JPH0810291B2 - Solar lighting system - Google Patents

Solar lighting system

Info

Publication number
JPH0810291B2
JPH0810291B2 JP63053502A JP5350288A JPH0810291B2 JP H0810291 B2 JPH0810291 B2 JP H0810291B2 JP 63053502 A JP63053502 A JP 63053502A JP 5350288 A JP5350288 A JP 5350288A JP H0810291 B2 JPH0810291 B2 JP H0810291B2
Authority
JP
Japan
Prior art keywords
light
lighting system
mirror
solar
sunlight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63053502A
Other languages
Japanese (ja)
Other versions
JPH01229216A (en
Inventor
光男 林原
守昭 塚本
孝太郎 井上
孝志 池田
久道 井上
吾朗 青山
直久 綿引
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63053502A priority Critical patent/JPH0810291B2/en
Publication of JPH01229216A publication Critical patent/JPH01229216A/en
Publication of JPH0810291B2 publication Critical patent/JPH0810291B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Mounting And Adjusting Of Optical Elements (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は太陽光が直接入らない部屋などに太陽光を送
りこむシステムに係り、特に太陽光の多目的利用に好適
な、太陽光を高効率で採光、伝送する太陽光採光システ
ムに関する。
TECHNICAL FIELD The present invention relates to a system for sending sunlight into a room or the like where sunlight does not enter directly, and is particularly suitable for multipurpose use of sunlight with high efficiency of sunlight. The present invention relates to a sunlight collecting system for collecting and transmitting light.

〔従来の技術〕 集光した光を平行度の良い光にする点で本発明に近い
公知例としては「太陽光採光利用技術とそのシステム展
開」p43に記載の太陽光照明システムがある。また、集
光した光を鏡で伝送するシステムとして本発明に近い公
知例として特開昭52-12848号公報に記載の公知例があ
る。
[Prior Art] As a publicly known example close to the present invention in that condensed light is made into light with high parallelism, there is a solar lighting system described in "Technology for Utilizing Sunlight and Its System Development" p43. Also, as a publicly known example close to the present invention as a system for transmitting condensed light by a mirror, there is a publicly known example described in Japanese Patent Laid-Open No. 12848/1982.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

上記公知例の前者は4枚の反射鏡を用いるものである
が、一般に鏡を1枚使うと10%以上の光が鏡の吸収、乱
反射により損失となることが知られており、4枚の鏡を
用いると採光部だけで少なくとも入射光の65%に光強度
が減衰する。さらに、この公知例の場合、最も簡単な制
御方法は可動平面鏡を中心に太陽追尾を行なう場合であ
るがその場合でも回転放物面反射鏡と平面鏡とをそれぞ
れ連動させ、しかも異なる角速度で回転させる必要が有
り、制御機構が複雑である。一般に集光した光を伝送す
るシステムでは、建屋内で数10m伝送するため、光のわ
ずかな角度誤差が大きな変位誤差となつて現れる。従つ
て本公知例の場合、角度の制御に極めて高精度な技術が
必要でコスト高になる。一方、上記公知例の後者は、放
物面の焦点に平面鏡からの光を集め、集光した光を伝送
するものであるが、平面鏡からの反射光は各平面鏡内の
一点で反射された光を除いて全て焦点から外れ、放物面
鏡で反射した光は放物面鏡の光軸方向から最大30〜40度
外れる。例えばこの光を光ダクトで伝送する場合を考え
ると、平行度が極めて悪いため光ダクト内で多数回反射
を受けることになり光のほとんどが減衰する。従つて伝
送効率が非常に悪い。仮にこの公知例において伝送部を
光フアイバーで構成した場合を考えると、放物面鏡から
出る光は高々10倍程度に集光された低エネルギー密度の
光のため光フアイバーを多数必要とし極めて高コストと
なる。加えて、このシステムでは平行度が悪いため光フ
アイバーの光軸から外れる割合が高く、光フアイバー入
口での光の反射損失が大きくなり効率的にも極めて悪
い。さらに、上記公知例において、平面鏡の代わりに放
物面鏡を使い、あらかじめ集光した光を用いる場合も容
易に類推できるが、その場合は太陽の位置により放物面
鏡が焦点を結ばなくなり、最終的に平行度の悪い光が出
るため効率が悪い。また、放物面鏡の焦点からの外れも
少なくするため各平面鏡を小さくした場合(これは多数
の平面鏡で構成した大きな鏡の形を変えて太陽を追尾し
放物面鏡の焦点に光を集光している場合に相当)も容易
に考えられるが、各平面鏡はそれぞれ独立に異なる角度
に制御する必要があり、制御が複雑であり多数の駆動部
を必要とするためコスト高でもある。
The former of the above-mentioned publicly known examples uses four reflecting mirrors, but it is generally known that when one mirror is used, 10% or more of light is lost due to absorption and irregular reflection of the mirror. When a mirror is used, the light intensity is attenuated to at least 65% of the incident light only in the daylighting section. Further, in the case of this known example, the simplest control method is to perform sun tracking around a movable plane mirror, but even in that case, the rotary parabolic reflector and the plane mirror are interlocked and rotated at different angular velocities. It is necessary and the control mechanism is complicated. Generally, in a system that transmits condensed light, since it transmits for several tens of meters in a building, a slight angle error of light appears as a large displacement error. Therefore, in the case of this known example, an extremely high-precision technique is required to control the angle, resulting in a high cost. On the other hand, the latter of the above-mentioned known examples collects the light from the plane mirror at the focal point of the parabolic surface and transmits the condensed light, but the reflected light from the plane mirror is the light reflected at one point in each plane mirror. The light reflected off the parabolic mirror is out of focus except 30 to 40 degrees at the maximum from the optical axis direction of the parabolic mirror. Considering, for example, the case where this light is transmitted through an optical duct, the parallelism is extremely poor, so that the light is reflected many times in the optical duct, and most of the light is attenuated. Therefore, the transmission efficiency is very poor. Assuming that the transmission part is composed of optical fibers in this known example, the light emitted from the parabolic mirror is a light with a low energy density that is condensed at most about 10 times, and therefore a large number of optical fibers are required. It will be a cost. In addition, in this system, since the parallelism is poor, the ratio of deviating from the optical axis of the optical fiber is high, and the reflection loss of light at the entrance of the optical fiber is large, resulting in extremely poor efficiency. Furthermore, in the above-mentioned known example, a parabolic mirror is used instead of a plane mirror, and it can be easily analogized when using light that has been condensed in advance, but in that case, the parabolic mirror will not be in focus depending on the position of the sun, Finally, light with poor parallelism is emitted, resulting in poor efficiency. In addition, when each plane mirror is made small in order to reduce the deviation from the focus of the parabolic mirror (This changes the shape of a large mirror composed of many plane mirrors to track the sun and direct light to the focus of the parabolic mirror. It is also possible to easily condense light), but it is necessary to control each plane mirror independently at different angles, the control is complicated, and a large number of drive units are required, which is also expensive.

本発明の目的は、高効率で太陽光を集光して採光する
ことができる太陽光採光システムを提供することにあ
る。
It is an object of the present invention to provide a sunlight collecting system capable of collecting sunlight by collecting sunlight with high efficiency.

また、上記に加えて、低コストの太陽光採光システム
を提供することにある。
In addition to the above, it is to provide a low-cost solar lighting system.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するための手段は、太陽光を高エネル
ギー密度の平行光線にする採光部と集光された平行光線
を伝送する伝送部からなる太陽光採光システムにおい
て、採光部を、太陽光集光のための焦点を有する1個の
光学要素からなる集光部と集光した光を平行光線にする
ための焦点を有する一個の凹面鏡からなる反射部とし、
前記集光部と反射部の焦点を一致させた構成とし、採光
部に太陽追尾をするための2つの回転軸を設け、その内
の1つを集光部の高度方向の回転軸として前記一致させ
た焦点を通る線上に設け、前記凹面鏡からの平行光線が
直角に入射される位置に前記伝送部の入射入口を設け、
凹面鏡を高度方向の回転に対して固定したことを特徴と
する太陽光採光システム、である。
Means for achieving the above-mentioned object is a sunlight collecting system comprising a daylighting section for converting sunlight into parallel rays of high energy density and a transmitting section for transmitting condensed parallel rays. A converging part composed of one optical element having a focal point for light and a reflecting part composed of one concave mirror having a focal point for converting the condensed light into parallel rays,
The focus of the condensing part and the reflecting part are made to coincide with each other, and two rotating shafts for tracking the sun are provided in the daylighting part, and one of them is used as the rotating shaft in the altitude direction of the condensing part. Provided on a line passing through the focal point, provided the entrance of the transmission unit at a position where parallel rays from the concave mirror are incident at a right angle,
A solar lighting system, characterized in that a concave mirror is fixed against rotation in the altitude direction.

