発明の実施例を示す図、第21図は本発
明の実施例を示す図、第22図は光スペクトルの説明図
、第23図は本発明の実施例を示す図、第24図は本発
明の実施例を示す図、第25図は本発明の実施例を示す
図、第26図は本発明の実施例を示す図、第27図は本
発明の詳細な説明図である。 1・・・反射鏡、2・・・反射鏡、3・・・支柱、4・
・・駆動モータ、5・・・回転軸、6・・支柱、7・・
・窓、8・・・架台、9・・・駆動部、1o・・・光ダ
クト、11・・・鏡、12・・・光散乱体、13・・・
支柱、14・・・駆動モータ、15・・・制御電源、1
6・・ドーム、17・・・反射膜、18・・・レンズ、
19・・非回転軸、20・・・胴体部、21・・・開放
部、22・・・架台、23・・・制御電源、24・・・
駆動モータ、25・・・反射鏡、26・・・反射鏡、2
7・・・支柱、28・・窓、29・・・光学部品、30
・・・光ダクト、31・・・反射鏡、32・・・反射鏡
、33・・窓、34・・・光ダクト、35・・・球面鏡
、36・・・反射鏡、37・・・反射鏡、38・・・反
射鏡、39・・・センサ、40・・・駆動モータ、41
・・・駆動モータ、42・・・ピンホール、43・・・
反射鏡、44・・・集光部、45・・・太陽電池パネル
、46・・・バッテリー、47・・・駆動モータ、48
・・・駆動モータ、49・・・コンバータ、50・・・
バッテリー、51・・・建屋、52・・・集光部、53
・・光ダク1−154・・光ファイバー、55 フィル
ター、56・・遮光体、57 ・光ダクト、58・・即
動モータ、59・制御スイッチ、60 ・遮光体、61
・・液晶シャッタ、62・・・光学部品、63δ−架台 率 2 5 天頂 地¥轢 /=反射鏡 2・反身↑鏡 第 4  日 2 反射音り 第 、5 口 10・・・光、ダ°りF 11  全組 ノ2−L散1■−インド、 /6  ° ド一 第 7 目 第 70 の 110反射吸 第 11  図 24  も区重力七−タ 椿 12  酊 26・−反射鏡 27−支材 第 /3 目 2c/−L掌をP昂 第 75 圀 ベ 身重 オー 35・ 珠面悦 率 /b  菌 36・・反射仇 第 17  日 37  反射1克 38−反JET擾( 第 lδ 暖 率 19  圀 4δ 44・・集f、部 45 ・  人喝電5pWflL/ 4δ・・駒tIJ七−タ 第 20  目 49、・コンノ\−タ 50 ハソテリー 第 21  目 S3 尤タクL 54   、t7フイ/v− 第 22  図 液長 (刈り 第 23 響 53  /lタークト 、S!5 −フィルター 第 24 図 57°旭タタト 5δ 七−タ 來 2.5  口 <34IK町  (a’) ζ1)) (蘭イ人1 第 26  口 6I−λ(シ6ンヤノy− 第 27  目
Fig. 1 is a basic configuration diagram of the present invention, Fig. 2 is an explanatory diagram of solar tracking, Fig. 3 is a diagram of the operating principle of the present invention, Fig. 4 is a diagram of the operating principle of the present invention, and Fig. 5 is an illustration of the operating principle of the present invention. Basic configuration diagram, FIG. 6 is a diagram showing an embodiment of the present invention, FIG. 7 is a diagram showing an embodiment of the present invention, FIG. 8 is a diagram showing calculation results of parallelism, and FIG. 9 is a diagram showing an embodiment of the present invention. FIG. 10 is an explanatory diagram of the constituent elements of the present invention. FIG. 11 is a diagram showing an embodiment of the present invention. FIG. 12 is a diagram showing an embodiment of the present invention. FIG. 14 is a diagram showing an embodiment of the invention, FIG. 15 is an explanatory diagram of a spherical mirror, FIG. 16 is a diagram showing an embodiment of the invention,
