JPH01227675A - Motor controller - Google Patents

Motor controller

Info

Publication number
JPH01227675A
JPH01227675A JP63048769A JP4876988A JPH01227675A JP H01227675 A JPH01227675 A JP H01227675A JP 63048769 A JP63048769 A JP 63048769A JP 4876988 A JP4876988 A JP 4876988A JP H01227675 A JPH01227675 A JP H01227675A
Authority
JP
Japan
Prior art keywords
controller
output
transfer function
control
controlled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63048769A
Other languages
Japanese (ja)
Inventor
Seiichi Kobayashi
誠一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP63048769A priority Critical patent/JPH01227675A/en
Publication of JPH01227675A publication Critical patent/JPH01227675A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Electric Motors In General (AREA)

Abstract

PURPOSE:To obtain a motor controller which is strong against disturbance by so setting a transfer function of feed-forward controlling as to become the sum of the denominator of the function of an object to be controlled and the transfer function of a proportional-differentiation controller. CONSTITUTION:An output obtained by adding the output theta of an object 3 to be controlled to a proportional-differentiation controller 5 is subtracted from an output obtained by adding a deviation (e) between a command value U and the output theta to a proportional integrating controller 4. Further, the value U added with the output obtaining through a feed-forward unit 2 to the subtracted output is supplied to the object 3 to be controlled. Here, the transfer function of the unit 5 is so set as to become the sum of the denominator of the function of the object 3 to be controlled and the function of the controller 5. Thus, a motor can control a high response without delay with respect to a motor command.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、モータの制御装置に関する。[Detailed description of the invention] [Industrial application fields] The present invention relates to a motor control device.

[従来の技術] 一般に、モータのトルクをT、慣性モーメントをJ、粘
性摩擦係数(機械抵抗)をD、回転角をθとすると、ブ
ロック線図は第4図のようになり、回転角とトルクの関
係は と表わされる。
[Prior Art] Generally, when the torque of a motor is T, the moment of inertia is J, the coefficient of viscous friction (mechanical resistance) is D, and the rotation angle is θ, the block diagram is as shown in Fig. 4, and the rotation angle and The torque relationship is expressed as.

モータのような機械系では、トルクTは(rは入力) で与えられるから、 (J s2 +Ds)θ=A r+B sθと書くこと
ができる。これをブロック線図で示すと第5図のように
なり、入力rから出力θまでの伝達関数G (s)は となる。慣性モーメント及び機械抵抗が変化しない機械
系(それらの変化が無視できる場合を含む)では、A=
J、B=Dであるから、 となる。
In a mechanical system such as a motor, the torque T is given by (r is the input), so it can be written as (J s2 +Ds)θ=A r+B sθ. This is shown in a block diagram as shown in FIG. 5, and the transfer function G (s) from the input r to the output θ is as follows. In a mechanical system where the moment of inertia and mechanical resistance do not change (including cases where these changes are negligible), A =
Since J, B=D, it becomes.

従って、このような機械系では、制御対象の伝讐関数G
(s) lt 1/ s 2と考えてよいことになる。
Therefore, in such a mechanical system, the transfer function G of the controlled object is
(s) lt 1/s 2.

よって以後、伝達関数G (s)を1/S2とする。Therefore, hereinafter, the transfer function G(s) is set to 1/S2.

従来、モータの回転位置制御としてはフィードバック制
御が知られている。しかし、単なるフィードバック制御
では、モータの指令値に対する偏差が検出されてからそ
の偏差を小さくするように制御するものであるから、応
答性が悪く、高応答が要求される用途には使用できない
という欠点があった。また、機械系の制御においては外
乱がつきものであるから、外乱に強い制御手段が望まれ
る。
Feedback control is conventionally known as a rotational position control of a motor. However, with simple feedback control, since the deviation from the motor command value is detected and then controlled to reduce that deviation, the response is poor and it cannot be used for applications that require high response. was there. Furthermore, since disturbances are inherent in controlling mechanical systems, a control means that is resistant to disturbances is desired.

上記のような欠点を改良するものとして、例えば第7図
に示すように、位置指令Uと位置出力θの偏差eを比例
及び積分(PI)制御器4に通して得た出力と、位置出
力θを比例及び微分(FD)制御器5に通して得た出力
との偏差を制御対象3への入力rとするPI−PD制御
が知られている。
To improve the above-mentioned drawbacks, for example, as shown in FIG. PI-PD control is known in which the deviation from the output obtained by passing θ through a proportional and differential (FD) controller 5 is used as the input r to the controlled object 3.