〔作用〕[Action]

太陽光採光システムの場合、高効率化、低コスト化が
実用化上の重要な技術課題である。上記公知例の効率に
ついて考えると、採光部の鏡での反射回数が多いため光
の減衰が激しい、あるいは集光した光の平行度が悪いた
め光伝送部での反射回数が多い、などの理由でシステム
効率は高々30%程度である。従つて、採光部での反射回
数を少なくし、平行度の良い集光した光を得ることで、
高効率光伝送が可能になり、従来技術の効率面の問題点
を解決できる。さらに、コストについて考えてみると、
一般に集光した光の伝送はコスト的には光フアイバーよ
りも光ダクトあるいは鏡の方がはるかに有利である。し
かし光ダクトや鏡の場合、わずかな角度誤差が反射回数
の増加あるいは伝送空間からの漏洩につながるため、従
来技術では高精度で複雑な制御機構を必要としコスト低
減に結びつかなかつた。しかし採光部における駆動部を
少なくし、光の進行方向を可能な限り幾何学的形状や配
置で決まる構成とし、原理的に駆動部が生みだす誤差を
少なくすれば、常に一定方向に集光した光を容易に送り
込むことが可能となる。従つて、駆動制御が簡単にな
り、効率低下を引き起こすことなく光ダクトなどによる
伝送が可能となるためコスト面の問題点を解決できる。
In the case of a solar lighting system, high efficiency and low cost are important technical issues for practical use. Considering the efficiency of the above-mentioned known example, the reason is that the number of reflections by the mirror of the daylighting section is large, so that the light is heavily attenuated, or the parallelism of the condensed light is poor, and the number of reflections by the light transmitting section is large. The system efficiency is about 30% at most. Therefore, by reducing the number of reflections at the daylighting section and obtaining condensed light with good parallelism,
High-efficiency optical transmission becomes possible, and the problem of efficiency of the conventional technology can be solved. Furthermore, considering the cost,
Generally, the cost of transmitting condensed light is far more advantageous in the case of the optical duct or the mirror than the optical fiber. However, in the case of an optical duct or a mirror, a slight angular error leads to an increase in the number of reflections or leakage from the transmission space, so that the prior art requires a highly accurate and complicated control mechanism, which has not led to cost reduction. However, if the number of drive units in the light collection unit is reduced and the traveling direction of light is determined by the geometric shape and arrangement as much as possible, and in principle the error produced by the drive unit is reduced, light that is always condensed in a fixed direction Can be easily sent. Therefore, the drive control becomes simple and the transmission by the optical duct or the like can be performed without causing the efficiency reduction, so that the cost problem can be solved.

〔実施例〕〔Example〕

本発明の採光部の基本構成を第1図を用いて説明す
る。採光部は2枚の回転放物面鏡で構成し、反射鏡1は
太陽光を集光をし、反射鏡2は反射鏡1から来る光を平
行にし、常に一定方向に送る。反射鏡1により太陽光を
1点に集光するためには反射鏡1の光軸を常に太陽に向
けておく必要があり、一般にこの駆動操作を太陽追尾と
呼んでいる。第2図を用いて本発明における太陽追尾法
について説明する。太陽が第2図の一点鎖線上を進行す
る場合を考えると、反射鏡1が太陽追尾をするためには
方位角方向ならびに高度方向の2つの回転操作で太陽の
方向に反射鏡1の光軸を一致できることがわかる。そこ
で、採光部は2つの回転軸を有する構造とする。反射鏡
1は第1図に示す様に回転軸5を中心に駆動モータ4に
より高度方向の回転を行ない、回転軸5は反射鏡1の焦
点を含む線上に設置する。一方、方位角方向は反射鏡1
の焦点を含む鉛直線上に回転中心を有する支柱3により
回転可能な構成とする。次に、反射鏡2は支柱6により
支持し支柱6は駆動モータ4とは連結せず、非回転軸と
する。従つて、反射鏡2は支柱3の回転に伴う方位角方
向の回転のみを行なう構成とする。支柱3には集光した
光を取り入れる窓7をつけ、架台8内部の駆動部9も光
の通路を確保するため中空とし、採光部はゴミ、ホコリ
の影響をできるだけ除くためドーム16内に収めている。
次に第3図を用いて本発明の幾何学的構成について説明
する。反射鏡1と反射鏡2はそれぞれの焦点を一致さ
せ、反射鏡1の高度方向回転軸および反射鏡1及び2の
方位角方向の回転軸は、ともに焦点を通る線上に設けて
おく。この構成の場合、反射鏡1を太陽追尾のために方
位角方向あるいは高度方向に回転させたとしても、回転
軸が焦点を通つているため焦点位置は変わらない。さら
に本発明の反射鏡2の光軸は鉛直方向に固定しておく
が、第4図に示すように、放物面鏡の場合、焦点を通つ
た光を必ず光軸方向に反射されるため、反射鏡2で反射
した光は太陽追尾をする反射鏡1の位置に無関係に鉛直
下方へ進行する。その際、反射鏡2として焦点の短いも
のを用いれば高集光が行なえるとともに、反射鏡2で反
射した光を焦点の鉛直線上もしくはその近傍に反射で
き、常に窓7へ集光した平行光を送り込める。また、本
発明を太陽高度が高い地域で使用する場合も考えられ、
その場合は第1図に示すように反射鏡2で反射した光の
通路を確保するため反射鏡1に開放部21を設けておく。
次に第5図に本発明の光伝送部の基本構成図を示す。本
発明の場合平行度が高いため光ダクトあるいは反射鏡に
よる光伝送が可能である。集光した光は光ダクト10内を
空間伝送させ、各部屋に導く際に鏡11を用いてその一部
を取り出し、各部屋に伝送する。鏡11としては入射光の
数10%を反射するハーフミラーあるいは鏡面の一部のみ
を伝送部に出し、伝送される光の一部を部屋に導く方式
とする。そして部屋に導かれた光は散乱体12により部屋
の内部に均一に散乱させ取り入れる。
The basic configuration of the lighting unit of the present invention will be described with reference to FIG. The lighting unit is composed of two rotating parabolic mirrors, the reflecting mirror 1 collects sunlight, and the reflecting mirror 2 collimates the light coming from the reflecting mirror 1 and always sends it in a fixed direction. In order for the reflecting mirror 1 to collect sunlight on one point, the optical axis of the reflecting mirror 1 must always be directed toward the sun, and this driving operation is generally called sun tracking. The sun tracking method according to the present invention will be described with reference to FIG. Considering the case where the sun travels along the alternate long and short dash line in FIG. 2, in order for the reflecting mirror 1 to track the sun, the optical axis of the reflecting mirror 1 is set in the direction of the sun by two rotational operations in the azimuth direction and the altitude direction. You can see that they can match. Therefore, the lighting unit has a structure having two rotation axes. As shown in FIG. 1, the reflecting mirror 1 is rotated about the rotating shaft 5 by the drive motor 4 in the altitude direction, and the rotating shaft 5 is installed on a line including the focal point of the reflecting mirror 1. On the other hand, in the azimuth direction, the reflector 1
The support 3 having a center of rotation on a vertical line including the focal point of is rotatable. Next, the reflecting mirror 2 is supported by the column 6, and the column 6 is not connected to the drive motor 4 and is a non-rotating shaft. Therefore, the reflecting mirror 2 is configured to rotate only in the azimuth direction along with the rotation of the support column 3. The pillar 3 is provided with a window 7 for taking in the collected light, and the driving unit 9 inside the pedestal 8 is hollow to secure the passage of light, and the lighting unit is housed in the dome 16 in order to remove the influence of dust and dust as much as possible. ing.
Next, the geometrical configuration of the present invention will be described with reference to FIG. The reflecting mirror 1 and the reflecting mirror 2 have their respective focal points aligned with each other, and the rotation axis in the altitude direction of the reflecting mirror 1 and the rotation axis in the azimuth direction of the reflecting mirrors 1 and 2 are both provided on a line passing through the focal points. In the case of this configuration, even if the reflecting mirror 1 is rotated in the azimuth direction or the altitude direction for sun tracking, the focus position does not change because the rotation axis passes through the focus. Further, the optical axis of the reflecting mirror 2 of the present invention is fixed in the vertical direction, but as shown in FIG. 4, in the case of a parabolic mirror, the light passing through the focus is always reflected in the optical axis direction. The light reflected by the reflecting mirror 2 travels vertically downward regardless of the position of the reflecting mirror 1 that tracks the sun. At that time, if a reflector having a short focal point is used as the reflecting mirror 2, high focusing can be performed, and the light reflected by the reflecting mirror 2 can be reflected on the vertical line of the focal point or in the vicinity thereof, and the collimated light focused on the window 7 is always sent. I can put it in. Further, the present invention may be used in a region where the solar altitude is high,
In that case, as shown in FIG. 1, an opening 21 is provided in the reflecting mirror 1 in order to secure a passage for the light reflected by the reflecting mirror 2.
Next, FIG. 5 shows a basic configuration diagram of the optical transmission unit of the present invention. In the case of the present invention, since the parallelism is high, it is possible to perform optical transmission by an optical duct or a reflecting mirror. The condensed light is spatially transmitted in the light duct 10, and when guided to each room, a part of the light is taken out using the mirror 11 and transmitted to each room. As the mirror 11, a half mirror that reflects several tens of percent of incident light or only a part of the mirror surface is transmitted to the transmission unit and a part of the transmitted light is guided to the room. Then, the light guided to the room is uniformly scattered by the scatterer 12 and taken into the room.

