JPH01227681A - Variable speed controller for induction motor - Google Patents

Variable speed controller for induction motor

Info

Publication number
JPH01227681A
JPH01227681A JP63050607A JP5060788A JPH01227681A JP H01227681 A JPH01227681 A JP H01227681A JP 63050607 A JP63050607 A JP 63050607A JP 5060788 A JP5060788 A JP 5060788A JP H01227681 A JPH01227681 A JP H01227681A
Authority
JP
Japan
Prior art keywords
current
torque
value
motor
target value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63050607A
Other languages
Japanese (ja)
Other versions
JPH0767319B2 (en
Inventor
Hiroshi Osawa
博 大沢
Makoto Hashii
眞 橋井
Osamu Motoyoshi
元吉 攻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP63050607A priority Critical patent/JPH0767319B2/en
Publication of JPH01227681A publication Critical patent/JPH01227681A/en
Publication of JPH0767319B2 publication Critical patent/JPH0767319B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To realize the high response and accurate torque control of an induction motor by setting a torgue current target value in which the iron loss of the motor is estimated. CONSTITUTION:A speed regulator 5 outputs a torque current target value i''T in response to a deviation between a speed set value omega' 2 and an actual speed value omega2. An adder 7 adds the value i''T to an iron loss current set value io tO obtain a torque current target value i'T. Current regulators 13, 14 calculate 2-axis voltage target values V'M, V'T on the basis of a magnetization current target value i'M, a magnetization current iM, a torque current target value i'M and a torque current iT. A coordinates converter 15 converts the values V'M, V'T into 2-axis voltage target value V'alpha, V'beta on the basis of the phase angle phiof a magnetic flux vector obtained by integrating the angular speed omegaS of a magnetic flux vector and the actual speed value omega2 of a motor, and supplies it to a firing pulse generator 16.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ベクトル制御を基礎技術とした誘導電動機の
高精度な可変速制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a highly accurate variable speed control device for an induction motor using vector control as a basic technology.

〔従来の技術〕[Conventional technology]

第6図は、かかるベクトル制御による誘導電動機の可変
速制御装置の従来例を示すブロック図である。
FIG. 6 is a block diagram showing a conventional example of a variable speed control device for an induction motor using such vector control.

同図において、1は直流電源PNを3相電源に変換する
インバータ、2は制御対象である誘導電動機、6は速度
検出器であシ例えばパルス発振器を用いる。制御装置は
、速度設定器4、速度調節器5、磁化電流設定器8、す
ベシ演算器9、積分器10.3相/2相変換器11、座
標回転器(VD)12,15、電流調節器13,14、
点弧パルス発生器16、で構成される。
In the figure, 1 is an inverter that converts a DC power source PN into a three-phase power source, 2 is an induction motor to be controlled, and 6 is a speed detector, for example, a pulse oscillator is used. The control device includes a speed setter 4, a speed regulator 5, a magnetizing current setter 8, a speed calculator 9, an integrator 10, a 3-phase/2-phase converter 11, a coordinate rotator (VD) 12, 15, and a current regulators 13, 14,
It consists of an ignition pulse generator 16.

定匝ω2 と速度検出器6の出力から求まる速度実際値
ω2との偏差を増幅し、その出力はトルク電流の目標f
[iT となる。8はすでに述べたように、から下記(
1)式に従い、電動機の磁束ベクトルの角、速度ω8を
演算するすベシ演算器である。
The deviation between the constant force ω2 and the actual speed value ω2 determined from the output of the speed detector 6 is amplified, and the output is the target f of the torque current.
[It becomes iT. 8, as already mentioned, from below (
This is a speed calculator that calculates the angle of the magnetic flux vector of the motor and the speed ω8 according to equation 1).

な訃磁束べ久トルの角速度ω8は定常状態では誘導電動
機のすベシ周波数に相当する。
The angular velocity ω8 of the magnetic flux vector corresponds to the overall frequency of the induction motor in a steady state.

