JPH01227669A - Vibration wave motor - Google Patents

Vibration wave motor

Info

Publication number
JPH01227669A
JPH01227669A JP63052147A JP5214788A JPH01227669A JP H01227669 A JPH01227669 A JP H01227669A JP 63052147 A JP63052147 A JP 63052147A JP 5214788 A JP5214788 A JP 5214788A JP H01227669 A JPH01227669 A JP H01227669A
Authority
JP
Japan
Prior art keywords
stator
rotor
vibration
vibration wave
annular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63052147A
Other languages
Japanese (ja)
Inventor
Satoru Segawa
哲 瀬川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63052147A priority Critical patent/JPH01227669A/en
Publication of JPH01227669A publication Critical patent/JPH01227669A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the cost and size of a vibration wave motor by bringing an annular stator in which a vibrator is adhered to an annular resonator into pressure contact with an annular rotor, and providing a pressing mechanism in which its pressing force is adjustable. CONSTITUTION:In a vibration wave motor, a stator 1 is mounted on a stationary shaft 8 in which threaded parts 7 are engaged at both ends thereof. A compression spring 5 for pressing the stator 1 and the rotor 9 is provided, and mounted with a spring washer 6 engageable with the threaded part 7. The pressure of the spring 5 is altered by varying the position of the washer. Thus, a bending traveling wave is generated at the stator 1, thereby generating a vibration having an elliptical orbit. This vibration is converted to the rotary motion of the rotor 9 by designing the rotor 9 having structure for pressing the rotor 9. The rotor 9 is formed of an engineering plastic member having excellent wear resistance on its lining face 10 of the part in contact with the stator 1.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は振動波モータに関し、特に超音波を駆動源とし
几振動波モータに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a vibration wave motor, and more particularly to a vibration wave motor using an ultrasonic wave as a driving source.

〔従来の技術〕[Conventional technology]

はじめに一般的な振動波モータの原理について説明する
。第2図は進行波によるステータの振動のようすを示す
説明図、第6図は従来のカロ圧機構を有する振動波モー
タの一例を示す部分断面を含む正面図、第7図は従来例
の振動波モータを2個使用した場合の駆動状況全示す構
成図である。
First, the principle of a general vibration wave motor will be explained. Fig. 2 is an explanatory diagram showing how the stator vibrates due to traveling waves, Fig. 6 is a front view including a partial cross section showing an example of a vibration wave motor having a conventional Calo pressure mechanism, and Fig. 7 is a vibration of the conventional example. It is a block diagram which shows the whole driving situation when two wave motors are used.

第6図に示す従来の振動波モータは、進行波回転型また
は円環型と叶ばれるもので、円環状の弾性振動板(ステ
ータ1)の裏面に前記のステータ1と同様な形状の円環
状の圧電素子2を接着し、一体化している。そしてステ
ータ1の面に同じ円環状の動体(ロータ9)が圧縮ばね
5等の手段によって所定の圧力で押し付けられている。
The conventional vibration wave motor shown in FIG. 6 is of a traveling wave rotation type or an annular type, and has an annular shape similar to that of the stator 1 on the back side of an annular elastic diaphragm (stator 1). The piezoelectric elements 2 are bonded and integrated. The same annular moving body (rotor 9) is pressed against the surface of the stator 1 with a predetermined pressure by means such as a compression spring 5.

そのロータ9の摺動面には耐摩耗性のある材料、例えば
′芳香族ポリアミド繊維を光填材とし、ポリウレタン樹
脂をマトリックスとした複合プラスチック材料で形成さ
れたライニ/グ面10會設けることによシJ・ステータ
゛1とあ磨耗全防止する。圧電素子2に振動波モータす
る電気信号金入力しバイメタル効果によシステータlに
進行波のtわみ振動を発生させる。ステータ1上の進行
波は、第2図の説明図に示すように、ステータ1の表面
上の1つの点CK着目すると、その点Cは楕円状の軌跡
を描く。ライニング面10はステータ1の進行波の頂点
に接触しているので、ロータ9は楕円の頂点部分りの軌
跡の方向への摩擦による移動がきくため、ロータ9は進
行波の進行方向とは逆に矢印F方向に進む。従って、ロ
ータ9はステータ1上の進行波の進行方向とは逆に回転
し、その回転速度は楕円状の軌跡の速度に関係する。
The sliding surface of the rotor 9 is provided with 10 liner/gating surfaces made of a wear-resistant material, such as a composite plastic material with aromatic polyamide fiber as an optical filler and polyurethane resin as a matrix. The J-stator 1 completely prevents wear. An electric signal for a vibration wave motor is input to the piezoelectric element 2, and a traveling wave flexural vibration is generated in the system stator l due to the bimetallic effect. As shown in the explanatory diagram of FIG. 2, the traveling wave on the stator 1 draws an elliptical trajectory when focusing on one point CK on the surface of the stator 1. Since the lining surface 10 is in contact with the apex of the traveling wave of the stator 1, the rotor 9 can be moved by friction in the direction of the trajectory around the apex of the ellipse, so the rotor 9 is moved in the opposite direction to the traveling direction of the traveling wave. Proceed in the direction of arrow F. Therefore, the rotor 9 rotates opposite to the direction of travel of the traveling wave on the stator 1, and its rotational speed is related to the speed of the elliptical trajectory.