第6図に本発明の具体的な一実施例を示す。太陽追尾
をする反射鏡1は直径1mとし、中心を通る断面形状はY
=aX2型の回転放物面とする。そして、焦点距離を0.75m
とする。(回転放物面の断面形状はY=0.333X2とな
る。)一方、反射鏡2も回転放物面鏡とし、焦点距離は
0.05m、断面形状はY=5X2とする。そして反射鏡1と
反射鏡2の配置は第7図に示す配置とする。反射鏡1は
第6図に示すように、方位角方向の回転を行なう支柱3
で支持し、支柱13を反射鏡1の周辺部で固定する。さら
に支柱13は駆動モータ4により高度方向の回転を行な
う。駆動モータ4および駆動モータ14は、年月日および
時刻から太陽位置を求める制御演算回路を有する制御電
源15によつて制御し、駆動モータ4は入力AC100V,5W程
度のものを用い、ギア比1000〜3000の減速ギアで減速し
ておく。一方、駆動モータ14も同様に入力AC100V,10W程
度のものを用い、ギア比1000〜3000の減速ギアで減速し
ておく。反射鏡1はアルミニウムに反射率の良い鏡をコ
ーテイングしたものを用い、厚みを1mm程度としてお
く。その際の反射鏡の重量は3.5kg程度であり、駆動モ
ータ4およびアルミ製の支柱13を加えても10kg未満であ
る。従つて、支柱3としては鉄製の断面が数cm2のもの
を用いる。そして、採光部は直径1.5m、厚さ5m程度のア
クリル製のドーム16内に収める。また、反射鏡2で反射
された光はφ20cmの窓7を通して光伝送部へ送る。次に
第8図に本発明の集光器から出てくる光の平行度の計算
結果を示す。この結果からおおよそ平行度としては±2
度程度が得られる。また、集光比100程度の光が得られ
ることも計算により確認できる。第9図はこの結果に基
づいた実施例である。光伝送部は直径20cm程度の内面に
反射鏡17をコーテイングした光ダクトとし、各部屋には
この光ダクト10で伝送する。そして、直進する光を各部
屋に導くためには第10図に示すような部分的に反射膜17
をつけた鏡、あるいは光ダクト内の一部に反射鏡を突き
出し、入射光の一部を取り出す方法もしくは入射光の一
部のみを反射するハーフミラーを用いる。本発明のシス
テム効率は、各部屋までの距離をおよそ20mとすると先
の平行度の計算結果から集光された光の多く(〜70%)
はダクト10内部では1回反射以内で伝送され、鏡によつ
て各部屋に運ばれるため、光伝送部の光の損失は25%程
度である。集光した光の内、各部屋に運ばれる光の割合
(システム効率)は約55%が達成できる。本発明によれ
ば、55%近い効率で太陽光を集光し伝送でき、これは従
来技術(〜30%)を上回る。さらに、集光部の機構が簡
単であり、光伝送部を光ダクトと鏡により構成している
ため、極めて安価に(集光し伝送した単位光エネルギー
当たりのコストで評価すると従来システムの1/3〜1/2)
製造でき、制御機構が原理的に簡単なため、メインテナ
ンス、信頼性の面からも有利である。
FIG. 6 shows a specific embodiment of the present invention. The reflector 1 for tracking the sun has a diameter of 1 m, and the cross-sectional shape passing through the center is Y
= Use a paraboloid of aX 2 type. And the focal length is 0.75m
And (Cross-sectional shape of the paraboloid of revolution becomes Y = 0.333X 2.) On the other hand, the reflecting mirror 2 is also a parabolic mirror, the focal length is
The cross-sectional shape is 0.05 m and Y = 5 × 2 . The reflector 1 and the reflector 2 are arranged as shown in FIG. As shown in FIG. 6, the reflecting mirror 1 is a column 3 that rotates in the azimuth direction.
The supporting column 13 is fixed at the periphery of the reflecting mirror 1. Further, the column 13 is rotated in the altitude direction by the drive motor 4. The drive motor 4 and the drive motor 14 are controlled by a control power supply 15 having a control arithmetic circuit that obtains the sun position from the date and time. The drive motor 4 uses an input AC 100V, 5W, and a gear ratio of 1000. Decelerate with a reduction gear of ~ 3000. On the other hand, the drive motor 14 similarly uses an input AC 100V, 10W, and is decelerated by a reduction gear having a gear ratio of 1000 to 3000. The reflecting mirror 1 is made of aluminum coated with a mirror having a high reflectance, and has a thickness of about 1 mm. The weight of the reflecting mirror at that time is about 3.5 kg, and is less than 10 kg even if the drive motor 4 and the aluminum column 13 are added. Therefore, the pillar 3 is made of iron and has a cross section of several cm 2 . Then, the daylighting section is housed in an acrylic dome 16 having a diameter of 1.5 m and a thickness of about 5 m. Further, the light reflected by the reflecting mirror 2 is sent to the optical transmission section through the window 7 of φ20 cm. Next, FIG. 8 shows the calculation result of the parallelism of the light emitted from the condenser of the present invention. From this result, the parallelism is approximately ± 2.
Degree is obtained. It can also be confirmed by calculation that light with a light collection ratio of about 100 can be obtained. FIG. 9 shows an embodiment based on this result. The optical transmission unit is an optical duct in which a reflecting mirror 17 is coated on the inner surface having a diameter of about 20 cm, and the optical duct 10 transmits the light to each room. Then, in order to guide the light traveling straight to each room, a partially reflecting film 17 as shown in FIG. 10 is used.
A mirror attached with a mirror or a method of extracting a part of the incident light by projecting a reflecting mirror into a part of the light duct or a half mirror that reflects only a part of the incident light is used. As for the system efficiency of the present invention, when the distance to each room is set to about 20 m, most of the light collected from the above parallelism calculation result (up to 70%).
Is transmitted within one reflection within the duct 10 and is carried to each room by a mirror, so the light loss in the optical transmission section is about 25%. Of the condensed light, the ratio of the light delivered to each room (system efficiency) can reach about 55%. According to the present invention, sunlight can be collected and transmitted with an efficiency close to 55%, which is higher than the prior art (~ 30%). Furthermore, since the mechanism of the light condensing unit is simple and the optical transmission unit is composed of an optical duct and a mirror, it is extremely inexpensive (1 / 3 to 1/2)
Since it can be manufactured and the control mechanism is simple in principle, it is also advantageous in terms of maintenance and reliability.