、ただし Kは比例定数 r2′は誘導電動機の2次抵抗 t□は誘導電動機の励磁インダクタンスpは微分演算子 T2− (t2’ + 1m) / r 2 ’t2′
は誘導電動機の2次のもれ インダクタンス 磁束ベクトルの角速度ω8と電動機の速度実際値ω は
積分器10で加算したのち積分し、回転子に対する磁束
ベクトルの位相角ψを得る。11は、すでに述べたよう
に電動機電流を直交した2相電流−21βに変換する3
相/2相変換器で、その値を座標回転器12で座標軸を
ψだけ回転することによシ磁化電流−とトルク電流IT
を得る。磁化電流1.トルク電流ITはそれぞれ電流調
節器13と14に入力され、該電流調節器13と14は
それぞれiM′*と1M、IT*とiTの偏差を増幅す
る。それぞれの出力は電動機の2軸電圧目標値VMとv
Tに相当し、VM * YT は座標変換器15で2相
の電圧目標値v*#vβ9に変α 換される。Vα 、Vβ、よシ点弧パルス発生器16に
5インバータのスイッチングが行われる。
, where K is the proportionality constant r2' is the secondary resistance of the induction motor t□ is the excitation inductance of the induction motor p is the differential operator T2- (t2' + 1m) / r 2 't2'
The angular velocity ω8 of the secondary leakage inductance magnetic flux vector of the induction motor and the actual speed value ω of the motor are added by an integrator 10 and then integrated to obtain the phase angle ψ of the magnetic flux vector with respect to the rotor. 11 is 3 which converts the motor current into orthogonal two-phase current -21β as already mentioned.
In the phase/two-phase converter, by rotating the coordinate axis by ψ with the coordinate rotator 12, the value is converted into magnetization current - and torque current IT.
get. Magnetizing current 1. The torque current IT is input to current regulators 13 and 14, respectively, which amplify the deviations between iM'* and 1M, and between IT* and iT, respectively. Each output is the motor's two-axis voltage target value VM and v
VM*YT is converted into a two-phase voltage target value v*#vβ9 by the coordinate converter 15. The switching of five inverters is performed in the ignition pulse generator 16 for Vα, Vβ, and the like.

なお主制御対象がトルクの場合には速度設定器4、速度
調節器5は不要であり、トルクの所望値に対応し・てl
Tを与えればよい。
Note that when the main control target is torque, the speed setter 4 and the speed regulator 5 are not necessary, and the speed setting device 4 and the speed adjuster 5 are
Just give T.

以上が交流電動機の高性能なトルク制御技術として知ら
れるベクトル制御の概要である。
The above is an overview of vector control, which is known as a high-performance torque control technology for AC motors.

〔発明が解決しよう、とする課題〕[Problem that the invention aims to solve]

ベクトル制御は、すでに述べたように、交流電動機の磁
束や電流等をさクトル量として取シ扱い、磁束ベクトル
に平行し磁束発生に寄与する電流成分(磁化電流)と、
同ベクトルに直交しトルク発生に寄与する電流成分(ト
ルク電流)を独立に制御することによシ、交流電動機の
高性能なトルク制御を可能とする。しかるに、これまで
のベクトル制御においては、交流電動機の鉄損に関して
は言及されておらず、鉄損は微少であるとの仮定のもと
に無視されている。
As already mentioned, vector control treats the magnetic flux, current, etc. of an AC motor as a vector quantity, and uses a current component (magnetizing current) that is parallel to the magnetic flux vector and contributes to magnetic flux generation.
By independently controlling the current component (torque current) that is perpendicular to the same vector and contributes to torque generation, high-performance torque control of the AC motor is possible. However, in conventional vector control, no mention is made of the iron loss of the AC motor, and the iron loss is ignored on the assumption that it is minute.

鉄損を無視する影響は、所望トルクに崎し、実際に発生
するトルクに誤差を生じる。特にiL制御を行う用途で
畔、良好なトルク制御精度が必要とされるが、鉄損に起
因するトル(制御誤差は数%に達することも、あ〕、鉄
準は無視できるとは云い難い。
The effect of ignoring iron loss is to reduce the desired torque and cause an error in the actually generated torque. In particular, good torque control accuracy is required for applications that perform iL control, but it is difficult to say that torque caused by iron loss (control error can reach several percent) and iron standard can be ignored. .

本発明の目的は、誘導電動機の鉄損を考慮し、鉄損分を
予め見込んだトルク電流目標値を設定することによシ、
誘導電動機の高応答、高精度なトルク制御を実現する誘
導電動機の可変速制御装置を提供することにある。
An object of the present invention is to take the iron loss of the induction motor into consideration and set a torque current target value that takes into account the iron loss in advance.
An object of the present invention is to provide a variable speed control device for an induction motor that achieves high response and highly accurate torque control of the induction motor.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的達成のため、本発明では、ベクトル制御による
誘導電動機の可変遠制−装置において、鉄損電流分とし
て電動機特性で決まる所定随と、所望トルクに対応する
トルク電流値と、の和を設定するトルク電流目標値設定
手段を具備した。
To achieve the above object, in the present invention, in a variable remote control device for an induction motor using vector control, the sum of a predetermined constant determined by motor characteristics as an iron loss current and a torque current value corresponding to a desired torque is set. The torque current target value setting means is provided.

