JPH0122896B2 - - Google Patents

Info

Publication number
JPH0122896B2
JPH0122896B2 JP54103839A JP10383979A JPH0122896B2 JP H0122896 B2 JPH0122896 B2 JP H0122896B2 JP 54103839 A JP54103839 A JP 54103839A JP 10383979 A JP10383979 A JP 10383979A JP H0122896 B2 JPH0122896 B2 JP H0122896B2
Authority
JP
Japan
Prior art keywords
light
bottles
value
inspected
bottle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54103839A
Other languages
Japanese (ja)
Other versions
JPS5627641A (en
Inventor
Michihito Kurahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suntory Ltd
Original Assignee
Suntory Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suntory Ltd filed Critical Suntory Ltd
Priority to JP10383979A priority Critical patent/JPS5627641A/en
Publication of JPS5627641A publication Critical patent/JPS5627641A/en
Publication of JPH0122896B2 publication Critical patent/JPH0122896B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/90Investigating the presence of flaws or contamination in a container or its contents

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明はビール瓶等の平滑な表面を有する器物
の検査方法、殊にその表面に生じた掻き傷(スカ
ツフ)の程度を客観的に評価して、良品と不良品
とを選別し、及び/又はスカツフの程度により等
級化して選別する方法に関する。
The present invention relates to a method for inspecting a container having a smooth surface such as a beer bottle, and in particular, for objectively evaluating the degree of scratches (scratches) generated on the surface thereof, and sorting out good products from defective products, and/or It relates to a method of grading and sorting according to the degree of scathing.

【従来の技術】[Conventional technology]

(背景) 今日、ビール瓶、清涼飲料水瓶、洋酒瓶、貯蔵
食品、化学薬品その他の物の器物として極めて大
量のガラス瓶が出廻つている。従来から、これら
の中のあるもの、例えばビール瓶やラムネ瓶等で
は、内容物を消費後、回収して再使用するのが習
慣となつている。また、現在回収が行われていな
いその他の瓶類においても、省資源的な見地から
近い将来回収が必要となるものと思われる。 ところが、回収瓶には、回収作業、運送、洗浄
及び工場内でのコンベア移送等の過程で必ず多少
とも微細な擦り傷(scuff、スカツフ)を生じて
おり、その程度の著しいものを再使用すると著し
く商品価値を減じる。このため、該瓶を再使用す
るメーカー等は、再使用に先立つてスカツフの状
態を検査し、程度のひどいものを除外する習わし
である。 (従来技術の問題点) しかるに、本検査はこれまで専ら肉眼によつて
行われており、このため相当の熟練を要すること
の他に、この検査は一種の定量的判断に属すると
ころから、個人差及び疲労に基く結果の浮動は無
視することができず、殊に、炭酸水などの無色瓶
では、検査結果のバラツキが商品の売行にも影響
するなどの問題点が存在した。なお、肉眼検査は
微妙な主観的判断に頼るものであるので、スカツ
フの程度を等級化するのも極めて困難で、このた
め目的に合せて瓶を選別することも事実上不可能
であつた。 そこで、本作業を機械化しようとする試みも一
部提案されたことはあるが、目視検査と同様の結
果を得るのは容易ではなく、発明者の知る限り未
だ実用化されたものはない。
(Background) Today, extremely large quantities of glass bottles are in circulation as containers for beer bottles, soft drink bottles, Western liquor bottles, stored foods, chemicals, and other items. Conventionally, it has been customary to collect and reuse some of these items, such as beer bottles and ramune bottles, after the contents have been consumed. In addition, it is thought that other bottles that are not currently being collected will need to be collected in the near future from the standpoint of resource conservation. However, collected bottles always have more or less minute scratches (scuffs) during the process of collection, transportation, cleaning, and conveyor transfer within the factory, and if they are reused, they will be seriously damaged. Reduce product value. For this reason, manufacturers who reuse the bottles have a habit of inspecting the condition of the scats before reusing them, and excluding those that are in poor condition. (Problems with the prior art) However, this test has so far been performed exclusively with the naked eye, which requires considerable skill. Fluctuations in results due to differences and fatigue cannot be ignored, and in particular, for colorless bottles such as carbonated water, there are problems such as variations in test results can affect product sales. Furthermore, since visual inspection relies on delicate subjective judgments, it is extremely difficult to grade the degree of skatosis, and for this reason, it is virtually impossible to sort bottles according to the purpose. Therefore, although some attempts have been made to mechanize this work, it is not easy to obtain results similar to those obtained by visual inspection, and as far as the inventors know, none has yet been put to practical use.