次に第11図に太陽光を追尾する光学要素としてレンズ
を用いた場合を示す。集光用のレンズ18としては直径1m
のフレネルレンズを用いる。レンズの焦点距離は0.75m
とする。反射鏡18としては焦点距離5cmの回転放物面を
用い、高度方向の回転軸を焦点を通る軸上に設ける。反
射鏡2は非回転軸19により支持し、反射鏡2の光軸は鉛
直下方に向けておき、集光器の胴体部20は光路を確保し
ておくため、下端部に開放部21を設けるかもしくは胴体
部をアクリル等の透明体で構成する。また、架台22,制
御電源23,駆動モータ24ならびに光伝送系は、第6図お
よび第9図と全く同様にしておく。近年フレネルレンズ
もかなり集光効率の良い物が現れており、第11図に示す
集光部は75%近い効率が達成でき、コスト的にも第7図
の実施例とほぼ同程度であると考えられる。本実施例の
場合、反射鏡の場合と異なり太陽追尾をする光学要素
が、集光した光の通路を遮ることがないため、入射光を
有効に利用できる効果があり、本システムも55%近い効
率が達成可能である。
Next, FIG. 11 shows the case where a lens is used as an optical element for tracking sunlight. The diameter of the lens 18 for condensing is 1 m
The Fresnel lens of is used. Lens focal length is 0.75m
And A rotary parabolic surface with a focal length of 5 cm is used as the reflecting mirror 18, and the rotation axis in the altitude direction is provided on the axis passing through the focus. The reflecting mirror 2 is supported by a non-rotating shaft 19, the optical axis of the reflecting mirror 2 is directed vertically downward, and the body portion 20 of the condenser has an open portion 21 at its lower end to secure an optical path. Alternatively, the body is made of a transparent material such as acrylic. The pedestal 22, the control power supply 23, the drive motor 24, and the optical transmission system are the same as in FIGS. 6 and 9. In recent years, some Fresnel lenses with considerably high light-collecting efficiency have appeared, and the light-collecting unit shown in FIG. 11 can achieve an efficiency close to 75%, and the cost is almost the same as that of the embodiment shown in FIG. Conceivable. In the case of the present embodiment, unlike the case of the reflecting mirror, the optical element for tracking the sun does not block the passage of the condensed light, so that there is an effect that the incident light can be effectively used, and this system is close to 55%. Efficiency can be achieved.

次に第12図に本発明の集光器の変形例を示す集光した
光を平行にし、所定の方向に反射する反射鏡26は太陽追
尾をする反射鏡25と焦点位置を一致させかつ太陽追尾を
する反射鏡25は焦点を中心に太陽追尾をする。そして、
反射鏡26は支持27で固定し、反射鏡26の光軸は斜め下方
向に向け、窓28から建屋内に光を入れる構成とする。本
変形例によれば、反射鏡25で集光した光は常に焦点を通
過し、太陽位置によらず反射鏡26の光軸方向に集光した
平行度の良い光をできるため、架台の回転軸以外の点に
も集光した光を伝送できる効果がある。例えば本変形例
を利用したシステムとしては第13図に示す様に多数の集
光器からの光を一点に集光し、円錐もしくは多角錐状の
鏡29による1回反射で集光した光を1つの光ダクト30に
まとめて伝送することが可能であり、システムコスト的
にも効率面からも有利なシステムとなる。
Next, FIG. 12 shows a modification of the concentrator of the present invention. The converging light is collimated, and the reflecting mirror 26 for reflecting in a predetermined direction has the same focus position as the reflecting mirror 25 for tracking the sun and the sun. The reflecting mirror 25 for tracking tracks the sun around the focal point. And
The reflecting mirror 26 is fixed by a support 27, the optical axis of the reflecting mirror 26 is directed obliquely downward, and light is introduced into the building through a window 28. According to this modification, the light condensed by the reflecting mirror 25 always passes through the focal point, and the light having good parallelism condensed in the optical axis direction of the reflecting mirror 26 can be generated regardless of the position of the sun. There is an effect that condensed light can be transmitted to points other than the axis. For example, as a system using this modified example, as shown in FIG. 13, light from a large number of light collectors is condensed at one point, and light collected by a single reflection by a conical or polygonal pyramid mirror 29 is collected. It is possible to collectively transmit to one optical duct 30, which is an advantageous system in terms of system cost and efficiency.

先に第7図に示した実施例は集光位置を中心に方位角
方向の太陽追尾を行なつた例であるが、第14図では方位
角方向の回転中心を反射鏡上の一点とした例を示す。反
射鏡31と反射鏡32は同じ回転体33の上で方位角方向の回
転し、この回転中心は反射鏡32を通る線上とする。そし
て、駆動機構ならびに制御機構、伝送機構は第6図と同
様にする。この場合、効率、コストの面では第6図に示
す実施例と差はないが、集光された光の窓7への入射位
置は方位角方向の追尾ではほとんど動かず、常に中心近
傍を通過させることができ、光ダクト34を小さくできる
効果がある。
The embodiment shown in FIG. 7 is an example in which the sun is tracked in the azimuth direction around the condensing position. In FIG. 14, the rotation center in the azimuth direction is a point on the reflecting mirror. Here is an example: The reflecting mirror 31 and the reflecting mirror 32 rotate in the azimuth direction on the same rotating body 33, and the center of rotation is on a line passing through the reflecting mirror 32. The drive mechanism, control mechanism, and transmission mechanism are the same as in FIG. In this case, although there is no difference in efficiency and cost from the embodiment shown in FIG. 6, the incident position of the condensed light on the window 7 hardly moves in tracking in the azimuth direction, and always passes near the center. Therefore, there is an effect that the light duct 34 can be made smaller.

一般に、放物面鏡に比べて球面鏡の方が製造が容易で
コスト的に安価である。ところが、球面鏡は第15図に示
すように中心近傍を通つて入射した光は半径の1/2の点
に焦点を結ぶが、中心から離れた点を通つた光は焦点位
置からの外れが大きくなる特性を有している。従つて、
反射した光が焦点位置からほとんど外れない部分のみを
使用して球面鏡を用いた集光部を構成できる。第16図に
実施例を示す。第16図の場合、球面鏡35の直径を1mと
し、その断面がY2+X2=1/2なる曲線で表せる球面鏡を
用いる。そして、反射鏡36についても同様に曲面鏡を用
い、反射鏡36は断面がY2+X2=1/200なる曲線で表せる
球面鏡を用いる。この場合、球面鏡による反射の際の光
角度の広がりをほぼ放物面鏡と同程度にでき、効率的に
は、ほぼ同等のものが構成できる。そして、球面鏡のコ
ストは放物面鏡のコストに比べ数割程度安いため、より
安価にシステムが構成できる。上記実施例は集光した光
を平行光にする反射鏡として全て凹面鏡を用いた例を示
したが、凹面鏡でも同様の構成にできる。第17図に実施
例を示す。太陽追尾をする反射鏡37の焦点は凸型反射鏡
の焦点と一致させてあり、焦点を中心に太陽追尾をす
る。この場合も第6図に示す実施例と同様の効果が生ま
れる。
Generally, a spherical mirror is easier to manufacture and less expensive than a parabolic mirror. However, as shown in Fig. 15, the spherical mirror focuses the light incident through the vicinity of the center on the point of 1/2 radius, but the light passing through the point away from the center has a large deviation from the focal position. It has the following characteristics. Therefore,
A light condensing unit using a spherical mirror can be configured by using only a portion where reflected light hardly deviates from the focus position. An embodiment is shown in FIG. In the case of FIG. 16, the diameter of the spherical mirror 35 is 1 m, and a spherical mirror whose cross section can be represented by a curve of Y 2 + X 2 = 1/2 is used. A curved mirror is also used for the reflecting mirror 36, and a spherical mirror whose cross section can be represented by a curve of Y 2 + X 2 = 1/200 is used. In this case, the spread of the light angle at the time of reflection by the spherical mirror can be made substantially the same as that of the parabolic mirror, and an almost equivalent mirror can be efficiently constructed. Further, since the cost of the spherical mirror is about several tenths lower than the cost of the parabolic mirror, the system can be constructed at a lower cost. In the above-mentioned embodiment, the concave mirror is used as the reflecting mirror for converting the condensed light into parallel light, but the concave mirror may have the same structure. An embodiment is shown in FIG. The focus of the reflecting mirror 37 that tracks the sun coincides with the focus of the convex reflecting mirror, and the sun is tracked around the focus. Also in this case, the same effect as that of the embodiment shown in FIG. 6 can be obtained.