Fig. 17 shows an embodiment of the invention, Fig. 18 shows an embodiment of the invention, Fig. 19 shows an embodiment of the invention, and Fig. 20 shows an embodiment of the invention. 21 is a diagram showing an embodiment of the present invention, FIG. 22 is an explanatory diagram of an optical spectrum, FIG. 23 is a diagram showing an embodiment of the present invention, and FIG. 24 is a diagram showing an embodiment of the present invention. , FIG. 25 is a diagram showing an embodiment of the invention, FIG. 26 is a diagram showing an embodiment of the invention, and FIG. 27 is a detailed explanatory diagram of the invention. 1... Reflector, 2... Reflector, 3... Support, 4...
... Drive motor, 5... Rotating shaft, 6... Support column, 7...
・Window, 8... Frame, 9... Drive unit, 1o... Light duct, 11... Mirror, 12... Light scatterer, 13...
Pillar, 14... Drive motor, 15... Control power supply, 1
6...Dome, 17...Reflection film, 18...Lens,
19... Non-rotating shaft, 20... Body part, 21... Open part, 22... Frame, 23... Control power supply, 24...
Drive motor, 25...Reflector, 26...Reflector, 2
7... Support column, 28... Window, 29... Optical component, 30
...Light duct, 31...Reflector, 32...Reflector, 33...Window, 34...Light duct, 35...Spherical mirror, 36...Reflector, 37...Reflection Mirror, 38...Reflector, 39...Sensor, 40...Drive motor, 41
... Drive motor, 42... Pinhole, 43...
Reflector, 44... Concentrator, 45... Solar panel, 46... Battery, 47... Drive motor, 48
... Drive motor, 49... Converter, 50...
Battery, 51...Building, 52...Light collecting section, 53
・・Light duct 1-154・・Optical fiber, 55 Filter, 56・・Light shielding body, 57・・Light duct, 58・・Immediate action motor, 59・Control switch, 60・・Light shielding body, 61
...Liquid crystal shutter, 62...Optical components, 63δ-mount ratio 2 5 Zenith ground ¥/=Reflector 2, anti-body ↑Mirror 4th day 2 Reflected sound No. 5 Mouth 10...Light, da° riF 11 All sets No. 2-L scattering 1 - India, /6 ° Do-1 No. 7 No. 70 No. 110 Reflection Absorption No. 11 Material No. /3 Eye 2c/-L palm P 75 Kunibe weight O 35・Bacterial pleasure rate /b Bacteria 36...Reflection enemy 17th Day 37 Reflexion 1 Katsu 38-Anti-JET 擾 (No. 1δ Warmth rate 19 圀4δ 44...Collection f, Part 45 ・People's support 5pWflL/ 4δ...KomatIJ7-ta No. 20 49,・Kono\-ta 50 Hasotery No. 21 S3 Yutaku L 54, t7F/v - No. 22 liquid length (Kari No. 23 Hibiki 53 /l Turkt, S! 5 - Filter No. 24 Person 1 26th mouth 6I-λ