【発明が解決しようとする課題】 そこで本発明は、目視検査の結果とよく一致す
る機械的選別手段を提供することによつて、従来
の肉眼的スカツフ検査における個人差及び疲労に
よる誤差発生の問題点を解決するのを目的とす
る。
Problems to be Solved by the Invention The present invention solves the problem of errors caused by individual differences and fatigue in the conventional visual scuff inspection by providing a mechanical sorting means that closely matches the results of visual inspection. The purpose is to solve the problem.

【課題を解決するための手段】[Means to solve the problem]

(発明の経緯) ところで、ヒトの眼の視覚作用の本質は、原理
的に明所視及び色彩視を受け持つ棒状体細胞と暗
所視を受け持つ錐状体細胞の発するパルスの態様
に帰すことができるけれども、実際上、視覚中枢
中において複雑な統合作用が行われる結果、実際
の作用には甚だ複雑であつて、その本態を明らか
にすることは今のところ不可能である。 しかるに、本発明者は視神経から伝えられるス
カツフ部分とその他の部分との間の明暗差に基づ
くパルス電圧の中、ある閾値を超えるものの積分
値が中枢において予め記憶として存在する標準値
と比較されるものであろうと仮定し、予め肉眼判
定によつてスカツフの多少の順位を附したビール
瓶をイメージセンサカメラを用いて観測し、ある
設定閾値(雑音レベル)を超えるパルス数の積分
値の大小の順位を上記の目視による順位と比較し
たところ、下表に示す通り両者間に著しい対応関
係が存することが発見され、発明者の仮定が略々
成立することが実証された。因みに本データは、
512個の素子を有するフオトダイオードアレーを
持つイメージセンサカメラを用い、走査周波数50
Hz、カメラの絞F4、閾値ライン(雑音レベル)
4V、ハロゲンランプ光源、カメラ−瓶の中心−
光源間の夾角60゜として瓶の周囲8ケ所に対して
行なつた実験の結果である。
(Background of the invention) By the way, the essence of the visual action of the human eye can, in principle, be attributed to the form of pulses emitted by rod-shaped cells, which are responsible for photopic vision and color vision, and cone-shaped cells, which are responsible for scotopic vision. However, as a result of complex integration actions taking place in the visual center, the actual action is extremely complex, and it is currently impossible to clarify its true nature. However, the present inventor discovered that among the pulse voltages transmitted from the optic nerve based on the difference in brightness between the Skatuff part and other parts, the integrated value of the voltage exceeding a certain threshold is compared with a standard value that exists in the central memory in advance. Assuming that the number of pulses exceeds a certain set threshold (noise level), we observe the beer bottles using an image sensor camera and rank them according to the magnitude of the integrated value of the number of pulses exceeding a certain set threshold (noise level). When compared with the above visual ranking, it was discovered that there was a significant correspondence between the two as shown in the table below, and it was verified that the inventor's hypothesis was substantially true. Incidentally, this data is
Using an image sensor camera with a photodiode array with 512 elements, the scanning frequency is 50
Hz, camera aperture F4, threshold line (noise level)
4V, halogen lamp light source, camera - center of bottle -
These are the results of experiments conducted at eight locations around the bottle with an included angle of 60° between the light sources.