以上は集光部に的を絞つた実施例ならびに変形例であ
つたが、次に制御、駆動機構に関する実施例および変形
例を述べる。すでに述べた実施例では年月日および時刻
から太陽高度を演算回路で求め、それの信号が駆動機構
に送り太陽を追尾するものであつたが、太陽方向を検出
するセンサを用いても同様のことができる。たとえば第
18図に示す様にピンホール42を中心に4個以上の太陽光
センサ39を設置しその出力差から太陽に対してどの方角
を向いているか検知するセンサを、太陽追尾をする放物
面に付けて置く。そして、駆動モータ40および駆動モー
タ41はセンサ39の出力差に従つて反射鏡43を駆動する。
従つて、本実施例によれば簡単な機構で太陽追尾が可能
となり、システムのコスト低減につながる。
The above is the embodiment and the modified example focusing on the light converging portion, but next, the embodiment and the modified example concerning the control and drive mechanism will be described. In the above-mentioned embodiment, the sun altitude is calculated from the date and time by the arithmetic circuit, and the signal of the sun altitude is sent to the drive mechanism to follow the sun, but the same sensor can be used to detect the sun direction. be able to. For example
As shown in Fig. 18, four or more sunlight sensors 39 are installed around the pinhole 42, and a sensor that detects which direction the sun is facing from the output difference is placed on the parabolic surface for sun tracking. Put it on. Then, the drive motor 40 and the drive motor 41 drive the reflecting mirror 43 according to the output difference of the sensor 39.
Therefore, according to the present embodiment, sun tracking can be performed with a simple mechanism, which leads to a reduction in system cost.

次に第6図では駆動機構の電源として外部電源を用い
た例を示したが、太陽電池あるいはバツテリーによつて
も同様のことが行なえる。第19図に実施例を示す。集光
部44の近くに太陽電池パネル45を設置し、その出力をバ
ツテリー46を通して駆動モータ47および駆動モータ48に
供給する。これによつて日射量によらず安定した電力供
給ができる。そして、バツテリー46の容量は40Ahr.と
し、太陽電池パネル45は40w程度のものを用いる。駆動
モータ47および駆動モータ48はそれぞれ定格DC24V,0.5
A,定格DC24V,0.2A程度のものを用いる。これにより外部
電源を必要としない集光システムが構成できる。本発明
によれば外部電源が停電などによつて止まつた場合にお
いても集光した光を伝送できる効果がある。
Next, FIG. 6 shows an example in which an external power source is used as the power source of the drive mechanism, but the same can be done with a solar cell or battery. An embodiment is shown in FIG. A solar cell panel 45 is installed near the light collecting unit 44, and its output is supplied to the drive motor 47 and the drive motor 48 through the battery 46. This enables stable power supply regardless of the amount of solar radiation. The battery 46 has a capacity of 40 Ahr., And the solar cell panel 45 having a capacity of about 40 w is used. Drive motor 47 and drive motor 48 are rated at 24V DC and 0.5V, respectively.
A, rated DC24V, about 0.2A is used. This makes it possible to construct a light-collecting system that does not require an external power source. According to the present invention, there is an effect that the condensed light can be transmitted even when the external power source is stopped due to a power failure or the like.

また、第20図は外部電源とバツテリーの組み合わせた
実施例である。商用電源からの電力はコンバータ49を通
してDC24Vに変換し、バツテリー50および駆動モータ47
および駆動モータ48に供給する。そしてバツテリー50の
電圧値から充電量を検知し、外部電源から電力を供給
し、バツテリー50を一定の充電状態にしておく。本発明
によつても、外部電源が止まつたとしても集光した光を
伝送することができる効果がある。
Further, FIG. 20 shows an embodiment in which an external power source and a battery are combined. Power from commercial power is converted to 24V DC through converter 49, battery 50 and drive motor 47
And to the drive motor 48. Then, the amount of charge is detected from the voltage value of the battery 50, power is supplied from an external power source, and the battery 50 is kept in a constant charge state. According to the present invention, there is an effect that the condensed light can be transmitted even if the external power supply is stopped.

次に本発明の光伝送部の実施例、変形例を述べる。第
9図ではハーフミラーあるいは反射体による各部屋への
分配方法の実施例を示したが、変形例を第21図に示す。
採光部52から送り込まれた光は光ダクト53を通して建屋
51内に送り込み、各部屋への分岐の際に光フアイバー54
を用いる。これにより各部屋への分配が容易であるとと
もに、必要となる光フアイバーの長さが極めて少ない
(全て光フアイバーとして伝送する場合の1/3〜1/4)た
めあまりコストをあげることなく容易に光分配が可能に
なる効果がある。
Next, examples and modifications of the optical transmission unit of the present invention will be described. Although FIG. 9 shows an embodiment of a method of distributing to each room by a half mirror or a reflector, a modification is shown in FIG.
The light sent from the daylighting section 52 is passed through the light duct 53 to the building.
Light fiber 54 at the time of branching into each room
To use. As a result, it is easy to distribute to each room, and the length of the required optical fiber is extremely small (1/3 to 1/4 when transmitting all as optical fiber), so it is easy without increasing the cost. There is an effect that light can be distributed.

反射鏡を用いた光集光および光伝送の場合、光のスペ
クトルはほぼ入射光に等しいが、用途によつては紫外線
などの特定波長をカツトしたほうが良い場合、あるいは
植物栽培などでは植物の特定吸収波長の光を増化させた
方が有利な場合もありうる。そこで、第22図に吸収体あ
るいは波長変換体を設けた場合の透過スペクトルの様子
を示す。紫外線吸収体としてはガラスなどの紫外線吸収
特性を有する板を光伝送部の一部に設ける。これによ
り、紫外線はほとんど無くなり、屋内の紫外線による変
色などの問題は生じない。さらに第23図に示すようにエ
オシンなどの波長変換体含むフイルター55を光伝送部の
末端に設置し、その部屋で植物栽培などを行なえば、比
較的吸収率の低い短波長側を吸収率の良い長波長に変換
するため、保成栽培などが可能になる。
In the case of light collection and light transmission using a reflector, the spectrum of light is almost equal to the incident light, but depending on the application it may be better to cut off a specific wavelength such as ultraviolet light, or in plant cultivation etc. In some cases it may be advantageous to increase the light of the absorption wavelength. Therefore, FIG. 22 shows a state of a transmission spectrum when an absorber or a wavelength converter is provided. As the ultraviolet absorber, a plate having an ultraviolet absorbing property such as glass is provided in a part of the light transmission section. As a result, ultraviolet rays are almost eliminated, and problems such as discoloration due to indoor ultraviolet rays do not occur. Further, as shown in FIG. 23, a filter 55 including a wavelength converter such as eosin is installed at the end of the optical transmission part, and if plant cultivation is performed in the room, the short wavelength side with a relatively low absorptivity is compared with the absorptivity. Since it converts to a good long-wavelength, it can be used for nursery cultivation.