Claims (1)

【特許請求の範囲】 1、太陽光を高エネルギー密度の平行光線にする採光部
と集光された平行光線を伝送する伝送部からなる太陽光
採光システムにおいて、採光部を、太陽光集光のための
焦点を有する1個の光学要素からなる集光部と集光した
光を平行光線にするための焦点を有する1個の光学要素
からなる反射部とで構成し、集光部と反射部の焦点を一
致させた構成とし、採光部に太陽追尾をするための2つ
の回転軸を設け、その内の1つを集光部の回転軸とし、
焦点を通る線上に設けたことを特徴とする太陽光採光シ
ステム。 2、特許請求範囲第1項において、2つの回転軸の残り
1つを、集光部と反射部からなる一体物の回転軸とし、
この軸を焦点を通る線上に設けたことを特徴とする太陽
光採光システム。 3、特許請求範囲第1項において、2つの回転軸の残り
1つを、集光部と反射部からなる一体物の回転軸とし、
この軸を反射部の光軸と平行な線上に設けたことを特徴
とする太陽光採光システム。 4、特許請求範囲第1項において、2つの回転軸の残り
1つを、集光部の回転軸とし、この軸を焦点を通る線上
に設けたことを特徴とする太陽光採光システム。 5、特許請求範囲第1項において、採光部を太陽光を集
光する1枚の曲面鏡と集光した光を平行光にする1枚の
曲面鏡で構成したことを特徴とする太陽光採光システム
。 6、特許請求範囲第1項において、採光部を太陽光を集
光する1枚のレンズと集光した光を平行光にする1枚の
曲面鏡で構成したことを特徴とする太陽光採光システム
。 7、特許請求範囲第2項または第3項において、前記2
つの回転軸の内、集光部と反射部からなる一体物の回転
軸を鉛直方向としたことを特徴とする太陽光採光システ
ム。 8、特許請求範囲第2項または第3項において、前記2
つの回転軸の内、集光部の回転軸と同軸の非回転軸を設
け、それに固定し支持された反射部を有することを特徴
とする太陽光採光システム。 9、特許請求範囲第4項において、反射部を固定したこ
とを特徴とする太陽光採光システム。 10、特許請求範囲第1項において採光部の駆動電源と
して商用電源を用いることを特徴とする太陽光採光シス
テム。 11、特許請求範囲第1項において、採光部の駆動電源
としてバッテリーとを有することを特徴とする太陽光採
光システム。 12、特許請求範囲第1項において、採光部の駆動電源
として太陽電池とバッテリーの両方を有することを特徴
とする太陽光採光システム。 13、特許請求範囲第1項において、採光部から送り込
まれる光を光ファイバー、光ダクト、鏡のどれか一つ、
もしくはこれらの組合せで光伝送する手段を設けたこと
を特徴とする太陽光採光システム。 14、特許請求範囲第13項において、建屋内部に伝送
された光の一部を取り出し分配するための反射体を設け
たことを特徴とする太陽光採光システム。 15、特許請求範囲第13項において、伝送した光を均
一に室内に照射するための散乱体を設けたことを特徴と
する太陽光採光システム。 16、特許請求範囲第13項において、伝送した光を所
定の用途にあつた光スペクトルに変換する吸収体もしく
は波長変換体を有したことを特徴とする太陽光採光シス
テム。 17、特許請求範囲第13項において、伝送した光を光
量調節を行なう光学部品を設けたことを特徴とする太陽
光採光システム。 18、特許請求範囲第13項において、採光部を複数個
設け、この複数個の採光部からの光を1本にまとめるた
めの光学部品を光伝送する手段の前に設けたことを特徴
とする太陽光採光システム。 19、太陽光をエネルギー密度を高めた平行光線にする
採光部と、該採光部からの平行光線を伝送する伝送部か
らなる太陽光採光システムであつて、 前記採光部は、太陽光集光のための焦点を有する光学要
素で構成した集光部と、集光した光を平行光線にするた
めの焦点を有する光学要素で構成した反射部とにより構
成され、かつ前記集光部と前記反射部の焦点を一致させ
るとともに、 前記集光部の太陽追尾を前記焦点を中心に回動させるこ
とにより行う構成とし、前記反射部を構成する光学要素
の光軸と、反射部からの平行光線が入射される前記伝送
部の入口部とが平行になるように設置された太陽光採光
システム。 20、太陽光をエネルギー密度を高めた平行光線にする
採光部と、該採光部からの平行光線を伝送する伝送部か
らなる太陽光採光システムであつて、 前記採光部は、太陽光集光のための焦点を有する光学要
素で構成した集光部と、集光した光を平行光線にするた
めの焦点を有する光学要素で構成した反射部とにより構
成され、 かつ前記集光部と前記反射部の焦点を一致させるととも
に、 前記反射部を構成する光学要素の光軸と、反射部からの
平行光線が入射される前記伝送部の窓の鉛直線とを平行
にし、 前記集光部と前記反射部を一体物とし、その回転軸を前
記反射部の光軸と平行に設定し、かつ前記集光部の太陽
追尾を、前記一体物の回転軸の回転と、前記焦点を通る
回転軸の回転とにより行う構成とした太陽光採光システ
ム。
[Claims] 1. In a solar lighting system consisting of a lighting section that converts sunlight into parallel rays with high energy density and a transmission section that transmits the concentrated parallel rays, the lighting section is The light condensing section consists of a single optical element having a focal point for converting the condensed light into parallel rays, and the reflecting section consists of a single optical element having a focal point for converting the condensed light into parallel rays. The focal point of the solar panel is made to match, and the lighting section is provided with two rotation axes for tracking the sun, one of which is used as the rotation axis of the light condensing section.
A solar lighting system characterized by being installed on a line passing through a focal point. 2. In claim 1, the remaining one of the two rotation axes is an integrated rotation axis consisting of a light condensing part and a reflection part,
A solar lighting system characterized by having this axis on a line passing through the focal point. 3. In claim 1, the remaining one of the two rotating shafts is an integrated rotating shaft consisting of a light condensing part and a reflecting part,
A solar lighting system characterized in that this axis is provided on a line parallel to the optical axis of the reflecting section. 4. The solar lighting system according to claim 1, characterized in that the remaining one of the two rotation axes is the rotation axis of the light condensing section, and this axis is provided on a line passing through the focal point. 5. A solar lighting system according to claim 1, characterized in that the lighting section is composed of one curved mirror that collects sunlight and one curved mirror that converts the collected light into parallel light. system. 6. A sunlight daylighting system according to claim 1, characterized in that the daylighting section is composed of one lens that collects sunlight and one curved mirror that converts the collected light into parallel light. . 7. In claim 2 or 3, the above-mentioned 2
A sunlight daylighting system characterized in that the rotation axis of an integrated unit consisting of a light condensing part and a reflecting part is vertical. 8. In claim 2 or 3, the above 2
