JPH01228651A - Method for continuously casting metal strip - Google Patents

Method for continuously casting metal strip

Info

Publication number
JPH01228651A
JPH01228651A JP5669188A JP5669188A JPH01228651A JP H01228651 A JPH01228651 A JP H01228651A JP 5669188 A JP5669188 A JP 5669188A JP 5669188 A JP5669188 A JP 5669188A JP H01228651 A JPH01228651 A JP H01228651A
Authority
JP
Japan
Prior art keywords
molten metal
metal
nozzle
turbulent flow
metal strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5669188A
Other languages
Japanese (ja)
Other versions
JPH07106430B2 (en
Inventor
Shigenori Tanaka
重典 田中
Akio Kasama
昭夫 笠間
Keiichi Yamamoto
恵一 山本
Hikotaro Itani
猪谷 彦太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Nippon Steel Corp
Original Assignee
Mitsubishi Heavy Industries Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Nippon Steel Corp filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP5669188A priority Critical patent/JPH07106430B2/en
Publication of JPH01228651A publication Critical patent/JPH01228651A/en
Publication of JPH07106430B2 publication Critical patent/JPH07106430B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To improve surface shape quality of a metal strip by controlling distance from molten metal discharging hole to pouring basin part in proportion to casting speed in a pouring nozzle at the pouring basin part. CONSTITUTION:Side weirs 2a, 2b are arranged at both end to axial direction between one pair of cooling drums 1a, 1b rotating mutually to reverse directions and the molten metal is supplied from the pouring nozzle 7 to continuously cast the metal strip 6. Then, the molten metal flow injected from metal discharging hole 8 of the nozzle 7 and boundary layer 10 based on rotation of the drums 1a, 1b are mutually interfered to form turbulent flow. Height H of this turbulent flow zone is experimentally found as the value in proportion to the casting speed and the submerged depth of the nozzle 7 is adjusted so as to come to deeper than the height H of the turbulent flow zone. By this method, as effect of the turbulent flow zone 10 is prevented from reaching the meniscus part, the growth of solidified shell 9 is uniformized. Therefore, the surface shape quality of the metal strip is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ツインドラム方式の連続鋳造機において、冷
却ドラムの間に形成される湯溜り部の湯面の乱れに起因
した疵、皺等の欠陥発生を防止して、表面性状の優れた
金属薄帯を鋳造する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to a twin-drum type continuous casting machine, in which defects such as scratches and wrinkles are caused by disturbances in the surface of the molten metal in the pool formed between the cooling drums. The present invention relates to a method of casting a metal ribbon with excellent surface quality while preventing the occurrence of defects.

〔従来の技術〕[Conventional technology]

最近、溶鋼等の溶融金属から最終形状に近い数111m
〜数十m1程度の厚みをもつ金属薄帯を直接的に製造す
る方法が注目されている。この連続鋳造方法によるとき
、従来のような多段階にわたる熱延工程を必要とするこ
となく、また最終形状にする圧延も軽度なもので済むた
め、工程及び設備の簡略化が可能となる。
Recently, several 111 meters of molten metal such as molten steel that is close to the final shape
A method of directly producing a metal ribbon having a thickness of about several tens of millimeters is attracting attention. When this continuous casting method is used, there is no need for a multi-step hot rolling process as in the conventional method, and only a light rolling process is required to form the final shape, making it possible to simplify the process and equipment.

第3図は、この連続鋳造法の一つとして知られているツ
インドラム方式の連続鋳造機の設備構成を示す(特開昭
60−137562号公報参照)。
FIG. 3 shows the equipment configuration of a twin-drum continuous casting machine that is known as one of the continuous casting methods (see Japanese Patent Laid-Open No. 137562/1983).