また、用途によつては必要に応じて光の調整が必要な
場合などもありうる。そこで、本発明を用いた場合の一
実施例を第24図に示す。光量を調整するための遮光体56
は光ダクト57内に設置し、モータ58により回転可能と
し、制御スイツチ59を各部屋に取り付けて置く。また、
第25図は変形例であり、遮光体60を伝送部の端部につけ
光を調整するものである。いずれも必要に応じて光量を
調節できる効果がある。第26図は液晶シヤツター61を使
つた場合の実施例であり、機械的駆動部がないため、信
頼性が高い。
Further, depending on the application, there may be a case where the light needs to be adjusted as necessary. Therefore, an example of using the present invention is shown in FIG. Light shield for adjusting light intensity 56
Is installed in the optical duct 57, can be rotated by the motor 58, and the control switch 59 is installed in each room. Also,
FIG. 25 shows a modified example, in which a light shield 60 is attached to the end of the transmission section to adjust the light. Both have the effect of adjusting the amount of light as necessary. FIG. 26 shows an embodiment in which the liquid crystal shutter 61 is used. Since there is no mechanical driving unit, the reliability is high.

本発明の実施例で光ダクトから光を分配する方法とし
て、ハーフミラー、部分的に突き出した反射鏡、光フア
イバー、部分的に反射膜をつけた鏡などの例を示した
が、集光した光の分配比を変える際は新たなものと取り
換えるとか、取り付け位置を変えるなどの操作が必要で
ある。そこで、電気的に光の分配比を変えることが可能
な光学素子を用いれば、第27図に示すように光ダクトの
分岐点にこの光学素子62を取り付け、各用途に応じて利
用者が最適な分配を行なうことが可能となる。さらに、
簡単な演算機能を有する回路63と日射量を計測するセン
サ64とを組合せれば、その時刻の日射量に応じて最適な
分配比を計算し、建屋内に光を送ることが可能になるた
め、太陽光利用効率が向上すると考えられる。
As the method of distributing light from the light duct in the embodiment of the present invention, examples of a half mirror, a partially protruding reflecting mirror, an optical fiber, a partially reflecting film-attached mirror, etc. are shown. When changing the light distribution ratio, it is necessary to replace it with a new one or change the mounting position. Therefore, if an optical element that can electrically change the light distribution ratio is used, this optical element 62 is attached to the branch point of the optical duct as shown in FIG. 27, and the user can optimize it according to each application. It becomes possible to perform various distributions. further,
By combining the circuit 63 having a simple calculation function and the sensor 64 for measuring the amount of solar radiation, it becomes possible to calculate the optimal distribution ratio according to the amount of solar radiation at that time and send light to the building. It is thought that the efficiency of solar light utilization will be improved.

〔発明の効果〕〔The invention's effect〕

本発明では、集光部は2枚の鏡でのみ構成されている
ため、集光部では80%程度の高効率が達成でき、公知例
の従来技術のさらに3割増しとなる。加えて、本発明に
おける集光部の駆動は方位角方向および高度方向の2軸
のみである。そして、太陽追尾をしない反射鏡は高度方
向の回転は不要である。従つて製作段階で正確に位置決
めをしておけば、原理的に常に集光した光を同一方向に
伝送できるため、精密な駆動機構を必要とせず、機構が
簡単な低コストシステムとなりうる。また、採光システ
ムが太陽追尾をしても集光された光の入射窓への入射位
置がほとんど動かないから、入射窓を小さくできて伝送
部も小さくでき、低コストシステムを構成できる。ま
た、本発明は原理的には完全な平行光線が得られる構成
となつており、集光した光が平行光線から外れ、ある一
定の進行方向の幅を有する原因となるのは入射太陽光自
体のばらつきに起因する。そのため、平行度の点では従
来の光学系を使つたシステムの最高値をとりうる。実
際、集光器から出る光は、数度程度の幅をもつている
が、この程度の広がりであれば鏡もしくは光ダクトによ
る光伝送が可能であり、一般的な建屋の場合、ほとんど
の光を数回の反射で光を所定の場所に伝送できる。従つ
て、システム効率としては55%近くの効率が達成可能
で、集光型太陽光採光システムにおける従来技術の効率
(約30%)を上回る。そして、一般に光フアイバーを用
いた場合、光伝送部はシステムの3〜6割のコストを占
めるが、鏡もしくは光ダクトによる光伝送が可能なため
光伝送部のコストは光フアイバーを用いた際の1割程度
となり、コスト的に極めて有利である。さらに、本発明
では太陽の完全追尾をしているため、晴天時は集光され
た光の強度が一定値をとり太陽光を利用する上で便利で
あり、集光した光を伝送できるため高い光強度を必要と
する用途からあまり光強度を必要としない用途まで、多
目的に利用できる点で有利である。
In the present invention, since the condensing unit is composed of only two mirrors, the condensing unit can achieve a high efficiency of about 80%, which is 30% more than that of the known prior art. In addition, the drive of the light condensing unit in the present invention is only for the two axes of the azimuth direction and the altitude direction. And the reflector that does not track the sun does not need to rotate in the altitude direction. Therefore, if the positioning is accurately performed in the manufacturing stage, the focused light can always be transmitted in the same direction in principle, so that a precise driving mechanism is not required and the mechanism can be a simple and low-cost system. Further, even if the daylighting system tracks the sun, the incident position of the condensed light on the incident window hardly moves, so that the incident window can be made small and the transmission unit can be made small, so that a low cost system can be configured. In addition, the present invention has a configuration in which perfect parallel rays are obtained in principle, and it is the incident sunlight itself that causes the condensed light to deviate from the parallel rays and has a certain width in the traveling direction. Due to the variation of. Therefore, in terms of parallelism, it can take the maximum value of the system using the conventional optical system. In fact, the light emitted from the concentrator has a width of about several degrees, but if it is this wide, it can be transmitted by a mirror or an optical duct, and in the case of a general building, most of the light will be transmitted. The light can be transmitted to a predetermined place with several reflections. Therefore, a system efficiency of nearly 55% can be achieved, which exceeds the efficiency of the conventional technology (about 30%) in the concentrating solar lighting system. In general, when an optical fiber is used, the optical transmission part occupies 30 to 60% of the cost of the system, but since the optical transmission by a mirror or an optical duct is possible, the cost of the optical transmission part is the same as when the optical fiber is used. It is about 10%, which is extremely advantageous in terms of cost. Further, in the present invention, since the sun is completely tracked, the intensity of the condensed light has a constant value in fine weather, which is convenient for utilizing sunlight and is high because the condensed light can be transmitted. It is advantageous in that it can be used for multiple purposes, from applications requiring light intensity to applications requiring less light intensity.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の基本構成図、第2図は太陽追尾の説明
図、第3図は本発明の動作原理図、第4図は本発明の動
作原理図、第5図は本発明の基本構成図、第6図は本発
明の実施例を示す図、第7図は本発明の実施例を示す
図、第8図は平行度の計算結果を示す図、第9図は本発
明の実施例を示す図、第10図は本発明の構成要素の説明
図、第11図は本発明の実施例を示す図、第12図は本発明
の実施例を示す図、第13図は本発明の実施例を示す図、
第14図は本発明の実施例を示す図、第15図は球面鏡の説
明図、第16図は本発明の実施例を示す図、第17図は本発
明の実施例を示す図、第18図は本発明の実施例を示す
図、第19図は本発明の実施例を示す図、第20図は本発明
の実施例を示す図、第21図は本発明の実施例を示す図、
第22図は光スペクトルの説明図、第23図は本発明の実施
例を示す図、第24図は本発明の実施例を示す図、第25図
は本発明の実施例を示す図、第26図は本発明の実施例を
示す図、第27図は本発明の実施例の説明図である。 1……反射鏡、2……反射鏡、3……支柱、4……駆動
モータ、5……回転軸、6……支柱、7……窓、8……
架台、9……駆動部、10……光ダクト、11……鏡、12…
…光散乱体、13……支柱、14……駆動モータ、15……制
御電源、16……ドーム、17……反射鏡、18……レンズ、
19……非回転軸、20……胴体部、21……開放部、22……
架台、23……制御電源、24……駆動モータ、25……反射
鏡、26……反射鏡、27……支柱、28……窓、29……光学
部品、30……光ダクト、31……反射鏡、32……反射鏡、
33……窓、34……光ダクト、35……球面鏡、36……反射
鏡、37……反射鏡、38……反射鏡、39……センサ、40…
…駆動モータ、41……駆動モータ、42……ピンホール、
43……反射鏡、44……集光部、45……太陽電池パネル、
46……バツテリー、47……駆動モータ、48……駆動モー
タ、49……コンバータ、50……バツテリー、51……建
屋、52……集光部、53……光ダクト、54……光フアイバ
ー、55……フイルター、56……遮光体、57……光ダク
ト、58……駆動モータ、59……制御スイツチ、60……遮
光体、61……液晶シヤツタ、62……光学部品、63……回
路、64……センサ。
FIG. 1 is a basic configuration diagram of the present invention, FIG. 2 is an explanatory diagram of sun tracking, FIG. 3 is an operation principle diagram of the present invention, FIG. 4 is an operation principle diagram of the present invention, and FIG. Basic configuration diagram, FIG. 6 is a diagram showing an embodiment of the present invention, FIG. 7 is a diagram showing an embodiment of the present invention, FIG. 8 is a diagram showing a calculation result of parallelism, and FIG. 9 is a diagram showing the present invention. FIG. 10 is a diagram showing an embodiment, FIG. 10 is an explanatory diagram of components of the present invention, FIG. 11 is a diagram showing an embodiment of the present invention, FIG. 12 is a diagram showing an embodiment of the present invention, and FIG. 13 is a book. Figure showing an embodiment of the invention,
FIG. 14 is a view showing an embodiment of the present invention, FIG. 15 is an explanatory view of a spherical mirror, FIG. 16 is a view showing an embodiment of the present invention, FIG. 17 is a view showing an embodiment of the present invention, and FIG. FIG. 19 is a diagram showing an embodiment of the present invention, FIG. 19 is a diagram showing an embodiment of the present invention, FIG. 20 is a diagram showing an embodiment of the present invention, FIG. 21 is a diagram showing an embodiment of the present invention,
FIG. 22 is an explanatory diagram of an optical spectrum, FIG. 23 is a diagram showing an embodiment of the present invention, FIG. 24 is a diagram showing an embodiment of the present invention, and FIG. 25 is a diagram showing an embodiment of the present invention. FIG. 26 is a diagram showing an embodiment of the present invention, and FIG. 27 is an explanatory diagram of an embodiment of the present invention. 1 ... Reflecting mirror, 2 ... Reflecting mirror, 3 ... Post, 4 ... Drive motor, 5 ... Rotation axis, 6 ... Post, 7 ... Window, 8 ...
Frame, 9 ... Driving unit, 10 ... Optical duct, 11 ... Mirror, 12 ...
… Light scatterer, 13 …… pillar, 14 …… Drive motor, 15 …… Control power supply, 16 …… Dome, 17 …… Reflector, 18 …… Lens,
19 …… Non-rotating shaft, 20 …… Body part, 21 …… Open part, 22 ……
Frame, 23 ... Control power supply, 24 ... Drive motor, 25 ... Reflecting mirror, 26 ... Reflecting mirror, 27 ... Post, 28 ... Window, 29 ... Optical parts, 30 ... Optical duct, 31 ... … Reflector, 32 …… Reflector,
33 ... Window, 34 ... Optical duct, 35 ... Spherical mirror, 36 ... Reflecting mirror, 37 ... Reflecting mirror, 38 ... Reflecting mirror, 39 ... Sensor, 40 ...
… Drive motor, 41 …… Drive motor, 42 …… Pinhole,
43 …… Reflector, 44 …… Concentrator, 45 …… Solar cell panel,
46 …… Battery, 47 …… Drive motor, 48 …… Drive motor, 49 …… Converter, 50 …… Battery, 51 …… Building, 52 …… Concentrator, 53 …… Optical duct, 54 …… Optical fiber , 55 ...... Filter, 56 ...... Light shield, 57 ...... Optical duct, 58 ...... Drive motor, 59 ...... Control switch, 60 ...... Light shield, 61 ...... Liquid crystal shutter, 62 ...... Optical component, 63 ... … Circuit, 64… Sensor.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 池田 孝志 茨城県日立市森山町1168番地 株式会社日 立製作所エネルギー研究所内 (72)発明者 井上 久道 茨城県日立市森山町1168番地 株式会社日 立製作所エネルギー研究所内 (72)発明者 青山 吾朗 茨城県日立市森山町1168番地 株式会社日 立製作所エネルギー研究所内 (72)発明者 綿引 直久 茨城県日立市森山町1168番地 株式会社日 立製作所エネルギー研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takashi Ikeda 1168 Moriyama-cho, Hitachi City, Ibaraki Prefecture, Hitachi Energy Research Institute Co., Ltd. Energy Research Institute (72) Inventor Goro Aoyama 1168 Moriyama-cho, Hitachi City, Ibaraki Prefecture Hiritsu Manufacturing Co., Ltd.Energy Research Institute (72) Inventor Naohisa Watabiki 1168 Moriyama-cho, Hitachi City, Ibaraki Energy Research Institute, Hitachi