ところで、複数個の振動波モータを同時に駆動する場合
を考えると、従来は振動波モータの数だけ駆動装置金偏
えていた。このことは次に示す理由による。
By the way, when considering the case where a plurality of vibration wave motors are driven at the same time, conventionally, the number of drive devices is equal to the number of vibration wave motors. This is due to the following reasons.

ステータ1に発生するたわみ振動は、進行波の周波数が
ステータ1の共振周波数に等しいかまたはこれに近い場
合にしか発生せず、そのため入力する電気信号め周波数
はステータ1に固有の共振周波数としなければならない
。そしてこの共振周波数に影響する要因として次の2つ
のことが掲げられる。1つはステータ1の形状寸法であ
シ、もう一つはステータ1とロータ9との加圧力である
Flexural vibrations that occur in the stator 1 occur only when the frequency of the traveling wave is equal to or close to the resonant frequency of the stator 1. Therefore, the frequency of the input electrical signal must be the resonant frequency specific to the stator 1. Must be. The following two factors can be cited as factors that influence this resonant frequency. One is the shape and dimensions of the stator 1, and the other is the pressing force between the stator 1 and the rotor 9.

しかし各振動波モータのステータ1は、モータを製造す
る際の加工誤差によシ形状寸法がまっ九く同じものを作
ることは困難である。
However, it is difficult to manufacture the stator 1 of each vibration wave motor with exactly the same shape and dimensions due to machining errors when manufacturing the motor.

また、先の第6図において従来のステータ1とロータ9
を加圧接触させる機構について注目すると、加圧機構は
固定軸8′、ステータ1.加圧のための圧縮ばね5.そ
して圧縮ばね5の長さ全制限するばね座金6′から構成
されている。圧縮ばね5の長さはばね座金6′が固定軸
8′に固定されているために設計時に決定されており、
従ってステータlとロータ9の加圧力の大きさも変える
ことができない。
Also, in FIG. 6, the conventional stator 1 and rotor 9
Paying attention to the mechanism that presses and contacts the fixed shaft 8', the stator 1. Compression spring for pressurization5. It is comprised of a spring washer 6' that limits the entire length of the compression spring 5. The length of the compression spring 5 is determined at the time of design because the spring washer 6' is fixed to the fixed shaft 8'.
Therefore, the magnitude of the pressing force between the stator l and the rotor 9 cannot be changed either.