この方式においては、互いに逆方向に回転する一対の冷
却ドラムla、 lbの間に、ドラム軸方向両端をサイ
ド堰2a、 2bで仕切り、湯溜り部3を形成する。こ
の湯溜り部3に溶融金属4を注入し、冷却ドラムla、
 lbを介して溶融金属4を抜熱することにより、それ
ぞれの冷却ドラムla、 lbの周面に凝固シェルを形
成させる。この凝固シェルは、成長しながら冷却ドラム
la、 lbの回転に伴ってドラムギャップ5に移行す
る。ドラムギャップ5で、それぞれの冷却ドラムla、
 lb周面に形成された凝固シェルは、圧接・一体化さ
れ、金属薄帯6として冷却ドラムla、  lb間から
搬出される。
In this system, a pool 3 is formed between a pair of cooling drums la and lb that rotate in opposite directions, with side weirs 2a and 2b partitioning both ends in the axial direction of the drums. Molten metal 4 is injected into this pool 3, cooling drum la,
By removing heat from the molten metal 4 through the cooling drums la and lb, a solidified shell is formed on the circumferential surface of each of the cooling drums la and lb. As the solidified shell grows, it moves to the drum gap 5 as the cooling drums la, lb rotate. With a drum gap 5, each cooling drum la,
The solidified shell formed on the circumferential surface of lb is pressed and integrated, and is carried out as a thin metal strip 6 from between the cooling drums la and lb.

このように金属薄帯6を製造する際、湯溜り部3の液面
に乱れがあると、冷却ドラムla、 lbの周面におけ
る冷却条件が不安定となり、凝固シェルの成長が不均一
になる。この凝固シェルをドラムギャップ5で圧接する
とき、ドラム軸方向に関して不均一な圧下刃が凝固シェ
ルに働き、金属薄帯6に割れ、皺等の欠陥を発生させる
原因となる。
When manufacturing the metal ribbon 6 in this way, if there is any disturbance in the liquid level in the pool 3, the cooling conditions on the circumferential surfaces of the cooling drums la and lb become unstable, resulting in uneven growth of the solidified shell. . When this solidified shell is pressed against the drum gap 5, the rolling blades which are uneven in the drum axial direction act on the solidified shell, causing defects such as cracks and wrinkles in the metal ribbon 6.

そこで、たとえば特開昭57−32852号公報にあっ
ては、鋳造ドラムと液面が接する点をフラッパーと称さ
れる耐火物製の溶湯保持器でおおい、この耐火物によっ
て湯溜の冷却開始点を規制して、液面の乱れが冷却開始
点に影響を与えないような技術が小型の試tiでは用い
られている実績を示している。
Therefore, for example, in Japanese Patent Application Laid-open No. 57-32852, the point where the casting drum and the liquid surface contact is covered with a molten metal holder made of a refractory material called a flapper, and this refractory material is used as a starting point for cooling the molten metal. This shows that technology has been used in small-scale test systems to regulate the temperature so that turbulence in the liquid level does not affect the cooling start point.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、湯溜り部3にフラッパーを配置するとき、溶融
金属4の流動が拘束され、フラッパー近傍で溶融金R4
が滞留することになる。この滞留した溶融金属4は、フ
ラッパー先端に凝固物として成長する。この凝固物がド
ラムの表面より成長した凝固シェルとつながると、凝固
物がフラッパー先端より離脱して、鋳片表面に異物とし
て残留し、鋳片表面を悪化させる。
However, when the flapper is placed in the sump 3, the flow of the molten metal 4 is restricted, and the molten metal R4 is disposed near the flapper.
will remain. This retained molten metal 4 grows as a solidified substance at the tip of the flapper. When this solidified material connects with the solidified shell that has grown from the surface of the drum, the solidified material separates from the tip of the flapper and remains as a foreign material on the surface of the slab, deteriorating the surface of the slab.