ここで、PI制御器4及びFD制御器5の伝達関数G2
 (S)及びG3 (S)は、それぞれ次式で表わされ
る。
Here, the transfer function G2 of the PI controller 4 and the FD controller 5 is
(S) and G3 (S) are each represented by the following formula.

G2 (S) =に1 、(1−Q) +−,−G3 
(s) =に1 α+に3 s  ”但し、αはOくα
≦1の範囲で任意に定められる数値、K1は比例ゲイン
、K2は積分ゲイン、K3は微分ゲインである。
G2 (S) = 1, (1-Q) +-,-G3
(s) = 1 to α+3 s ”However, α is O
K1 is a proportional gain, K2 is an integral gain, and K3 is a differential gain.

また、実開昭5o−L’ta3eoa号公報に示されて
いるようなフィードフォワード制御を行うことも提案さ
れている。これは、第゛6図に示すように、位置指令U
と位置出力θの偏差eを比例、積分及び微分(P I 
D)制御器゛1に通して得た耐力と;位置指令Uをフィ
ードフォワード器2に通して得た出力との和を制御対象
3への入力rとするものである。ここで、PIDID制
御器体達関数Gz (s)は次式で表わされる。
It has also been proposed to carry out feedforward control as shown in Japanese Utility Model Application Publication No. 1983-1989-L'ta3eoa. As shown in FIG. 6, this is the position command U
and the deviation e of the position output θ by proportional, integral, and differential (P I
D) The sum of the proof force obtained by passing the position command U through the controller 1 and the output obtained by passing the position command U through the feed forward device 2 is used as the input r to the controlled object 3. Here, the PIDID controller performance function Gz (s) is expressed by the following equation.

但し、K1は比例ゲイン、K2は積分ゲイン、K3は微
分ゲインである。
However, K1 is a proportional gain, K2 is an integral gain, and K3 is a differential gain.

[発明が解決しようとする課題] しかしながら、従来のPI−FD制御(第7図)にあっ
ては、外乱には強いが、連応性に劣るという欠点がある
。また、従来のPID制御にフィードフォワード制御を
付加した制御装置゛(第6図)にあっては、一般に速応
硅′□:′&ヨ□は優れて′いるが、外乱に弱いという
欠点がある。
[Problems to be Solved by the Invention] However, although the conventional PI-FD control (FIG. 7) is strong against disturbances, it has the disadvantage of poor coordination. In addition, control devices that add feedforward control to conventional PID control (Fig. 6) generally have excellent quick response speed, but they have the disadvantage of being susceptible to external disturbances. be.

そこで、第8図に示すように従来のP I−FD制御の
外乱に強いループにフィードフォワード要素s2を加え
る、ことが考えられるが、この制御系では、定加速度の
入力指令に対して、一定の遅れを生ずるという問題点が
あった。      、本発明は、上述のような問題点
を解、決し、入力指令に対して位置出力が遅れなく追従
するモータ制御装置であって、外乱に対して強いモータ
制御装置を提供することを目的とする。
Therefore, it is conceivable to add a feedforward element s2 to the disturbance-resistant loop of the conventional PI-FD control, as shown in Fig. 8. However, in this control system, in response to a constant acceleration input command, There was a problem in that it caused a delay. SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and provide a motor control device in which a position output follows an input command without delay, and which is resistant to external disturbances. do.

[課題を解決するための手段] 本発明は、慣性モーメント及び機械抵抗が一定とみなせ
る制御対象機器に与える位置指令と前記制御対象機器の
位置出力との偏差を比例積分制御器に通して得た出力か
ら、前記位置出力を比例微分制御器に通して得た出力を
差しφ1くと共に、前記位置指令をフィードフォワード
器、に通して得た出力を加えて制御対象機器への入力と
するモーター御、装蝉にして、前記フィードフォワード
制御の伝達関数、を前記制御対象の伝達関数の、分母S
2と前部、比例営分1制御器の伝達量、舞の和となるよ
うに選定−したものである。  、、   ・11  
 箇     1 、、[切用]、。
[Means for Solving the Problems] The present invention obtains a deviation between a position command given to a controlled device whose moment of inertia and mechanical resistance can be considered constant and a position output of the controlled device through a proportional-integral controller. From the output, the output obtained by passing the position output through a proportional differential controller is subtracted by φ1, and the output obtained by passing the position command through a feedforward device is added to the motor control which is input to the device to be controlled. , the transfer function of the feedforward control is the denominator S of the transfer function of the controlled object.
2 and the front portion, the transmission amount of the proportional component 1 controller, and the movement were selected to be the sum. ,, ・11
Clause 1,, [cut use],.

15.本発明の制御装置において、制御御対、PLへの
入力rは1.フィ−ドフォワード器の出力F−(s) 
uと比例積分制御、!器(PI制御器)、9出力G 2
 (s、) eを々lえてヰ例、微分制御幸(FD制御
1器)の出力G 3 (s)θを、差し、、’p+ 、
、<ことで、得られるが、PI開制御 ・器への入力(
位置指令Uと位置中力θとの郷差e)は追従状態ではO
となるか、F?、 r = F (s、) 、、u−(K1 、a +−に
3 s )θ0=去−1 従って、位置指令Uから位置出力θまでの伝達関数は となる。本発明によれば、フィードフォワード制御器の
伝達関数F (s)を、制御対象の伝達関数1152(
7)分母S2とFD制御器の伝達関数G 3 (s)−
に1 α十に3sとの和、すなわち F(s)= s2 +に1α+に3 sとなるように選
定したので、θ/u=1となる。
15. In the control device of the present invention, the input r to the control pair PL is 1. Output of feedforward device F-(s)
u and proportional-integral control,! (PI controller), 9 outputs G 2
For example, by changing (s,)e and subtracting the output G3(s)θ of the differential control system (one FD controller), 'p+,
, < can be obtained, but PI open control ・Input to the device (
The difference e) between the position command U and the position neutral force θ is O in the tracking state.
Or, F? , r = F (s,), , u-(K1, a+-3s) θ0 = -1 Therefore, the transfer function from the position command U to the position output θ is as follows. According to the present invention, the transfer function F (s) of the feedforward controller is changed to the transfer function 1152 (s) of the controlled object (
7) Denominator S2 and FD controller transfer function G 3 (s)−
Since it was selected to be the sum of 1 α + 3 s, that is, F(s) = s2 + 1 α + 3 s, θ/u = 1.

このことから、位置指令Uに対して位置出力θが遅れな
く追従する。
From this, the position output θ follows the position command U without delay.

[実施例] 本発明の実施例を第1図により説明する。[Example] An embodiment of the present invention will be explained with reference to FIG.

制御対象3はモータ等の機械系の被制御物で、その伝達
関数G (s)は1/s2である。
The controlled object 3 is a mechanical controlled object such as a motor, and its transfer function G (s) is 1/s2.

この制御対象3には、指令値Uと制御対象3の出力θと
の偏差eを比例積分制御器(PI制御器)4に加えて得
られるPI制御器4の出力から、制御対象3の出力θを
比例微分制御器(PD制御器)5に加えて得られるFD
制御器5の出力を差し引き、更に、この差し引かれた出
力に、指令値Uをフィードフォワード器2に通して得た
出力を加えて制御対象3に対する入力rとしている。
The output of the controlled object 3 is calculated from the output of the PI controller 4 obtained by adding the deviation e between the command value U and the output θ of the controlled object 3 to the proportional-integral controller (PI controller) 4. FD obtained by adding θ to the proportional differential controller (PD controller) 5
The output of the controller 5 is subtracted, and the output obtained by passing the command value U through the feedforward device 2 is added to this subtracted output to obtain the input r to the controlled object 3.

ここで、PI制御器4への入力はe=u−θとされ、P
I制御器4の伝達関数は に1  (1−・)+リ− であるから、PI制御器4からの出力は(K、(1−・
)十肛)e となるが、追従した状態ではU=θ、従ってe=0とな
るから、PI制御器4からの出力は0となる。
Here, the input to the PI controller 4 is e=u−θ, and P
Since the transfer function of the I controller 4 is 1 (1-.) + Lee, the output from the PI controller 4 is (K, (1-.
) 10 anus) e However, in the state of tracking, U=θ and therefore e=0, so the output from the PI controller 4 becomes 0.

また、PD制御器5の伝達関数は に1α十に3 s であり、フィードフォワード器5の伝達関数はF(s)
=s2+に1 cx+に3 sであるから、 r= (s2 +に1 a+に35)u−(K1α十に
3s)θ となる。そして、θ=丁/s2であるから、s2 θ=
 (s2 +に1 a+に35)u−(K1α十に3 
s) θ 従って、 となり、指令値Uに対して位置出力θは遅れなく追従す
る。
Furthermore, the transfer function of the PD controller 5 is 1 α + 3 s, and the transfer function of the feedforward device 5 is F(s)
= 1 for s2+ and 3 s for cx+, so r= (1 for s2 +, 35 for a+)u-(K1α+3s)θ. And, since θ=ding/s2, s2 θ=
(1 to s2 + 35 to a+) u-(K1α 1 to 3
s) θ Therefore, the position output θ follows the command value U without delay.

以上は、制御対象をアナログ制御する連続系の場合であ
る。
The above is a case of a continuous system in which the controlled object is analog-controlled.

次に、第2図はディジタル制御する場合の離散系を示す
もので、サンプリング変数をZとし、第1図の各制御器
をZ変換して求めたものである。
Next, FIG. 2 shows a discrete system in the case of digital control, where the sampling variable is Z and each controller in FIG. 1 is obtained by Z-transforming.

すなわち、ラプラス変換のSを1− Z−1に置き換え
たものとなっている。図中点線で囲まれた部分はディジ
タル部であり、指令値U、フィードバック出力θ及び制
御対象3への入力rをそれぞれタイミングをとってオン
・オフするスイッチS1、S2及びS3が設けられる。
In other words, S in the Laplace transform is replaced with 1-Z-1. The part surrounded by the dotted line in the figure is a digital part, and switches S1, S2, and S3 are provided to turn on and off the command value U, the feedback output θ, and the input r to the controlled object 3 at different timings.

機能としては、第1図に示したものと同様である。The function is similar to that shown in FIG.

但し、微分はlサンプリング前のデータの差分で行って
おり、サンプリング周期を短く設定することにより、実
用上は問題とならないようにすることができる。
However, the differentiation is performed using the difference in data before l sampling, and by setting the sampling period short, this problem can be avoided in practice.

なお、第2図の離散系ではD/A変換、A/D変換、サ
ンプルホールド等が必要であるが、いずれも周知の手段
であるから、説明は省略する。
Note that the discrete system shown in FIG. 2 requires D/A conversion, A/D conversion, sample hold, etc., but since these are all well-known means, their explanations will be omitted.

第2図に示した離散系を用いて、従来の制御方式と本発
明によるモータ制御を実施した結果を第3図及び第9図
に示す。第3図において、■は入力(位置指令)、■は
PI−PD量制御オーバーシュートなし、■°はPI−
FD副制御オーバーシュートが生じたもの、■はPID
+ID−ドフォワード制御、■は本発明のPI−PD+
フィードフォワード制御の場合の結果を示すにれらの結
果において、従来方式の■は立上がりが遅く、■”は係
数αを少し大きくして立上がりを速くしたが、オーバー
シュートのため安定するまでの時間が長い。■、■では
入力Uに対する位置出力θの遅れが殆どない。しかし、
第3図は外乱のない場合である。
Using the discrete system shown in FIG. 2, the conventional control method and the results of motor control according to the present invention are shown in FIGS. 3 and 9. In Figure 3, ■ is input (position command), ■ is PI-PD amount control without overshoot, and ■° is PI-
FD sub-control overshoot occurs, ■ is PID
+ID-forward control, ■ is PI-PD+ of the present invention
In these results showing the results in the case of feedforward control, the conventional method (■) has a slow rise, and ■'' has a slightly larger coefficient α to speed up the rise, but due to overshoot, it takes longer to stabilize. is long. In ■ and ■, there is almost no delay in position output θ with respect to input U. However,
Figure 3 shows the case where there is no disturbance.

外乱のある場合の実験結果では、第9図に示すように、
■のPID+ID−ドフォワード制御では急激に加わる
力に対しての変位が大きく、静止するまでの時間も長く
なるのに対し、本発明の■では変位が小さく、静止する
までの時間も短い。
In the experimental results when there is a disturbance, as shown in Figure 9,
In the PID+ID-forward control (2), the displacement is large in response to a suddenly applied force, and the time it takes to come to rest is long, whereas in (2) of the present invention, the displacement is small and the time it takes to come to rest is short.

以上の実施例は回転形モータに対する例であるが、本発
明は直線形モータを含む機械系にも使用できることは勿
論である。また、慣性モーメントと機械抵抗の時間に対
する変化状態が既知であれば、第5図におけるA、Bを
一整し、伝達関数G(s)= l/s2という関係を満
たすようにすることで、本発明を実施することができる
Although the above embodiments are examples for rotary motors, it goes without saying that the present invention can also be used for mechanical systems including linear motors. Furthermore, if the state of change of the moment of inertia and mechanical resistance with respect to time is known, by adjusting A and B in Fig. 5 so that the relationship of transfer function G(s) = l/s2 is satisfied, The invention can be practiced.

[発明の効果] 本発明は、PI−PD制御にフィードフォワード制御を
組み合わせた制御系において、フィードフォワード項を
制御対象の伝達関数の分母S2と比例微分制御器の伝達
関数との和になるように選定したので、モータ指令に対
して遅れがなく、高応答の制御ができると共に、外乱に
対しても強いモータの制御装置を得ることができる。
[Effects of the Invention] The present invention, in a control system that combines PI-PD control and feedforward control, makes the feedforward term equal to the sum of the denominator S2 of the transfer function of the controlled object and the transfer function of the proportional derivative controller. Since this is selected, it is possible to obtain a motor control device that has no delay with respect to motor commands, can perform highly responsive control, and is resistant to external disturbances.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のモータ制御装置のブロック線図、第2
図はディジタル制御する場合の離散系のブロック線図、
第3図及び第9図は本発明と従来例の実験結果を示すグ
ラフ、第4図及び第5図は制御対象のブロック線図、第
6図乃至第8図は従来技術による制御装置のブロック線
図である。 1−−一−P I D制御器、 2−一一〜フィードフォワード器、 3−一一一制御対象、 4−一−−P I制御器、 5−−−− P D制御器。
FIG. 1 is a block diagram of the motor control device of the present invention, and FIG.
The figure is a block diagram of a discrete system for digital control.
3 and 9 are graphs showing the experimental results of the present invention and the conventional example, FIGS. 4 and 5 are block diagrams of the controlled object, and FIGS. 6 to 8 are blocks of the control device according to the prior art. It is a line diagram. 1--1-PID controller, 2-11~feedforward device, 3-111 controlled object, 4-1--PI controller, 5----PD controller.

Claims (1)

【特許請求の範囲】[Claims] (1)慣性モーメント及び機械抵抗が一定とみなせる制
御対象機器に与える位置指令と前記制御対象機器の位置
出力との偏差を比例積分制御器に通して得た出力から、
前記位置出力を比例微分制御器に通して得た出力を差し
引くと共に、前記位置指令をフィードフォワード器に通
して得た出力を加えて前記制御対象機器への入力とする
モータ制御装置にして、前記フィードフォワード制御の
伝達関数を前記制御対象の伝達関数の分母s^2と前記
比例微分制御器の伝達関数の和となるように選定したこ
とを特徴とするモータ制御装置。
(1) From the output obtained by passing the deviation between the position command given to the controlled device whose moment of inertia and mechanical resistance can be considered constant and the position output of the controlled device through a proportional-integral controller,
A motor control device that subtracts an output obtained by passing the position output through a proportional differential controller, and adds an output obtained by passing the position command through a feedforward device to input the result to the controlled device; A motor control device characterized in that a transfer function for feedforward control is selected to be the sum of a denominator s^2 of the transfer function of the controlled object and a transfer function of the proportional differential controller.
JP63048769A 1988-03-03 1988-03-03 Motor controller Pending JPH01227675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63048769A JPH01227675A (en) 1988-03-03 1988-03-03 Motor controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63048769A JPH01227675A (en) 1988-03-03 1988-03-03 Motor controller

Publications (1)

Publication Number Publication Date
JPH01227675A true JPH01227675A (en) 1989-09-11

Family

ID=12812485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63048769A Pending JPH01227675A (en) 1988-03-03 1988-03-03 Motor controller

Country Status (1)

Country Link
JP (1) JPH01227675A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011152005A (en) * 2010-01-25 2011-08-04 Meidensha Corp Device for speed control of motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011152005A (en) * 2010-01-25 2011-08-04 Meidensha Corp Device for speed control of motor

Similar Documents

Publication Publication Date Title
US4727303A (en) Positional control method and system utilizing same
JP2709969B2 (en) Servo motor control method
JPH05216504A (en) Adaptive sliding mode control system for control object including spring system
JPS62212801A (en) Complete follow-up servo system
JPH0683403A (en) Adaptive pi control system
CA2057237C (en) Sliding mode control system
JP4226420B2 (en) Position control device
JPH06119001A (en) Controller
JPS615302A (en) Controller of manipulator
JPH0325505A (en) Multifunction controller
WO1989006892A1 (en) System for controlling servo motor
JPH01227675A (en) Motor controller
US6920362B2 (en) Control apparatus
JPS63301303A (en) Control input designing method for variable structure control system
JPH03107384A (en) Motor drive controller
JPH086603A (en) Adjusting method for servo system and its servo controller
JPH0378806A (en) Multi-function type controller
Albagul Performance improvement of practical control method for positioning systems in the presence of actuator saturation
JPH0256601A (en) Controller for kinetic machine system
JPS616711A (en) Positional servo control device of robot
JP2553408B2 (en) Control device
JP2581192B2 (en) Master / slave / manipulator controller
JP2681969B2 (en) Coulomb friction compensation method by variable structure system
JP3200956B2 (en) Motor control device
JP2850076B2 (en) Control device