以上の2点から、共振周波数を複数個の振動波モータの
ステータ1について同一にすることは困難である。その
ために第7図の構成図に示すように、従来の振動波モー
タを駆動する駆動装置A3゜B3は、複数個の振動波モ
ータA、HのステータAlt”1に固有な共振周波数を
発生させる発振器A4.B4を夫々もち、したがって複
数個の振動波モータを用いた装置は振動波モータの数だ
け駆動装置が必要であった。
From the above two points, it is difficult to make the resonant frequencies of the stators 1 of a plurality of vibration wave motors the same. For this purpose, as shown in the configuration diagram of FIG. 7, the conventional drive device A3゜B3 that drives the vibration wave motor generates a unique resonance frequency in the stator Alt''1 of the plurality of vibration wave motors A and H. A device that has oscillators A4 and B4 and therefore uses a plurality of vibration wave motors requires as many drive devices as the number of vibration wave motors.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述したように、従来、複数個の振動波モータを有する
装置においては、ステータの共振周波数が各振動波モー
タで同じではない。このため、2個以上の振動波モータ
を駆動するためには、振動波モータの入力電気信号を発
生する駆動装置を振動波モータに入力する周波数の種類
だけ用意しなければならない。したがってコストが高く
、・スペースも多く必要とするなどの欠点がある。
As described above, conventionally, in a device having a plurality of vibration wave motors, the resonant frequency of the stator is not the same for each vibration wave motor. Therefore, in order to drive two or more vibration wave motors, it is necessary to prepare drive devices that generate input electric signals for the vibration wave motors for only the types of frequencies input to the vibration wave motors. Therefore, it has drawbacks such as high cost and large space requirements.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の振動波モータは、振動波形を有する電気振動を
機械振動に変換する振動子と円環状共振子とを接着した
構造の円環状ステータと円環状ロータとを加圧接触はせ
、前記円環状ロータを軸上に固定しまた前記円環状ステ
ータを前記円環状ロータと隣接しつつ軸方向に移動可能
に嵌着し且つ端部におねじ部を有する固定軸と、前記お
ねじ部に螺合するめねじ部を有して前記固定軸に螺着す
るばね座金と、前記円環状ステータと前記ばね座金との
間に設けられた圧縮ばねとを有して前記円環状ステータ
に対する加圧力を調整可能な加圧機構とを備えている。
The vibration wave motor of the present invention has an annular stator having a structure in which a vibrator for converting electric vibration having a vibration waveform into mechanical vibration and an annular resonator are bonded together, and an annular rotor, which are brought into pressure contact with each other. The annular rotor is fixed on the shaft, the annular stator is fitted adjacent to the annular rotor so as to be movable in the axial direction, and the fixing shaft has a threaded portion at the end thereof, and the fixed shaft has a threaded portion on the male threaded portion. A spring washer having a mating female thread portion and screwed onto the fixed shaft, and a compression spring provided between the annular stator and the spring washer to adjust the pressing force on the annular stator. It is equipped with a possible pressurizing mechanism.

〔作 用〕[For production]

第3図はステータ、ロータ間の加圧力とステータの共振
周波数との関係の実験結果を示すグラフ、第4図は2個
の振動波モータにおけるステータ。
Fig. 3 is a graph showing the experimental results of the relationship between the pressing force between the stator and rotor and the resonant frequency of the stator, and Fig. 4 shows the stator in two vibration wave motors.

ロータ間の加圧力とステータの共振周波数との関係を示
す説明図、第5図は′2つの振動波モータを1つの駆動
装置で駆動する状況を示す構成図であるO ステータ1とロータ9を加圧接触させる構成において、
ステータの共振周波数Pは第3図の実験6一 み5mm、ロータはその摺動面にはアラミド系のエンジ
ニアリングプラスチフスを設けたものを用いている。従
ってばね座金6の位置をねじによシ変え、加圧力を変化
させることによりステータ1の共振周波数をステータ1
の形状寸法を変更することなしに調整できる。
An explanatory diagram showing the relationship between the pressing force between the rotors and the resonant frequency of the stator. In the configuration of pressurized contact,
The resonance frequency P of the stator was 5 mm as shown in Experiment 6 in FIG. 3, and the rotor was made of aramid engineering plastic on its sliding surface. Therefore, by changing the position of the spring washer 6 to a screw and changing the pressing force, the resonant frequency of the stator 1 can be changed to the stator 1.
can be adjusted without changing the shape and dimensions of the

いま、第4図の説明図に示す振動波モータAとBのステ
ータ共振周波数特性α、βについて考える。同一の加圧
力Mにおいて振動波モータAのステータ共振周波数Sの
ほうが振動波モータBのステータ共振周波数Qよりも周
波数が小さい。この場合にはばね座金6の位置を変えて
圧縮ばね5の長さ?:調整して振動波モータAのステー
タ1とロータ9の加圧力を加圧力Nまで増加させ、振動
波モータBの加圧力を加圧力りまで減少することにより
、共振周波数を同じくすることができる。
Now, consider the stator resonance frequency characteristics α and β of the vibration wave motors A and B shown in the explanatory diagram of FIG. 4. At the same pressing force M, the stator resonance frequency S of the vibration wave motor A is smaller than the stator resonance frequency Q of the vibration wave motor B. In this case, change the position of the spring washer 6 to determine the length of the compression spring 5. : By adjusting and increasing the pressing force of the stator 1 and rotor 9 of the vibration wave motor A to the pressing force N, and decreasing the pressing force of the vibration wave motor B to the pressing force, the resonance frequency can be made the same. .

従って第5図の構成図に示すように、A、B。Therefore, as shown in the configuration diagram of FIG. 5, A and B.

2個の振動波モータを同一の周波敷金発生させる駆動装
置C3によシ駆動することが実現できる。
It is possible to drive two vibration wave motors by the drive device C3 that generates the same frequency deposit.