そこで、本発明は、湯溜り部に溶融金属の滞留を促すよ
うな部材を配置することなく、注湯ノズルの浸漬状態を
制御することによって、液面の波立ちを抑制し、表面性
状の優れた金属薄帯を製造することを目的とする。
Therefore, the present invention suppresses ripples on the liquid surface by controlling the immersion state of the pouring nozzle without arranging any member that promotes the retention of molten metal in the molten metal pool. The purpose is to manufacture metal ribbon.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の連続鋳造方法は、その目的を達成するために、
一対の冷却ドラムの間に形成された湯溜り部に供給した
溶融金属を急冷・凝固して金属薄帯を製造する際、前記
湯溜り部に浸漬した注湯ノズルの溶融金属流出口から前
記湯溜り部の液面までの距離を、鋳造速度に比例して増
加又は減少させることを特徴とする。
In order to achieve the purpose of the continuous casting method of the present invention,
When producing a metal ribbon by rapidly cooling and solidifying molten metal supplied to a pool formed between a pair of cooling drums, the molten metal is poured from the molten metal outlet of a pouring nozzle immersed in the pool. It is characterized in that the distance to the liquid level in the reservoir is increased or decreased in proportion to the casting speed.

〔作用〕[Effect]

湯溜り部3に浸漬された注湯ノズル7の流出口8から噴
出する溶融金属は、第2図(a)に示すように上昇流4
a及び下降流4bとなって冷却ドラムla。
The molten metal ejected from the outlet 8 of the pouring nozzle 7 immersed in the molten metal pool 3 flows in an upward flow 4 as shown in FIG. 2(a).
a and a downward flow 4b to the cooling drum la.

1bの周面に沿って広がる。他方、冷却ドラムla。It spreads along the circumferential surface of 1b. On the other hand, the cooling drum la.

1bは、第2図ら)の矢印で示す方向に回転しているの
で、その周面に形成された凝固シェル9と湯溜り部3の
溶融金属との界面に流れの境界層10が生じる。流れの
境界層10は、流出口8から噴出した溶融金属流に干渉
される。特に、流出口8の中心線から上にある流れの境
界層10は、上昇流4aによって乱され乱流状態となる
1b is rotating in the direction shown by the arrow in FIGS. 2, et al., a boundary layer 10 of flow is generated at the interface between the solidified shell 9 formed on its circumferential surface and the molten metal in the sump 3. The flow boundary layer 10 is interfered with by the molten metal stream emerging from the outlet 8. In particular, the boundary layer 10 of the flow above the centerline of the outlet 8 is disturbed by the upward flow 4a and becomes turbulent.

この乱流域の高さHが湯溜り部3の液面3aに達すると
メニスカス11部が異常に変動して、冷却ドラムla、
 lbの周面に最初に生成される凝固シェル9が極めて
不安定なものとなる。その結果、冷却ドラムla、  
lbのドラム軸方向に関して凝固ンエル9の肉厚が変動
し、疵、皺等の欠陥が多発する。
When the height H of this turbulent area reaches the liquid level 3a of the water reservoir 3, the meniscus 11 changes abnormally, and the cooling drum la,
The solidified shell 9 that is first generated on the circumferential surface of lb becomes extremely unstable. As a result, the cooling drum la,
The wall thickness of the coagulation well 9 fluctuates in the axial direction of the lb drum, and defects such as scratches and wrinkles occur frequently.

本発明においては、注湯ノズル7の浸漬深さを制御する
ことにより、乱流域の高さHを湯溜り部3の液面3aに
達しない値とし、湯溜り部3の液面3aが冷却ドラムl
a、 lbに接触する個所、すなわちメニスカス11近
傍における溶融金属の乱れを抑制している。これにより
、凝固シェル9の生成条件を安定化させ、肉厚変動の少
ない金属薄帯を製造することが可能となる。
In the present invention, by controlling the immersion depth of the pouring nozzle 7, the height H of the turbulent region is set to a value that does not reach the liquid level 3a of the molten metal pool 3, and the liquid level 3a of the molten metal sump 3 is cooled. drum l
Disturbance of the molten metal is suppressed at the point where it comes into contact with a and lb, that is, near the meniscus 11. This makes it possible to stabilize the conditions for producing the solidified shell 9 and to produce a metal ribbon with less variation in thickness.