【表】 * 機械観結果も目視観測順位通り配列
上表から窺われるように、目視法によるスカツ
フの多少の順位と機械観測によるビツト数の多少
の順位は互いに幾分相違してはいるが、以上の結
果から窺われるように、目視法による順位と機械
法による順位は幾分相違しているが、一応の選別
ラインと思われるビツト数100付近を境によく一
致しており、本発明者の構想による検査手段が、
ヒトの視覚に近付いていることが分る。因に、上
記の結果からスピアマンの順位相関係数を求める
と、 γS=1−6Σdi2/n3−n=0.93 (di:順位の差、n=サンプル数) の値が得られ、これを検定すると高度に(有意水
準1%)有意である。即ち、目視法をイメージセ
ンサカメラを用い、閾値を超えるパルス数を積算
する電子光学的測定法との間には、両者の結果に
おいて強い相関性があり、後者が充分前者に代り
うるものであることを示している。 (概要) 本発明は、以上の知見、即ちスカツフによる光
の散乱の程度をイメージセンサカメラが捉えたビ
デオインパルス数の積分値の大小が、目視法によ
るスカツフの多少と相関々係があるという実験結
果に基き、回転台上に直立して載せられたガラス
瓶等の被検査対象物の胴部に光線を照射し、該対
象物が一回転する間に反射された反射光のうち、
該照射光線の入射軸と鋭角をなす方向への反射光
中に含まれる散乱光をイメージセンサ型撮像管を
用いてパルス型ビデオ信号に変換し、変換された
ビデオ信号パルスのうち雑音レベルを超える該信
号パルス数の積分値を目視観測から決定された標
準積分パルス数と比較し、該標準積分値を超える
被検査対象物を排除することを特徴とするガラス
瓶等の選別方法を要旨とするものである。 (検査対象物) ここに「ガラス瓶等」と称するのは、一般的に
ガラス瓶が代表的な検査対象物であるので例示し
たまでであつて、別段「瓶」である必要はなく、
アンカー容器、アンプル等の器物に対しても当然
応用しうる。かつ、材質はプラスチツクでもよ
い。さらに材質が透明であるか又は色付である
か、或いは透明であるか又は不透明であるかも無
関係である。但し、表面の凹凸が著しいもの又は
極度に粗面化加工されたものは、反射レベルが平
準化しないので、発明の対象として適当でない。
本発明の対象物として最も良いのは、平滑な表面
を持つものである。 (装置) 光源としてはハロゲンランプが好んで使用され
るが、その他の光源、例えば自然光、一般白熱
灯、螢光灯、水銀灯又はゼノンランプ等も使用さ
れることができる。 受光(撮像)に用いる撮像管としては、CCD
(電荷結合デバイス)素子又は集積フオトダイオ
ードアレーを受光素子として用いた自己走査型イ
メージセンサカメラが、価格、耐久性、誤差など
の観点で最も適当である。 カメラは、光源と被検査ガラス瓶の軸心とを結
ぶ線に対し來角が鋭角をなす方向、言い換えれば
照射光線の入射軸と鋭角をなす方向への反射光を
カメラが捉えうるような位置に配置される。 瓶等の場合、スカツフは全周にわたつて平均的
に存在することは少く、むしろ局部的に偏在する
場合が多い。故にスカツフの検出は対象物をその
軸を中心に一回転させるか又は逆に光源及びカメ
ラを一組として前記対象物の胴部周囲を一周させ
ることにより行われるが、本発明の狙いとする多
量検査の目的には、前者の対象物自体に回転を与
える方式が適当である。この場合、対象物は回転
台を備えたコンベヤ上に直立状態で載せられて間
欠的に移動せしめられながらその停止期間中に回
転を与えられ、その間、測定が行われる。閾値を
超えるパルス数の積分値が標準をオーバーした不
合格対象物の排除は、例えばソレノイド、電磁弁
付エヤシリンダ等により簡単に実施することがで
きる。光源と対向する対象物の背面には、光の反
射や外光の迷入を避けるため黒色のスクリーンを
置くのが好ましい。 (閾値及び標準値) 実際ビデオカメラで測定すると、電子回路など
の影響で種々の背景雑音が発生するので、測定に
際しては、一定の雑音レベル(閾値電圧)でカツ
トし、実際のスカツフに関係しないと思われる低
位のパルスを除去しておく必要がある。この雑音
は、その値、検査対象や測定条件などによつても
変化するが、前記4Vの値は、多数の実験結果か
ら帰納された平均的な値である。 標準値は、上記実験のように、機械観測により
得られたパルスから雑音レベル未満の微弱なパル
スを除いた積分パルス数(ビツト数)と目視観測
の結果とを対照し、目視的にスカツフが目立たな
いと考えられたときの平均的な積分ビツト数を上
限値とする。通常の平滑なガラス瓶では、前掲実
験の条件で約100程度であるが、例えば儀式用の
シヤンペンの瓶のように、特別に精選された瓶を
選びたいとき、ビツト数をもつと低めなければな
らないのは当然である。
[Table] *Mechanical observation results are also arranged according to the visual observation order.As can be seen from the table above, the order of the number of bits according to the visual observation method and the order of the number of bits according to the machine observation method are somewhat different, but As can be seen from the above results, the rankings determined by the visual method and the rankings determined by the mechanical method are somewhat different, but they match well after around 100 bits, which is considered to be the sorting line. The inspection method based on the concept of
It can be seen that this is close to human vision. Incidentally, when calculating Spearman's rank correlation coefficient from the above results, we obtain the value γ S = 1-6Σdi 2 /n 3 - n = 0.93 (di: difference in rank, n = number of samples), which is When tested, it is highly significant (significance level 1%). In other words, there is a strong correlation between the visual method and the electro-optical measurement method, which uses an image sensor camera and integrates the number of pulses exceeding a threshold, and the latter can sufficiently replace the former. It is shown that. (Summary) The present invention is based on the above knowledge, that is, an experiment in which the magnitude of the integral value of the number of video impulses captured by an image sensor camera is correlated with the degree of scattering of light by a visual inspection method. Based on the results, a light beam is irradiated onto the body of the object to be inspected, such as a glass bottle, placed upright on a rotating table, and among the reflected light that is reflected during one revolution of the object,
The scattered light contained in the reflected light in the direction making an acute angle with the incident axis of the irradiation light beam is converted into a pulsed video signal using an image sensor type imaging tube, and the converted video signal pulse exceeds a noise level. The gist of this is a method for sorting glass bottles, etc., characterized by comparing the integral value of the signal pulse number with a standard integral pulse number determined from visual observation, and excluding objects to be inspected that exceed the standard integral value. It is. (Object to be inspected) The term "glass bottle, etc." is used here as an example since glass bottles are generally a typical object to be inspected, and there is no need to refer to it as a "bottle."
Naturally, it can also be applied to vessels such as anchor containers and ampoules. In addition, the material may be plastic. Furthermore, it is irrelevant whether the material is transparent or colored, transparent or opaque. However, if the surface has significant irregularities or is extremely roughened, the reflection level will not be leveled, and therefore it is not suitable as a subject of the invention.
The best object for the present invention is one with a smooth surface. (Apparatus) A halogen lamp is preferably used as the light source, but other light sources such as natural light, an ordinary incandescent lamp, a fluorescent lamp, a mercury lamp or a Zenon lamp can also be used. The image pickup tube used for light reception (imaging) is CCD.
A self-scanning image sensor camera using a charge-coupled device (charge-coupled device) element or an integrated photodiode array as a light-receiving element is most suitable in terms of cost, durability, error, etc. The camera should be positioned so that it can capture the reflected light in a direction where the angle is acute with respect to the line connecting the light source and the axis of the glass bottle to be inspected, or in other words, in a direction which is acute with the incident axis of the irradiated light beam. Placed. In the case of bottles and the like, scats are rarely present evenly over the entire circumference, but rather are often locally unevenly distributed. Therefore, the detection of skats is performed by rotating the object once around its axis, or conversely, by rotating a set of light source and camera around the body of the object. For inspection purposes, the former method of applying rotation to the object itself is appropriate. In this case, the object is placed upright on a conveyor equipped with a rotary table and is moved intermittently and rotated during periods of stoppage, during which measurements are taken. Rejection of rejected objects whose integrated value of the number of pulses exceeding the threshold value exceeds the standard can be easily carried out using, for example, a solenoid, an air cylinder with a solenoid valve, or the like. It is preferable to place a black screen on the back of the object facing the light source to avoid reflection of light and intrusion of outside light. (Threshold value and standard value) When actually measuring with a video camera, various background noises are generated due to the influence of electronic circuits, etc., so when measuring, it is necessary to cut the noise at a certain level (threshold voltage) and make sure that it is not related to the actual scuff. It is necessary to remove low-level pulses that seem to be. Although this noise varies depending on its value, the object to be inspected, the measurement conditions, etc., the value of 4V is an average value derived from the results of many experiments. The standard value is determined by comparing the number of integrated pulses (number of bits) obtained by mechanical observation, excluding weak pulses below the noise level, with the results of visual observation, as in the above experiment. The upper limit is the average number of integral bits that is considered inconspicuous. For a normal smooth glass bottle, the number of bits is about 100 under the conditions of the experiment described above, but if you want to select a specially selected bottle, such as a ceremonial bottle, the number of bits must be lowered. Of course.

【作用】[Effect]

本発明は、瓶検査の自動化を可能ならしめるこ
とにより、省力化に貢献しうるが、その最大の意
義は、個人差や疲労に基づく偏差を完全に排除し
うることである。さらに、目視検査では不可能な
等級化が容易であるから、例えば結婚式、祝賀会
その他の祝事用、引出物用、高級ホテル用、プラ
イベート用などの酒瓶等の特選瓶の選別を正確に
実施することができるなどの効果をもたらす。
The present invention can contribute to labor saving by making it possible to automate bottle inspection, but its greatest significance is that it can completely eliminate deviations due to individual differences and fatigue. Furthermore, since it is easy to grade, which is impossible with visual inspection, it is possible to accurately sort specially selected bottles such as liquor bottles for weddings, celebrations, other celebrations, gifts, luxury hotels, private use, etc. It brings about effects such as being able to be implemented.

【実施例】【Example】

図面は、本発明法を実施するための装置の一例
の概略図を示す。 検査対象物のビール瓶(1、1……)は、回転
台(2、2……)付コンベア上に載せられて遂次
矢印方向へ水平面に沿つて移送される。 光源3とカメラ4は、検査位置における瓶の長
軸との夾角(θ)が約60゜をなすように配置され
る。 検査位置において、瓶1は、例えば矢印の向き
に回転を与えられ、1秒以内の短時間内(但しも
つと遅くてもよい)に1回転する。この回転の間
に、イメージセンサカメラ4で捉えられた光は、
カメラ内でパルスに変換され、設定値を超えるパ
ルス数のみが取り出され、このパルス数がカルキ
ユレータ5で積分されると同時に、この積分値が
標準値を超過する瓶に対しては除去装置(図示せ
ず)に動作開始の信号が送られる。なおパルスの
数及び強さは、シンクロスコープ6により波形7
として目視することができる。
The drawing shows a schematic representation of an example of a device for carrying out the method of the invention. Beer bottles (1, 1...) to be inspected are placed on a conveyor with a rotating table (2, 2...) and successively transported along a horizontal plane in the direction of the arrow. The light source 3 and camera 4 are arranged so that the included angle (θ) with the long axis of the bottle at the inspection position is about 60°. At the inspection position, the bottle 1 is rotated, for example, in the direction of the arrow, and rotates once within a short period of one second (although it may be slower). During this rotation, the light captured by the image sensor camera 4 is
It is converted into pulses in the camera, and only the number of pulses exceeding the set value is taken out. This number of pulses is integrated by the calculator 5. At the same time, for bottles whose integrated value exceeds the standard value, a removal device (Fig. A signal is sent to start the operation (not shown). The number and strength of the pulses are determined by the waveform 7 using the synchroscope 6.
It can be visually observed as

【発明の効果】【Effect of the invention】

以上説明した通り、本発明によれば、これまで
目視に頼つてきたスカツフの検査を自動的に正確
に行うことができるので、主観や疲労の介入しな
い信頼性の高い定量的な結果が得られるのみでな
くスカツフの程度の等級化が可能となり、しかも
検査速度が目視に比し遥かに高いから、選瓶作業
の合理化に資しうる。
As explained above, according to the present invention, it is possible to automatically and accurately perform the inspection of the scats, which has so far relied on visual inspection, and therefore, highly reliable quantitative results can be obtained without the intervention of subjectivity or fatigue. In addition, it is possible to grade the degree of scuffing, and the inspection speed is much higher than that of visual inspection, so it can contribute to streamlining bottle selection work.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、本発明方法を実施する装置及びその作
用を説明するための概略斜視図である。添附参考
写真は、目視法によりスカツフの多い順に番号を
附けたテスト用の瓶を、イメージセンサカメラで
観測されたビツト数の大きい順に配列した状況を
示す。図中の符号の意味は以下のとおり:− 1:ガラス瓶、2;コンベア;3:光源、4:
イメージセンサカメラ;5:カルキユレータ、
6:シンクロスコープ;7:波形、8:閾値ライ
ン、9:吸光スクリーン。
The drawings are schematic perspective views for explaining an apparatus for carrying out the method of the present invention and its operation. The attached reference photo shows a situation in which test bottles, numbered by visual inspection in descending order of scuffs, are arranged in descending order of the number of bits observed by an image sensor camera. The meanings of the symbols in the diagram are as follows: - 1: Glass bottle, 2: Conveyor, 3: Light source, 4:
Image sensor camera; 5: Calculator;
6: Synchroscope; 7: Waveform, 8: Threshold line, 9: Light absorption screen.

Claims (1)

【特許請求の範囲】[Claims] 1 回転台上に直立して載せられたガラス瓶等の
被検査対象物の胴部に光線を照射し、該対象物が
一回転する間に反射された反射光のうち、該照射
光線の入射軸と鋭角をなす方向への反射光中に含
まれる散乱光をイメージセンサ型撮像管を用いて
パルス型ビデオ信号に変換し、変換されたビデオ
信号パルスのうち雑音レベルを超える該信号パル
ス数の積分値を目視観測から決定された標準積分
パルス数と比較し、該標準積分値を超える被検査
対象物を排除することを特徴とするガラス瓶等の
選別方法。
1. A light beam is irradiated onto the body of an object to be inspected, such as a glass bottle, placed upright on a rotating table, and among the reflected light that is reflected during one revolution of the object, the incident axis of the irradiated light beam is Convert the scattered light contained in the reflected light in the direction making an acute angle to the pulse type video signal using an image sensor type imaging tube, and integrate the number of signal pulses exceeding the noise level among the converted video signal pulses. A method for sorting glass bottles, etc., characterized in that the value is compared with a standard integral pulse number determined from visual observation, and objects to be inspected that exceed the standard integral value are excluded.
JP10383979A 1979-08-14 1979-08-14 Method for inspecting glass bottle and the like Granted JPS5627641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10383979A JPS5627641A (en) 1979-08-14 1979-08-14 Method for inspecting glass bottle and the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10383979A JPS5627641A (en) 1979-08-14 1979-08-14 Method for inspecting glass bottle and the like

Publications (2)

Publication Number Publication Date
JPS5627641A JPS5627641A (en) 1981-03-18
JPH0122896B2 true JPH0122896B2 (en) 1989-04-28

Family

ID=14364585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10383979A Granted JPS5627641A (en) 1979-08-14 1979-08-14 Method for inspecting glass bottle and the like

Country Status (1)

Country Link
JP (1) JPS5627641A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0612344B2 (en) * 1982-08-31 1994-02-16 サントリー株式会社 Inspection device for scuffing bottles
JPS6148750A (en) * 1984-08-16 1986-03-10 Ishizuka Glass Ltd Method for inspecting defect of glass bottle
JPH083474B2 (en) * 1987-07-01 1996-01-17 富士写真フイルム株式会社 Tape defect detector
JPH0472554A (en) * 1990-07-13 1992-03-06 Hajime Sangyo Kk Inspecting device for transparent container
JP2622092B2 (en) * 1994-09-19 1997-06-18 大淀ヂ−ゼル株式会社 Rail welding part grinding machine
JP5372612B2 (en) * 2009-06-16 2013-12-18 東洋ガラス株式会社 Glass product inspection equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843386A (en) * 1971-10-04 1973-06-22
JPS4998690A (en) * 1973-01-24 1974-09-18

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843386A (en) * 1971-10-04 1973-06-22
JPS4998690A (en) * 1973-01-24 1974-09-18

Also Published As

Publication number Publication date
JPS5627641A (en) 1981-03-18

Similar Documents

Publication Publication Date Title
JPH01199139A (en) Circuit used for method of inspecting object by contrast of transparency of object
US20020162966A1 (en) Method and apparatus for detecting surface defects in a plastic container
NO343444B1 (en) Apparatus and method for inspecting a material flow by light scattering in the food rack.
US7595870B2 (en) Optical inspection of container walls
JP3767695B2 (en) Empty bottle inspection system
WO2017029864A1 (en) Egg inspection device and egg differentiation system
JP2005017004A (en) System for inspecting foreign matter in glass bottle
JP2022000641A (en) Inspection device for eggs
US5717486A (en) Process for removing returnable containers from circulation utilizing image processing of brightness values for inspection windows
JPH0122896B2 (en)
JP4361156B2 (en) Appearance inspection equipment for articles
ES2260805T3 (en) METHOD FOR VERIFYING THE RELIABILITY OF AN EXAMINATION DEVICE, IN PARTICULATE AN EMPTY BOTTLE INSPECTOR.
JP7261434B2 (en) egg inspection device
JP2005017003A (en) Vial inspection system
JPH0634573A (en) Bottle inspector
JPH0634574A (en) Bottle inspector
JP3340413B2 (en) Method and apparatus for detecting foreign matter settled in PET bottle
JPH04216445A (en) Device for inspecting bottle
JP3366517B2 (en) Cylindrical object defect detection device
JPH0634575A (en) Bottle inspection method
JPH09318559A (en) Visual inspection method for transparent glass container and apparatus therefor
JP3986534B2 (en) Empty bottle inspection system
JPH0954047A (en) Method and device for inspecting bottle
JPS58184537A (en) Apparatus for detecting defect of glass bottle
JPH04309850A (en) Inspection of defective of glass cylindrical body