〔実施例〕〔Example〕

第1図は本発明の一実施例の部分断面を含む正面図、第
5図は本実施例による2つの振動波モータを1つの駆動
装置で駆動する状況を示す構成図である。
FIG. 1 is a front view including a partial cross section of an embodiment of the present invention, and FIG. 5 is a configuration diagram showing a situation in which two vibration wave motors according to the embodiment are driven by one drive device.

第5図において、円筒型金したローラ12の左右両端面
をロータ9とし、この両端面にステータAl、Blj−
加圧接触させる。固定軸8はローラ12の内側を貫通し
ておシ、ローラ12はこの固定軸8の周1回転できるよ
うになっている。
In FIG. 5, both the left and right end surfaces of the roller 12 molded into a cylindrical mold are referred to as a rotor 9, and stators Al, Blj-
Make pressure contact. The fixed shaft 8 passes through the inside of the roller 12, and the roller 12 can rotate once around the fixed shaft 8.

第1図の本実施例の基本構成を示す正面図は第5図に示
し友ローラ12の両側部分の詳細図になっておp、両端
部にねじ部7を螺設しt固定軸8にステータAI、Bl
i取シ付ける。さらにステータAl、Blがロータ9を
加圧するための圧縮ばね5を設け、固定軸8のねじ部7
に螺合するように内側にめねじ部分を有するばね座金6
を取p付け、この位置kfえることによシ圧縮ばね5の
加圧力’kW化させる。第1図において具体的な数値を
示すと、ステータ1は弾性を有する部材、燐青銅で構成
され元外径29mrrL%内径21 mm、厚さ5mm
の円環状のステータであり、ステータ1の端面に接着さ
れた厚さQ、5mmの圧電素子2に電気振動信号、例え
ば51KHz170Vp pの超f波1rX71してス
テータlに屈曲進行波を励振する。第2図の説明図に示
すようにステータIK屈曲進行波が生ずることによp楕
円軌道21をもつ振動が生ずる。この振動を、ロータ9
を圧接する前述の加圧構造をとることにより、ロータ9
の回転運動に変換する。ロータ9において、ステーク1
と接触する部分であるライニング面10については、耐
摩耗性に優れたエンジニアリングプラスチックス部材を
用い、表面粗さ08Sの加工方法を施こす。
The front view showing the basic configuration of this embodiment in FIG. 1 is shown in FIG. 5, which is a detailed view of both sides of the companion roller 12. Stator AI, BL
i Attach the mount. Furthermore, a compression spring 5 is provided for the stators Al and Bl to pressurize the rotor 9.
a spring washer 6 having a female threaded portion on the inside so as to be screwed into the spring washer 6;
By attaching p and changing this position kf, the pressing force of the compression spring 5 is increased to kW. To show specific numerical values in Fig. 1, the stator 1 is made of an elastic member, phosphor bronze, and has an original outer diameter of 29 mrrL%, an inner diameter of 21 mm, and a thickness of 5 mm.
An electric vibration signal, for example, an ultra-f wave 1rX71 of 51 KHz 170 Vpp is applied to a piezoelectric element 2 of thickness Q and 5 mm bonded to the end face of the stator 1 to excite a bending traveling wave in the stator 1. As shown in the explanatory diagram of FIG. 2, the generation of the stator IK bending traveling wave causes vibrations having a p-elliptical orbit 21. This vibration is transferred to the rotor 9
By adopting the above-mentioned pressurizing structure that presses the rotor 9
Convert to rotational motion. At rotor 9, stake 1
For the lining surface 10, which is the part that comes into contact with the lining surface 10, an engineering plastic member with excellent wear resistance is used, and a processing method is applied to achieve a surface roughness of 08S.

〔発明の効果〕 以上説明したように本発明は、振動波形を有する電気振
動を機械振動に変換する振動子と円環状共振子とを接着
した構造の円環状ステータと円環状ロータとを加圧接触
させ、加圧力が調整可能な加圧機構を設けることによシ
、複数個の振動波モ一タを用いた装置において、振動波
モータの入力電気信号を発生する駆動装置全撮動波モー
タに入力する周波数の種類だけ用意することなしに、複
数個の振動波モータを同一の周波数を発生させる1駆動
装置によフ駆動することができ、駆動装置の軽減分だけ
コストが安く、小型化に効果がある。
[Effects of the Invention] As explained above, the present invention applies pressure to an annular stator and an annular rotor having a structure in which a vibrator that converts electrical vibration having a vibration waveform into mechanical vibration and an annular resonator are bonded together. In a device using multiple vibration wave motors, by providing a pressure mechanism that can be brought into contact with each other and whose pressure force can be adjusted, a drive device that generates input electrical signals for the vibration wave motors can be used. Multiple vibration wave motors can be driven by a single drive device that generates the same frequency without having to prepare only the types of frequencies to be input into the motor, reducing costs and downsizing by reducing the number of drive devices. is effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の部分断面?含む正面図、第
2図は進行波によるステータの振動のようすを示す説明
図、第3図はステータ、ロータ間の加圧力とステータの
共振周波数との関係の実験結果を示すグラフ、第4図は
2個の振動波モータにおけるステータ、ロータ間のカロ
圧力とステータの共振周波数との関係を示す説明図、第
5図は本実施例による2つの振動波モータを1つの駆動
装置で累勤する状況を示す構成図、第6図は従来の加圧
機構を有する振動波モータの一例を示す部分断面を含む
正面図、第7図は従来例の振動波モータ全2個使用しt
場合の駆動状況會示す構成図で一1〇− ある。 1.la、lb・・・・・・ステータ、2・・・・・・
圧電素子、3・・・・・・クツション、4・・・・・・
ステータ基板、5・・・・・・圧縮ばね、6,6′・・
・・・・ばね座金、7・・・・・・ねじ部、8.8′・
・・・・・固定軸、9・・・・・・ロータ、10・・・
・・・ライニング面、11・・・・・・軸受、12・・
・・・・ロー2.13・・・・・・筐体、21・・・・
・・楕円軌道、C,D・・・・・・ステータ表面上の一
点、P・・・・・・ステータの共振周波数特性、Q、R
,、S・・・・・・ステータの共振周波数、L。 M、N・・・・・・ステータとロータの加圧力、a・・
・・・・振動波モータAの共振周波数特性、β・・・・
・・振動波モータBの共振周波数特性、14a、14b
、14c・・・・・・駆動装置、15a、15b、15
C・・・・・・発振器。 代理人 弁理士  内 原   晋 第 1 面 $ 2 閃 $ 3 図 第 4 図 第 5 M 茅 乙 閉 $ 7 図
Is Fig. 1 a partial cross section of an embodiment of the present invention? Fig. 2 is an explanatory diagram showing how the stator vibrates due to traveling waves, Fig. 3 is a graph showing the experimental results of the relationship between the pressing force between the stator and rotor and the resonant frequency of the stator, and Fig. 4 is an explanatory diagram showing the relationship between the Calo pressure between the stator and rotor and the resonant frequency of the stator in two vibration wave motors, and FIG. A configuration diagram showing the situation, FIG. 6 is a front view including a partial cross section showing an example of a conventional vibration wave motor having a pressurizing mechanism, and FIG. 7 is a configuration diagram using two conventional vibration wave motors.
This is a configuration diagram showing the driving situation in case 110-. 1. la, lb...Stator, 2...
Piezoelectric element, 3... Cushion, 4...
Stator board, 5... Compression spring, 6, 6'...
...Spring washer, 7...Threaded part, 8.8'.
... Fixed shaft, 9 ... Rotor, 10 ...
... Lining surface, 11 ... Bearing, 12 ...
...low 2.13...housing, 21...
...Elliptical orbit, C, D...One point on the stator surface, P...Resonant frequency characteristics of the stator, Q, R
,,S...Resonance frequency of the stator, L. M, N... Pressure force between stator and rotor, a...
...Resonant frequency characteristics of vibration wave motor A, β...
...Resonant frequency characteristics of vibration wave motor B, 14a, 14b
, 14c... Drive device, 15a, 15b, 15
C: Oscillator. Agent Patent Attorney Susumu Uchihara Page 1 $ 2 Sen $ 3 Figure 4 Figure 5 M Kaya Otsu Close $ 7 Figure

Claims (1)

【特許請求の範囲】[Claims] 振動波形を有する電気振動を機械振動に変換する振動子
と円環状共振子とを接着した構造の円環状ステータと円
環状ロータとを加圧接触させる振動波モータにおいて、
前記円環状ロータ軸上に固定しまた前記円環状ステータ
を前記円環状ロータと隣接しつつ軸方向に移動可能に嵌
着し且つ端部におねじ部を有する固定軸と、前記おねじ
部に螺合するめねじ部を有して前記固定軸に螺着するば
ね座金と、前記円環状ステータと前記ばね座金との間に
設けられた圧縮ばねとを有して前記円環状ステータに対
する加圧力を調整可能な加圧機構とを備えることを特徴
とする振動波モータ。
In a vibration wave motor in which a toroidal stator and a toroidal rotor are brought into pressure contact with each other, the toroidal stator has a structure in which a vibrator that converts electrical vibration having a vibration waveform into mechanical vibration and a toric resonator are bonded together,
a fixed shaft fixed on the annular rotor shaft, into which the annular stator is fitted so as to be movable in the axial direction while being adjacent to the annular rotor, and having a threaded portion at an end; A spring washer having a female threaded portion and screwed onto the fixed shaft, and a compression spring provided between the annular stator and the spring washer to exert a pressing force on the annular stator. A vibration wave motor comprising an adjustable pressure mechanism.
JP63052147A 1988-03-04 1988-03-04 Vibration wave motor Pending JPH01227669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63052147A JPH01227669A (en) 1988-03-04 1988-03-04 Vibration wave motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63052147A JPH01227669A (en) 1988-03-04 1988-03-04 Vibration wave motor

Publications (1)

Publication Number Publication Date
JPH01227669A true JPH01227669A (en) 1989-09-11

Family

ID=12906762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63052147A Pending JPH01227669A (en) 1988-03-04 1988-03-04 Vibration wave motor

Country Status (1)

Country Link
JP (1) JPH01227669A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04138079A (en) * 1990-09-27 1992-05-12 Nissan Motor Co Ltd Ultrasonic motor
JPH04190683A (en) * 1990-11-22 1992-07-09 Nissan Motor Co Ltd Driving device for ultrasonic motor
US5939847A (en) * 1992-08-07 1999-08-17 Nikon Corporation Drive control device for ultrasonic motors
US8559120B2 (en) 2010-06-09 2013-10-15 Canon Kabushiki Kaisha Control apparatus and adjustment method for vibratory actuator using a plurality of vibrators, vibratory actuator, and lens unit and optical apparatus using the vibratory actuator
JP2013233066A (en) * 2012-04-03 2013-11-14 Ricoh Co Ltd Rotation drive transmission device and image forming apparatus using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04138079A (en) * 1990-09-27 1992-05-12 Nissan Motor Co Ltd Ultrasonic motor
JPH04190683A (en) * 1990-11-22 1992-07-09 Nissan Motor Co Ltd Driving device for ultrasonic motor
US5939847A (en) * 1992-08-07 1999-08-17 Nikon Corporation Drive control device for ultrasonic motors
US8559120B2 (en) 2010-06-09 2013-10-15 Canon Kabushiki Kaisha Control apparatus and adjustment method for vibratory actuator using a plurality of vibrators, vibratory actuator, and lens unit and optical apparatus using the vibratory actuator
JP2013233066A (en) * 2012-04-03 2013-11-14 Ricoh Co Ltd Rotation drive transmission device and image forming apparatus using the same

Similar Documents

Publication Publication Date Title
US7215063B2 (en) Vibration element and vibration wave driving apparatus
US4947076A (en) Piezo electric motor
US5646469A (en) Vibration driven motor including a vibration member having an elastic contact portion and a contact member having an elastic contact portion
US5274295A (en) Vibration driven motor
JPS6022479A (en) Stator of surface wave motor and improvement in movable element
JPS59188381A (en) Improvement in rotor/movable element of surface wave motor
KR100485882B1 (en) Vibration element and vibration wave driving apparatus
JPH01227669A (en) Vibration wave motor
JPS59110388A (en) Vibration wave motor
JPH02311184A (en) Ultrasonic motor
JPH01291675A (en) Oscillatory wave motor
JP2760297B2 (en) Ultrasonic motor
JP3133202B2 (en) Vibration wave motor and device having the motor
JPS6231379A (en) Surface wave motor utilizing ultrasonic vibration
JP2683587B2 (en) Ultrasonic motor
JP2903629B2 (en) Ultrasonic motor
JPH01206880A (en) Ultrasonic motor
JPH01177878A (en) Oscillatory wave motor
JPS6359776A (en) Rotor/moving piece for ultrasonic motor
JP2002369559A (en) Oscillatory wave motor
JP3575569B2 (en) Rotor floating ultrasonic motor
JPH07322656A (en) Ultrasonic motor
JPH01177876A (en) Oscillatory wave motor
JPH10263477A (en) Vibration-type drive device and device with vibration-type drive device as drive source
JPH01321877A (en) Oscillation wave motor