注湯ノズル7を浸漬する深さは、具体的には次のように
して定められる。乱流域の高さHは、注湯ノズル7から
の溶融金属流出速度ひ。(m/秒)及び第2図(d)で
示す流出口8から冷却ドラムla。
Specifically, the depth to which the pouring nozzle 7 is immersed is determined as follows. The height H of the turbulent area is determined by the flow rate of molten metal from the pouring nozzle 7. (m/sec) and the cooling drum la from the outlet 8 shown in FIG. 2(d).

1b周面までの水平距離I2(m)との間に、次式で示
す関係にある。
There is a relationship between horizontal distance I2 (m) to the circumferential surface of 1b as shown in the following equation.

H= k−v o・l I/4 =k・(Q/d−w)・11/4 ・・・(1)ただし
、Qは、吐出流量(m”7秒) dは、流出口8の高さ(m) Wは、流出口8の幅(m) (11式は、主に水モデル実験の結果で得られた式であ
るが、乱流域の高さHは、溶融金属流出速度び。に比例
し、注湯ノズル7の流出口8と冷却ドラムla、 lb
周面までの距離lの1/4乗に比例した。比例定数には
実機の0.6倍の規模の水モデルでに=2が得られた。
H= k-v o・l I/4 =k・(Q/d-w)・11/4...(1) However, Q is the discharge flow rate (m"7 seconds) d is the outlet 8 height (m) W is the width of the outlet 8 (m) (Equation 11 is an equation obtained mainly from the results of water model experiments, but the height H of the turbulent area is determined by the molten metal outflow velocity. and the outlet 8 of the pouring nozzle 7 and the cooling drum la, lb
It was proportional to the 1/4th power of the distance l to the circumferential surface. For the proportionality constant, a value of 2 was obtained using a water model that was 0.6 times larger than the actual model.

この値をフルード数を一致させて、実機にあてはめると
に=3程度の値となる。
If this value is applied to the actual machine by matching the Froude number, the value will be approximately 3.

ここで、吐出流IQは、鋳造速度tz、(m/秒)と鋳
造する金属薄帯の板厚t(m)との関係において、次式
で表される。
Here, the discharge flow IQ is expressed by the following equation in the relationship between the casting speed tz, (m/sec) and the thickness t (m) of the metal ribbon to be cast.

Q=tr、、t        ・・・(2)したがっ
て、乱流域の高さHを表す(1)式は、次の(3)式に
書き替えられる。
Q=tr,,t...(2) Therefore, the equation (1) expressing the height H of the turbulent area can be rewritten as the following equation (3).

−w 乱流域の高さHは、流出口8の中心からの値である。こ
の乱流域の高さHが湯溜り部3の液面3aよりも低いと
きには、乱流の影響がメニスカス11に現れず、安定し
た条件下で凝固シェル9の生成が開始される。ところで
、同一の設備構成においては流出口8の高さd及び幅W
は一定であり、また同一サイズの金属薄帯を製造する場
合には鋳造板厚を及び水平距離lも一定となる。したが
って乱流域の高さHは、鋳造速度びRに比例した値とな
る。
-w The height H of the turbulent area is the value from the center of the outlet 8. When the height H of this turbulent region is lower than the liquid level 3a of the sump 3, the effect of turbulence does not appear on the meniscus 11, and the formation of the solidified shell 9 starts under stable conditions. By the way, in the same equipment configuration, the height d and width W of the outlet 8
is constant, and when manufacturing thin metal strips of the same size, the thickness of the cast plate and the horizontal distance l are also constant. Therefore, the height H of the turbulent region has a value proportional to the casting speed R.