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】太陽光を高エネルギー密度の平行光線にす
る採光部と集光された平行光線を伝送する伝送部からな
る太陽光採光システムにおいて、採光部を、太陽光集光
のための焦点を有する1個の光学要素からなる集光部と
集光した光を平行光線にするための焦点を有する一個の
凹面鏡からなる反射部とし、前記集光部と反射部の焦点
を一致させた構成とし、採光部に太陽追尾をするための
2つの回転軸を設け、その内の1つを集光部の高度方向
の回転軸として前記一致させた焦点を通る線上に設け、
前記凹面鏡からの平行光線が直角に入射される位置に前
記伝送部の入射入口を設け、凹面鏡を高度方向の回転に
対して固定したことを特徴とする太陽光採光システム。
1. A solar lighting system comprising a lighting unit for converting sunlight into parallel rays having a high energy density and a transmission unit for transmitting condensed parallel rays, wherein the lighting unit is a focal point for concentrating sunlight. A condensing part formed of one optical element having a reflection part and a reflecting part composed of one concave mirror having a focal point for converting the condensed light into parallel rays, and the condensing part and the reflecting part have the same focal point. And, two rotation axes for tracking the sun are provided in the daylighting section, and one of them is provided on the line passing through the matched focal points as the rotation axis in the altitude direction of the light collecting section.
The sunlight collecting system, wherein an entrance of the transmission section is provided at a position where parallel rays from the concave mirror are incident at a right angle, and the concave mirror is fixed with respect to rotation in an altitude direction.
【請求項2】特許請求範囲第1項において、2つの回転
軸の残り1つの回転軸と伝送部の入射入口の中心を位置
させ、前記中心線上に凹面鏡が位置する構成としたこと
を特徴とする太陽光採光システム。
2. The structure according to claim 1, characterized in that the remaining one of the two rotary shafts and the center of the entrance of the transmission part are located, and the concave mirror is located on the center line. A solar lighting system.
【請求項3】特許請求範囲第1項において、2つの回転
軸の残り1つを、集光部と反射部からなる一体物の回転
軸とし、この軸を反射部の光軸と平行な線上に設けたこ
とを特徴とする太陽光採光システム。
3. The claim 1, wherein the remaining one of the two rotation axes is the rotation axis of an integrated body composed of a condenser and a reflector, and this axis is on a line parallel to the optical axis of the reflector. A solar lighting system characterized by being installed in.
【請求項4】特許請求範囲第1項において、2つの回転
軸の残り1つを、集光部の回転軸とし、この軸を焦点を
通る線上に設けたことを特徴とする太陽光採光システ
ム。
4. A solar lighting system according to claim 1, wherein the remaining one of the two rotation axes is the rotation axis of the light condensing unit, and this axis is provided on a line passing through the focal point. .
【請求項5】特許請求範囲第1項において、採光部を太
陽光を集光する1枚の曲面鏡と集光した光を平行光にす
る1枚の凹面鏡で構成したことを特徴とする太陽光採光
システム。
5. The sun according to claim 1, characterized in that the daylighting section is composed of one curved mirror for concentrating sunlight and one concave mirror for converging the condensed light into parallel light. Light lighting system.
【請求項6】特許請求範囲第1項において、採光部を太
陽光を集光する1枚のレンズと集光した光を平行光にす
る1枚の凹面鏡で構成したことを特徴とする太陽光採光
システム。
6. The sunlight according to claim 1, wherein the light collecting portion is composed of one lens for collecting the sunlight and one concave mirror for converting the collected light into parallel light. Daylighting system.
【請求項7】特許請求範囲第2項または第3項におい
て、前記2つの回転軸の内、集光部と反射部からなる一
体物の回転軸を鉛直方向としたことを特徴とする太陽光
採光システム。
7. The sunlight according to claim 2 or 3, characterized in that, of the two rotating shafts, the rotating shaft of an integrated body composed of a condensing portion and a reflecting portion is vertical. Daylighting system.
【請求項8】特許請求範囲第2項または第3項におい
て、前記2つの回転軸の内、集光部の回転軸と同軸の非
回転軸を設け、それに固定し支持された反射部を有する
ことを特徴とする太陽光採光システム。
8. The non-rotating shaft coaxial with the rotating shaft of the condensing unit is provided among the two rotating shafts, and the reflecting unit is fixed and supported on the rotating shaft. A solar lighting system characterized by the above.
【請求項9】特許請求範囲第4項において、反射部を固
定したことを特徴とする太陽光採光システム。
9. A solar lighting system according to claim 4, wherein the reflecting portion is fixed.
【請求項10】特許請求範囲第1項において採光部の駆
動電源として商用電源を用いることを特徴とする太陽光
採光システム。
10. A solar lighting system according to claim 1, wherein a commercial power source is used as a driving power source for the daylighting section.
【請求項11】特許請求範囲第1項において、採光部の
駆動電源としてバツテリーを有することを特徴とする太
陽光採光システム。
11. A solar lighting system according to claim 1, which has a battery as a driving power source for the lighting unit.
【請求項12】特許請求範囲第1項において、採光部の
駆動電源として太陽電池とバツテリーの両方を有するこ
とを特徴とする太陽光採光システム。
12. The solar lighting system according to claim 1, wherein the solar power lighting system has both a solar cell and a battery as a driving power source for the lighting unit.
【請求項13】特許請求範囲第1項において、採光部か
ら送り込まれる光を光フアイバー、光ダクト、鏡のどれ
か一つ、もしくはこれらの組合せで光伝送する手段を設
けたことを特徴とする太陽光採光システム。
13. The device according to claim 1, further comprising means for optically transmitting the light sent from the daylighting section by any one of an optical fiber, an optical duct, a mirror, or a combination thereof. Solar lighting system.
【請求項14】特許請求範囲第13項において、建屋内部
に伝送された光の一部を取り出し分配するための反射体
を設けたことを特徴とする太陽光採光システム。
14. The solar lighting system according to claim 13, further comprising a reflector for extracting and distributing a part of the light transmitted to the interior of the building.
【請求項15】特許請求範囲第13項において、伝送した
光を均一に室内に照射するための散乱体を設けたことを
特徴とする太陽光採光システム。
15. The sunlight collecting system according to claim 13, further comprising a scatterer for uniformly irradiating the room with the transmitted light.
【請求項16】特許請求範囲第13項において、伝送した
光を所定の用途にあつた光スペクトルに変換する吸収体
もしくは波長変換体を有したことを特徴とする太陽光採
光システム。
16. A solar light collecting system according to claim 13, further comprising an absorber or a wavelength converter for converting the transmitted light into an optical spectrum suitable for a predetermined use.
【請求項17】特許請求範囲第13項において、伝送した
光を光量調節を行なう光学部品を設けたことを特徴とす
る太陽光採光システム。
17. A solar lighting system according to claim 13, further comprising an optical component for adjusting the quantity of transmitted light.
【請求項18】特許請求範囲第13項において、採光部を
複数個設け、この複数個の採光部からの光を1本にまと
めるための光学部品を光伝送する手段の前に設けたこと
を特徴とする太陽光採光システム。
18. The apparatus according to claim 13, wherein a plurality of light collecting portions are provided, and an optical component for collecting the light from the plurality of light collecting portions into one is provided before the means for optically transmitting. A characteristic solar lighting system.
JP63053502A 1988-03-09 1988-03-09 Solar lighting system Expired - Lifetime JPH0810291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63053502A JPH0810291B2 (en) 1988-03-09 1988-03-09 Solar lighting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63053502A JPH0810291B2 (en) 1988-03-09 1988-03-09 Solar lighting system

Publications (2)

Publication Number Publication Date
JPH01229216A JPH01229216A (en) 1989-09-12
JPH0810291B2 true JPH0810291B2 (en) 1996-01-31

Family

ID=12944599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63053502A Expired - Lifetime JPH0810291B2 (en) 1988-03-09 1988-03-09 Solar lighting system

Country Status (1)

Country Link
JP (1) JPH0810291B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001312910A (en) * 2000-04-28 2001-11-09 Sanyo Electric Co Ltd Sunlight collection apparatus
US7119895B2 (en) 2000-11-28 2006-10-10 Honda Giken Kogyo Kabushiki Kaisha Method of and apparatus for adjusting optical component, and optical unit
WO2013112362A1 (en) * 2012-01-23 2013-08-01 3M Innovative Properties Company Off-axis cassegrain solar collector
CN108954865B (en) * 2018-08-30 2024-04-19 广东工业大学 Directional light transmission solar condensing device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS599315B2 (en) * 1981-07-17 1984-03-01 エタブリスマン・モンタベル Impact device equipped with a sealing device between the hydraulic working medium and the outside air
JPS59192210A (en) * 1984-03-21 1984-10-31 Takashi Mori Gathering device of solar rays

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS599315U (en) * 1982-07-09 1984-01-21 平林 金夫 Solar tracking transfer device
JPH0436496Y2 (en) * 1987-02-09 1992-08-28

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS599315B2 (en) * 1981-07-17 1984-03-01 エタブリスマン・モンタベル Impact device equipped with a sealing device between the hydraulic working medium and the outside air
JPS59192210A (en) * 1984-03-21 1984-10-31 Takashi Mori Gathering device of solar rays

Also Published As

Publication number Publication date
JPH01229216A (en) 1989-09-12

Similar Documents

Publication Publication Date Title
WO2000071942A1 (en) Solar tracing sensor and application thereof in solar auto-tracing device
CN104901625B (en) Photovoltaic and photo-thermal combined system for solar full-spectrum frequency division regulation
WO2009063416A2 (en) Thin and efficient collecting optics for solar system
EP2962149B1 (en) Light-concentrating lens assembly for a solar energy recovery system
JP2002081760A (en) Solar energy utilizing system
CN101655287A (en) Optical collector with multi-section circular arc
US20140334007A1 (en) Optical Element Stacks for the Direction of Light
WO2018113631A1 (en) Solar condenser apparatus and construction or constructed structure using the apparatus
CN102074606B (en) Light-concentrating solar comprehensive collecting and reforming unit
WO2012065526A1 (en) Solar energy converging method and application thereof in heating and illumination
KR19990083947A (en) Solar Collector and Solar Automatic Tracking Device Using Solar Electricity
JPH0810291B2 (en) Solar lighting system
JPH06275859A (en) Condensing device for solar cell
KR20110023378A (en) Sun light condensing equipment
CN108507199A (en) A kind of solar energy light gathering and heat collecting system and method
CN102356345A (en) Solar condensing device
CN201994877U (en) Light-focusing type solar energy comprehensive collection and conversion device
CN106679198A (en) Solar energy condensation device
RU2121632C1 (en) Device for concentration of solar radiation
CN208859917U (en) A kind of solar energy light gathering and heat collecting system
KR101182834B1 (en) Ray of sun generator
KR100350374B1 (en) Dish Solar Concentrator
CN206300367U (en) A kind of solar-energy light collector and the building or structure structure using the device
JPH01114666A (en) Heat collection device for solar thermal engine
KR100712726B1 (en) Apparatus for collecting light