〔作用〕[Effect]

誘導電動機の鉄損を考慮するならば、磁束ベクトルに直
交する電流成分は、本来のトルク発生に寄与するトルク
電流と熱損失となC)ルク発生に寄与しない鉄損電流に
分類される。kおトルク電流の概念を明確にするため、
以後、従来のトルク電流を第1のトルク電流、本発明に
従い本来のトルク発生に寄与するトルク電流を第2のト
ルク電流とよぶことにす為=各電波は次式の関係と゛な
る。
Considering the iron loss of an induction motor, the current component orthogonal to the magnetic flux vector is classified into a torque current that contributes to the original torque generation, a heat loss, and C) an iron loss current that does not contribute to torque generation. To clarify the concept of torque current,
Hereinafter, the conventional torque current will be referred to as the first torque current, and the torque current that contributes to the original torque generation according to the present invention will be referred to as the second torque current.

第1のトルク電流−第2のトルク電流+鉄損電流1. 
      ・・・・・・、(2)本発明では、その単
連に従い、所望トルクに対些して第2のトルク電眸を制
御し、鉄損電流は電動機特性で決まる所定IQ供給し、
よつ、て高精度なトルク制御を実現する。オ牟誘導電勢
機の2次磁束が一定のとき、トルク止すベシ周波数は比
例するため、すベシ周波数は所望トルクに対応した第2
のトルク電流に比例し、て制御ifする。
First torque current - second torque current + iron loss current 1.
(2) In the present invention, according to the single series, the second torque electric power is controlled depending on the desired torque, and the iron loss current is supplied at a predetermined IQ determined by the motor characteristics,
Realizes highly accurate torque control. When the secondary magnetic flux of the induction energizer is constant, the frequency at which the torque is stopped is proportional, so the frequency at which the torque is stopped is the second frequency corresponding to the desired torque.
is proportional to the torque current of , and is controlled accordingly.

〔実施例〕〔Example〕

第1図は本発明の一実施例を示すブロック図である。第
1図を従来技術を示した第6図と比較すると、鉄損電流
設定器6と加算器7が図示の如く追加された点で相違す
るだけで、他は変わらないことが分かる。
FIG. 1 is a block diagram showing one embodiment of the present invention. Comparing FIG. 1 with FIG. 6 showing the prior art, it can be seen that the only difference is that an iron loss current setting device 6 and an adder 7 are added as shown in the figure, and other things are the same.

第1図において、速度調節器5は、速度設定値* ω2 と速度検出器3の出力から求まる速度実際値ω2
との偏差を増幅し、その出力は所望トルクに対応した第
2のトルク電流の目標値iT1*となる。
In FIG. 1, the speed regulator 5 calculates the actual speed value ω2 determined from the speed setting value *ω2 and the output of the speed detector 3.
The output becomes the target value iT1* of the second torque current corresponding to the desired torque.

6は電動機特性で決まる鉄損電流値を4える鉄損電流設
定器で、その設定値I。とIT  は加算器* 7に入力され、第1のトルク電流の目標1lfiTを得
る。これ以後の回路動作は第6図を診照して既に述べた
所と全く同じであるので、ここに繰シ返す必要はないで
あろう。
6 is an iron loss current setting device that increases the iron loss current value determined by the motor characteristics by 4, and its setting value I. and IT are input to an adder *7 to obtain the first torque current target 1lfiT. Since the subsequent circuit operation is exactly the same as that already described with reference to FIG. 6, there is no need to repeat it here.

次に鉄損電流設定器の具体例について説明する。Next, a specific example of the iron loss current setting device will be explained.

一般に、鉄損は磁束1の変化に起因して生じ、その値は
dF/dtに依存する。いま−相の磁束を’ 5ill
 6’ 1 iとする゛とdF/dtは次の(3)式と
なる。
Generally, iron loss occurs due to a change in magnetic flux 1, and its value depends on dF/dt. Now - phase magnetic flux ' 5ill
6′ 1 i, and dF/dt are expressed by the following equation (3).

dF/dt=ωWωSω1t      ・・・・・・
(3)すなわち磁束の回転が双方向の場合(ω1が両極
性の場合)、回転方向によって鉄損電流の極性は変化す
る。第2図はω1が両極性の場合の鉄損電流設定器の構
成例を示すブロック図である。
dF/dt=ωWωSω1t ・・・・・・
(3) That is, when the rotation of the magnetic flux is bidirectional (when ω1 is bipolar), the polarity of the iron loss current changes depending on the rotation direction. FIG. 2 is a block diagram showing a configuration example of an iron loss current setting device when ω1 is bipolar.