このようにして、鋳造速度vl との関係において乱流
域の高さ■1を設定するとき、メニスカス11の近傍に
乱流が生じず、凝固シェル9の生成がドラム軸方向に関
して均一になる。その結果、ドラムギャップで圧接され
る凝固シェル9に均一な圧下刃が働き、疵9割れ、m等
がない優れた表面性状の金属薄帯が得られる。
In this way, when the height of the turbulent region 1 is set in relation to the casting speed vl, turbulence does not occur near the meniscus 11, and the solidified shell 9 is uniformly formed in the drum axial direction. As a result, a uniform reduction blade acts on the solidified shell 9 that is pressed against the drum gap, and a metal ribbon with excellent surface properties and no scratches, cracks, m, etc. is obtained.

〔実施例〕〔Example〕

径120On++nでドラム軸方向長さ800mの冷却
ドラムを対として配置し、定常状態でドラム軸方向長さ
800sで幅280m++nの湯溜り部を形成した。こ
の湯溜り部に注湯ノズルを浸漬し、5US304のステ
ンレス鋼組成をもち温度1465℃の溶鋼を600〜1
400kg/分の流量で注入した。
Cooling drums each having a diameter of 120On++n and a length of 800m in the axial direction of the drums were arranged as a pair, and a pool portion with a length of 800s in the axial direction of the drums and a width of 280m++n was formed in a steady state. A pouring nozzle is immersed in this pool, and molten steel having a stainless steel composition of 5US304 and a temperature of 1465°C is poured into
It was injected at a flow rate of 400 kg/min.

第1図は、得られた金属薄帯の割れの発生限界を、注湯
ノズルの浸漬深さ、鋳造速度との関係において表したグ
ラフである。図中、板厚2關と4mIIIについて、そ
れぞれ割れの発生限界を示した。
FIG. 1 is a graph showing the crack occurrence limit of the obtained metal ribbon in relation to the immersion depth of the pouring nozzle and the casting speed. In the figure, the crack occurrence limits are shown for plate thicknesses of 2 mm and 4 mm, respectively.

いずれの場合1;も割れ発生を防止するためには、湯面
変動量を4 s以下に抑えることが必要であった。すな
わち、実際に鋳造しているときに、冷却ドラムと溶爛面
が接しているメニスカス部をビデオカメラで観察して、
メニスカス部の挙動と金属薄帯に発生している縦割れの
位置とを対応させると、湯面変動量が4 mm以上ある
と縦割れが発生するという結果を得ることができた。こ
の4 mmの湯面変動量発生限界線も鋳造速度、注湯ノ
ズルの浸漬深さとの関係において整理できて、それは第
1図の割れ発生限界線と一致した。
In either case 1, in order to prevent the occurrence of cracks, it was necessary to suppress the amount of fluctuation in the molten metal level to 4 seconds or less. In other words, during actual casting, the meniscus area where the cooling drum and molten surface are in contact is observed with a video camera, and
By correlating the behavior of the meniscus portion with the position of vertical cracks occurring in the metal ribbon, we were able to obtain the result that vertical cracks occur when the level fluctuation is 4 mm or more. This 4 mm level fluctuation occurrence limit line could also be arranged in relation to the casting speed and the immersion depth of the pouring nozzle, and it coincided with the crack occurrence limit line in Figure 1.