A solar lighting system characterized by having a non-rotating shaft coaxial with the rotating shaft of a light condensing part among the two rotating shafts, and a reflecting part fixed and supported by the non-rotating shaft. 9. A solar lighting system according to claim 4, characterized in that the reflecting part is fixed. 10. A solar lighting system according to claim 1, characterized in that a commercial power source is used as a driving power source for the lighting section. 11. A sunlight daylighting system according to claim 1, characterized in that it has a battery as a driving power source for the daylighting section. 12. A solar lighting system according to claim 1, characterized in that it has both a solar cell and a battery as a driving power source for the lighting section. 13. In claim 1, the light sent from the lighting section is transmitted through one of an optical fiber, a light duct, and a mirror.
Or a solar lighting system characterized by providing a means for transmitting light using a combination of these. 14. A solar lighting system according to claim 13, characterized in that a reflector is provided for extracting and distributing part of the light transmitted into the building. 15. A solar lighting system according to claim 13, characterized in that a scatterer is provided for uniformly irradiating the transmitted light indoors. 16. A sunlight daylighting system according to claim 13, comprising an absorber or a wavelength converter that converts the transmitted light into a light spectrum suitable for a predetermined use. 17. A solar lighting system according to claim 13, characterized in that an optical component for adjusting the amount of transmitted light is provided. 18. Claim 13 is characterized in that a plurality of lighting sections are provided, and an optical component for consolidating the light from the plurality of lighting sections into one beam is provided in front of the means for transmitting light. Solar lighting system. 19. A solar lighting system consisting of a lighting section that converts sunlight into parallel rays with increased energy density, and a transmission section that transmits the parallel rays from the lighting section, wherein the lighting section is configured to convert sunlight into parallel rays with increased energy density. a light condensing section composed of an optical element having a focal point for converting the condensed light into parallel rays, and a reflecting section composed of an optical element having a focal point for converting the condensed light into parallel rays, and the condensing section and the reflecting section and the solar tracking of the condensing section is performed by rotating around the focal point, so that the optical axis of the optical element constituting the reflecting section and the parallel rays from the reflecting section are incident. The solar lighting system is installed so that the entrance part of the transmission part is parallel to the entrance part of the transmission part. 20. A solar lighting system comprising a lighting section that converts sunlight into parallel rays with increased energy density, and a transmission section that transmits the parallel rays from the lighting section, wherein the lighting section is configured to convert sunlight into parallel rays with increased energy density. a light condensing section composed of an optical element having a focal point for converting the condensed light into parallel light beams, and a reflecting section composed of an optical element having a focal point for converting the condensed light into parallel rays, and the condensing section and the reflecting section and making the optical axis of the optical element constituting the reflecting section parallel to the vertical line of the window of the transmitting section into which the parallel light rays from the reflecting section are incident, so that the focusing section and the reflecting section The rotation axis is set parallel to the optical axis of the reflecting part, and the sun tracking of the light collecting part is controlled by the rotation of the rotation axis of the integral part and the rotation of the rotation axis passing through the focal point. A solar lighting system configured with
JP63053502A 1988-03-09 1988-03-09 Solar lighting system Expired - Lifetime JPH0810291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63053502A JPH0810291B2 (en) 1988-03-09 1988-03-09 Solar lighting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63053502A JPH0810291B2 (en) 1988-03-09 1988-03-09 Solar lighting system

Publications (2)

Publication Number Publication Date
JPH01229216A true JPH01229216A (en) 1989-09-12
JPH0810291B2 JPH0810291B2 (en) 1996-01-31

Family

ID=12944599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63053502A Expired - Lifetime JPH0810291B2 (en) 1988-03-09 1988-03-09 Solar lighting system

Country Status (1)

Country Link
JP (1) JPH0810291B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001312910A (en) * 2000-04-28 2001-11-09 Sanyo Electric Co Ltd Sunlight collection apparatus
US7119895B2 (en) 2000-11-28 2006-10-10 Honda Giken Kogyo Kabushiki Kaisha Method of and apparatus for adjusting optical component, and optical unit
JP2015506569A (en) * 2012-01-23 2015-03-02 スリーエム イノベイティブ プロパティズ カンパニー Off-axis Cassegrain solar collector
CN108954865A (en) * 2018-08-30 2018-12-07 广东工业大学 A kind of orientation biography light solar-energy light collector

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS599315U (en) * 1982-07-09 1984-01-21 平林 金夫 Solar tracking transfer device
JPS59192210A (en) * 1984-03-21 1984-10-31 Takashi Mori Gathering device of solar rays
JPS63125305U (en) * 1987-02-09 1988-08-16

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2509652A1 (en) * 1981-07-17 1983-01-21 Montabert Ets IMPROVEMENT IN THE SEALING SYSTEM BETWEEN THE HYDRAULIC ENVIRONMENT AND THE OUTER ENVIRONMENT OF A PERCUSSION APPARATUS

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS599315U (en) * 1982-07-09 1984-01-21 平林 金夫 Solar tracking transfer device
JPS59192210A (en) * 1984-03-21 1984-10-31 Takashi Mori Gathering device of solar rays
JPS63125305U (en) * 1987-02-09 1988-08-16

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001312910A (en) * 2000-04-28 2001-11-09 Sanyo Electric Co Ltd Sunlight collection apparatus
US7119895B2 (en) 2000-11-28 2006-10-10 Honda Giken Kogyo Kabushiki Kaisha Method of and apparatus for adjusting optical component, and optical unit
JP2015506569A (en) * 2012-01-23 2015-03-02 スリーエム イノベイティブ プロパティズ カンパニー Off-axis Cassegrain solar collector
CN108954865A (en) * 2018-08-30 2018-12-07 广东工业大学 A kind of orientation biography light solar-energy light collector
CN108954865B (en) * 2018-08-30 2024-04-19 广东工业大学 Directional light transmission solar condensing device

Also Published As

Publication number Publication date
JPH0810291B2 (en) 1996-01-31

Similar Documents

Publication Publication Date Title
US4389085A (en) Lighting system utilizing the sunlight
US4139286A (en) Apparatus for concentrating solar energy
US4377154A (en) Prismatic tracking insolation
EP0130486B1 (en) Solar ray collector device
WO2000071942A1 (en) Solar tracing sensor and application thereof in solar auto-tracing device
US4261335A (en) Solar energy apparatus
JP2002081760A (en) Solar energy utilizing system
US20140334007A1 (en) Optical Element Stacks for the Direction of Light
US4382434A (en) Prismatic tracking insolation collector
WO2012065526A1 (en) Solar energy converging method and application thereof in heating and illumination
WO2018113631A1 (en) Solar condenser apparatus and construction or constructed structure using the apparatus
CN102074606B (en) Light-concentrating solar comprehensive collecting and reforming unit
JPH01229216A (en) Sunshine collection system
CN102588870A (en) Sunlight guiding and lighting device
JPH08200839A (en) Device for utilizing light and heat of sun
CN103104882A (en) Light three-dimensional tracking collection device
CN108507199A (en) A kind of solar energy light gathering and heat collecting system and method
RU2121632C1 (en) Device for concentration of solar radiation
CN208859917U (en) A kind of solar energy light gathering and heat collecting system
CN104793332A (en) Light guide device
CN201994877U (en) Light-focusing type solar energy comprehensive collection and conversion device
JPH0617933B2 (en) Solar lighting
CN111935891A (en) Desktop type plasma ultrafast X-ray source
KR100350374B1 (en) Dish Solar Concentrator
CN204648126U (en) A kind of guide-lighting control system