第2図において、6は鉄損電流の設定器、6Aはω1の
極性を判定する比較器、6Bは極性を反転する反転器、
6Cは比較器6Aの出力によってそのオン/オフを行う
切換器である。すなわちω。
In FIG. 2, 6 is an iron loss current setting device, 6A is a comparator for determining the polarity of ω1, 6B is an inverter for reversing the polarity,
6C is a switch that turns on/off according to the output of the comparator 6A. In other words, ω.

〉0のときは鉄損電流i。は設定器6の設定直に、ω1
〈0のときはi。は設定器6の設定値の逆極性となる。
〉0, iron loss current i. is ω1 immediately after the setting of the setting device 6.
〈If 0, then i. has the opposite polarity of the setting value of the setting device 6.

第3図は鉄損電流設定器の別の構成例を示すブロック図
である。第3図において、ω1は、鉄損電流のω1に対
する関数が記憶された関数発生器6Dに入力される。磁
束の大きさVは、鉄損電流のVに対する関数が記憶され
た関数発生器6Eに入力される。各関数発生器の出力は
乗算器6Fで乗算され、磁化電流i。を得る。
FIG. 3 is a block diagram showing another example of the configuration of the iron loss current setting device. In FIG. 3, ω1 is input to a function generator 6D in which a function of iron loss current to ω1 is stored. The magnitude V of the magnetic flux is input to a function generator 6E in which a function for V of iron loss current is stored. The output of each function generator is multiplied by a multiplier 6F to produce a magnetizing current i. get.

第4図は関数発生器6Dに記憶された関数の例を示すグ
ラフである。第5図は関数発生器6Eに記憶された関数
の例を示すグラフでおる。なお1は次式で求まる。
FIG. 4 is a graph showing an example of functions stored in the function generator 6D. FIG. 5 is a graph showing an example of functions stored in the function generator 6E. Note that 1 is determined by the following formula.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、ベクトル制御による誘導電動機の可
変速制御装置において、誘導電動機の鉄損を考慮して各
株制muを求めるため、トルクの制御]WI度が向上す
るという利点がある。
According to the present invention, in a variable speed control device for an induction motor using vector control, since each stock control mu is determined taking into account the iron loss of the induction motor, there is an advantage that the WI degree (torque control) is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例としての誘導電動機の可変速
制御装置を示すブロック図、第2図、第6図はそれぞれ
本発明の実施例において用いる鉄損電流設定器の構成例
を示すブロック図、第4図は第3図における関数発生器
6Dの関数例を示すグラフ、第5図は第3図における関
数発生器6Eの関数例を示すグラフ、第6図は誘導電動
機のベクトル制御による可変制御装置の従来例を示すブ
ロック図、である。 符号の説明 =9− 1・・・・・・インバータ、2・・・・・・誘導電動機
、3・・・・・・速度検出器、4・・・・・・速度設定
器、5・・・・・・速度調節器、6・・・・・・鉄損電
流設定器、7・・・・・・加算器、13゜14・・・・
・・電流調節器、12.15・・・・・・座標回転器、
16・・・・・・点弧パルス発生器 代理人 弁理士 並 木 昭 夫 代理人 弁理士 松 崎    清   1n−
FIG. 1 is a block diagram showing a variable speed control device for an induction motor as an embodiment of the present invention, and FIGS. 2 and 6 each show a configuration example of an iron loss current setting device used in the embodiment of the present invention. Block diagram, FIG. 4 is a graph showing a function example of the function generator 6D in FIG. 3, FIG. 5 is a graph showing a function example of the function generator 6E in FIG. 3, and FIG. 6 is a vector control of an induction motor. 1 is a block diagram illustrating a conventional example of a variable control device according to. Explanation of symbols = 9- 1...Inverter, 2...Induction motor, 3...Speed detector, 4...Speed setter, 5... ... Speed regulator, 6 ... Iron loss current setting device, 7 ... Adder, 13゜14 ...
...Current regulator, 12.15...Coordinate rotator,
16...Ignition pulse generator representative Patent attorney Akio Namiki Patent attorney Kiyoshi Matsuzaki 1n-

Claims (1)

【特許請求の範囲】 1)出力電圧の大きさ、周波数および位相の制御が可能
な電力変換器を介して給電される誘導電動機の一次電流
を該電動機の磁束と平行な成分(磁化電流)とこれに直
交する成分(トルク電流)とに分離し、各々を独立に調
整して少なくとも電動機トルクを制御する誘導電動機の
可変速制御装置において、 前記トルク電流の調整のために設定するトルク電流目標
値として、熱損失となりトルク発生に寄与しない鉄損電
流分を考慮に入れ、該鉄損電流分として電動機特性で決
まる所定値と、所望トルクに対応するトルク電流値と、
の和を設定するトルク電流目標値設定手段を具備したこ
とを特徴とする誘導電動機の可変速制御装置。
[Claims] 1) The primary current of an induction motor supplied via a power converter that can control the magnitude, frequency and phase of the output voltage is a component parallel to the magnetic flux of the motor (magnetizing current). In a variable speed control device for an induction motor, which separates a component (torque current) orthogonal to the torque current into a component (torque current) and adjusts each independently to control at least the motor torque, a torque current target value is set for adjusting the torque current. Taking into account the iron loss current that becomes heat loss and does not contribute to torque generation, a predetermined value determined by the motor characteristics as the iron loss current, and a torque current value corresponding to the desired torque,
1. A variable speed control device for an induction motor, comprising a torque current target value setting means for setting the sum of .
JP63050607A 1988-03-05 1988-03-05 Variable speed controller for induction motor Expired - Lifetime JPH0767319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63050607A JPH0767319B2 (en) 1988-03-05 1988-03-05 Variable speed controller for induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63050607A JPH0767319B2 (en) 1988-03-05 1988-03-05 Variable speed controller for induction motor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP8166512A Division JP2625663B2 (en) 1996-06-27 1996-06-27 Variable speed control device for induction motor

Publications (2)

Publication Number Publication Date
JPH01227681A true JPH01227681A (en) 1989-09-11
JPH0767319B2 JPH0767319B2 (en) 1995-07-19

Family

ID=12863654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63050607A Expired - Lifetime JPH0767319B2 (en) 1988-03-05 1988-03-05 Variable speed controller for induction motor

Country Status (1)

Country Link
JP (1) JPH0767319B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03112390A (en) * 1989-09-25 1991-05-13 Fuji Electric Co Ltd Variable speed controller for induction motor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101535036B1 (en) * 2014-08-25 2015-07-24 현대자동차주식회사 Apparatus and Method for compensating torque about current order of driving motor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS576585A (en) * 1980-06-13 1982-01-13 Nippon Yusoki Co Ltd Controller for commutatorless motor
JPS6248198U (en) * 1985-08-22 1987-03-25

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS576585A (en) * 1980-06-13 1982-01-13 Nippon Yusoki Co Ltd Controller for commutatorless motor
JPS6248198U (en) * 1985-08-22 1987-03-25

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03112390A (en) * 1989-09-25 1991-05-13 Fuji Electric Co Ltd Variable speed controller for induction motor

Also Published As

Publication number Publication date
JPH0767319B2 (en) 1995-07-19

Similar Documents

Publication Publication Date Title
JPS58123394A (en) Controller for ac motor
JPS6024676B2 (en) Device that controls a permanent magnet synchronous motor
JPH05308793A (en) Control circuit for power conversion device
JPH01227681A (en) Variable speed controller for induction motor
JP2000341983A (en) Controller for embedded magnet type synchronous motor
JP2625663B2 (en) Variable speed control device for induction motor
JPS6176089A (en) Vector controller for induction motor
JP2909736B2 (en) Induction motor control device
SU942230A1 (en) Electric drive
JPH0632581B2 (en) Induction motor controller
JPS60219983A (en) Drive controller of induction motor
RU2385530C1 (en) Method for stabilisation of power gyrostabiliser rotation torque
JP3124019B2 (en) Induction motor control device
JPH1118498A (en) Controller for servo motor
JPH0716320B2 (en) Variable speed controller for induction motor
JPH0568391A (en) Slip compensation circuit in vector control of induction motor
JPH05146191A (en) Controller for synchronous motor
Qin Constant rate magnetic weakening control method of brushless DC motor based on current advance angle method
JPH02219489A (en) Vector control method for induction motor
JPS583586A (en) Torque controller for thyristor motor
JPS609434B2 (en) Magnetic flux phase control device
JPH0412698A (en) Control method for voltage type pwm inverter
RU2382334C1 (en) System for stabilising torque of powered gyrostabilisers
JP2623821B2 (en) Variable speed drive for salient pole synchronous motor
JPS5828831B2 (en) Induction motor control device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 13