湯面変動量を4 +nm以下にするため、注湯ノズルの
浸漬深さを鋳造速度との関係で規制する手段を採用した
。すなわち、板厚2ml11の金属薄帯を製造するとき
、第1図へに示すように鋳造速度が50m/分(−0,
83m/秒)と遅いときには、注湯ノズルの浸漬深さが
30mmであれば、第2図(C)を使用して説明した乱
流域が湯溜り部3の液面3aに達することなく湯面変動
量は4 +nm以下となり、安定した条件下で凝固シェ
ル9の成長が行われた。しかし、第1図已に示すように
速度が72m/分(=1.2m/秒)の条件では、ノズ
ル浸漬深さが同様に30市であっても湯面変動量は3 
mmと大きくなり、金属薄帯表面に縦割れが現れた。ま
た、第1図Cに示すように鋳造速度を120 m /分
(=2.Om/秒)まで増加させたとき、注湯ノズルの
浸漬深さを60+nmと大きくすることにより、湯溜り
部3の液面3aに乱流域の影響が現れることを防止し、
割れのない金属薄帯を製造することができた。しかし、
速度を更に増して、第1図りに示すようにノズル浸漬深
さ60mm、  鋳造速度132m/分(2,2m /
秒)テハ割しカ検出された。
In order to keep the level fluctuations below 4 + nm, a method was adopted to regulate the immersion depth of the pouring nozzle in relation to the casting speed. That is, when manufacturing a metal ribbon with a plate thickness of 2 ml11, the casting speed is 50 m/min (-0,
83 m/sec), if the immersion depth of the pouring nozzle is 30 mm, the turbulent area explained using Fig. 2 (C) will not reach the liquid level 3a of the pool 3 and the hot water level will rise. The amount of variation was 4 + nm or less, and the solidified shell 9 was grown under stable conditions. However, as shown in Figure 1, when the speed is 72 m/min (=1.2 m/sec), even if the nozzle immersion depth is 30 mm, the amount of fluctuation in the melt level is 3.
mm, and vertical cracks appeared on the surface of the metal ribbon. Furthermore, when the casting speed is increased to 120 m/min (=2.0m/sec) as shown in Fig. to prevent the influence of the turbulent region from appearing on the liquid level 3a,
We were able to produce a metal ribbon without cracks. but,
The speed was further increased to a nozzle immersion depth of 60 mm and a casting speed of 132 m/min (2.2 m/min) as shown in the first diagram.
(Seconds) Detection of overload.

さらに板厚4印の金属薄帯を製造するとき、注湯ノズル
の浸漬深さを一定値80m+nに維持して鋳造速度を変
化させたところ、鋳造速度80m/分(−1、33m 
/秒、第1図E)では金属薄帯の表面に割れがみられな
かった。しかし、鋳造速度が84m/分(=1.4 m
/秒、第1図F)を超えたとき、多数の割れが表面に検
出された。
Furthermore, when manufacturing a metal ribbon with a plate thickness of 4 marks, the immersion depth of the pouring nozzle was maintained at a constant value of 80 m + n and the casting speed was varied.
/second (Fig. 1E), no cracks were observed on the surface of the metal ribbon. However, the casting speed was 84 m/min (=1.4 m
/second, Figure 1F), a large number of cracks were detected on the surface.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように、本発明においては、鋳造速度の
増加に伴って注湯ノズルの浸漬深さを大きくすることに
より、注)易ノズルから噴出される溶融金属によって生
じる乱流の影響がメニスカス近傍に現れることを防止し
ている。したがって、冷却ドラムの周面で最初に生じる
凝固シェルの生成条件が安定したものとなり、幅方向に
関する肉厚変動の少ない凝固シェルがドラムギャップで
圧下される。その結果、不均一な圧下刃が凝固シェルに
作用することがなく、得られた金属薄帯の表面性状は優
れたものとなる。
As explained above, in the present invention, by increasing the immersion depth of the pouring nozzle as the casting speed increases, the influence of the turbulent flow caused by the molten metal spouted from the easy nozzle can be reduced. This prevents them from appearing in the vicinity. Therefore, the conditions for producing the solidified shell that first occurs on the circumferential surface of the cooling drum are stable, and the solidified shell with less variation in wall thickness in the width direction is rolled down in the drum gap. As a result, the uneven rolling blade does not act on the solidified shell, and the surface quality of the obtained metal ribbon is excellent.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の効果を具体的に表したグラフであり、
第2図は湯溜り部における溶融金属の挙動を説明するた
めの図である。他方、第3図は、従来のツインドラム方
式の連続鋳造機を示す。 特許出願人    新日本製鐵 株式會社(ほか1名) 代 理 人     小 堀   益 (ほか2名)第
 1  図 V*(m/′s) 竿 2  図 十d カス −の高ピ ]8の漕 」 中 3  図 b 1さ
FIG. 1 is a graph specifically showing the effects of the present invention.
FIG. 2 is a diagram for explaining the behavior of molten metal in the sump. On the other hand, FIG. 3 shows a conventional twin-drum type continuous casting machine. Patent applicant: Nippon Steel Corporation (and 1 other person) Agent: Masu Kobori (and 2 others) Fig. 1 V* (m/'s) Rod 2 Fig. 1d High pitch of caster] Row 8 ” Middle 3 Figure b 1

Claims (1)

【特許請求の範囲】[Claims] 1、一対の冷却ドラムの間に形成された湯溜り部に供給
した溶融金属を急冷・凝固して金属薄帯を製造する際、
前記湯溜り部に浸漬した注湯ノズルの溶融金属流出口か
ら前記湯溜り部の液面までの距離を、鋳造速度に比例し
て増加又は減少させることを特徴とする金属薄帯の連続
鋳造方法。
1. When manufacturing a metal ribbon by rapidly cooling and solidifying molten metal supplied to a pool formed between a pair of cooling drums,
A continuous casting method for a metal ribbon, characterized in that the distance from the molten metal outlet of a pouring nozzle immersed in the molten metal pool to the liquid level in the molten metal pool is increased or decreased in proportion to the casting speed. .
JP5669188A 1988-03-09 1988-03-09 Continuous casting method for metal ribbon Expired - Fee Related JPH07106430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5669188A JPH07106430B2 (en) 1988-03-09 1988-03-09 Continuous casting method for metal ribbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5669188A JPH07106430B2 (en) 1988-03-09 1988-03-09 Continuous casting method for metal ribbon

Publications (2)

Publication Number Publication Date
JPH01228651A true JPH01228651A (en) 1989-09-12
JPH07106430B2 JPH07106430B2 (en) 1995-11-15

Family

ID=13034475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5669188A Expired - Fee Related JPH07106430B2 (en) 1988-03-09 1988-03-09 Continuous casting method for metal ribbon

Country Status (1)

Country Link
JP (1) JPH07106430B2 (en)

Also Published As

Publication number Publication date
JPH07106430B2 (en) 1995-11-15

Similar Documents

Publication Publication Date Title
KR100749024B1 (en) Continuous casting method using melting mold flux
JPH0459155A (en) Open channel method and device for casting strip-like body
JPH0570537B2 (en)
JPH01228651A (en) Method for continuously casting metal strip
JPH01228649A (en) Nozzle for continuous casting for wide cast strip
JPH0342144A (en) Method for cooling mold for continuous casting and mold thereof
JPS62270254A (en) Method and apparatus for producing directly metal strip
JP3101069B2 (en) Continuous casting method
JPH0519166Y2 (en)
JPH03198951A (en) Method and apparatus for continuously casting cast strip
KR200188747Y1 (en) Device of continuous thin slab casting for twin roll type
JPH0712524B2 (en) Method of pouring metal in continuous casting apparatus for thin metal strip
JPH11192539A (en) Method for continuous casting of chromium-containing molten steel having excellent internal defect resistance
JPH0255643A (en) Method and nozzle for continuously casting metal strip
JPH0377751A (en) Nozzle device for producing amorphous alloy strip
JPH0646598Y2 (en) Immersion nozzle for continuous casting of thin metal strip
JPS6087956A (en) Continuous casting method of metal
JPS62252649A (en) Divagating flow control method in mold for molten steel continuous casting
JPS63215345A (en) Pouring apparatus for twin roll type continuous casting machine
JPH01133644A (en) Method for starting casting in twin roll type continuous casting machine
JP3117409B2 (en) Belt type thin slab caster
KR100489238B1 (en) Method for Manufacturing Strip Using Twin Roll Strip Caster
JPH02258152A (en) Continuous casting method
JPH0355219B2 (en)
JPH02290652A (en) Twin roll casting method for aluminum alloy

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees