JPH01227401A - Non-linear voltage-dependent resistor - Google Patents

Non-linear voltage-dependent resistor

Info

Publication number
JPH01227401A
JPH01227401A JP63052507A JP5250788A JPH01227401A JP H01227401 A JPH01227401 A JP H01227401A JP 63052507 A JP63052507 A JP 63052507A JP 5250788 A JP5250788 A JP 5250788A JP H01227401 A JPH01227401 A JP H01227401A
Authority
JP
Japan
Prior art keywords
coating layer
oxide
insulating coating
resin
silicone resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63052507A
Other languages
Japanese (ja)
Inventor
Takanori Soda
曽田 孝則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP63052507A priority Critical patent/JPH01227401A/en
Publication of JPH01227401A publication Critical patent/JPH01227401A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To obtain a voltage non-linear resistor able to secure stable quality for a long term having good electric characteristics, especially a voltage non- linear index and a thunder surge discharge resisting amount by providing a coating layer of silicone resin or fluorine resin on the outer peripheral surface of an insulating coating layer coated in the region excepting the electrode forming surface of a sintered body. CONSTITUTION:A coating layer of silicone resin or fluorine resin is provided on the outer peripheral surface of an insulating coating layer coated in the region excepting an electrode forming surface of a sintered body mainly composed of zinc oxide. For instance, after temporary firing of a compact molded in a prescribed shape at 800-1000 deg.C, oxide paste, in which an organic binder is added to a mixture of silicon oxide of 50-80mol% in terms of SiO2, zinc oxide of 10 to 40mol% in terms of ZnO, bismuth oxide of 1-5mol% in terms of Bi2O3 and the rest of antimony oxide, is applied to the side of a temporarily fired body for being regularly fired at 1000 to 1300 deg.C so as to form an insulating coating layer. Next, silicone resin or fluorine resin is applied to be naturally dried, or to be forcedly dried at 100-200 deg.C so as to form a resin coating layer.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は電気系統における過電圧保護装置に有用な電
圧非直線抵抗体、とくに酸化亜鉛を主成分とする電圧非
直線抵抗体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a voltage nonlinear resistor useful for overvoltage protection devices in electrical systems, and particularly to a voltage nonlinear resistor containing zinc oxide as a main component.

(従来の技術) 通常は絶縁体で過大な電流が流れたときに導電体として
作用する特性を備え、電圧安定素子やサージアブソーバ
等に広く利用される電圧非直線抵抗体は、例えば特開昭
55−98802号公報に開示されているようにその側
面に沿面放電の防止を目的として高抵抗層を、さらにそ
の表面に該高抵抗層の表面汚損の防止あるいは絶縁耐力
の向上を目的としてガラス層を設けるのが一般的であっ
た。と′ころで上記のような従来の素子ではとくにガラ
ス層を形成する際の熱処理に起因した素子の電気特性の
劣化やばらつきが不可避でありしかも  ・長期間安定
した品質を確保するのが難しいという不利があった。
(Prior art) Voltage nonlinear resistors, which are usually insulators and have the property of acting as conductors when an excessive current flows, and are widely used in voltage stabilizing elements, surge absorbers, etc. As disclosed in Japanese Patent No. 55-98802, a high resistance layer is provided on the side surface for the purpose of preventing creeping discharge, and a glass layer is further provided on the surface for the purpose of preventing surface staining of the high resistance layer or improving dielectric strength. It was common to have a However, with conventional devices such as those mentioned above, deterioration and variations in the electrical characteristics of the device are inevitable, especially due to heat treatment during the formation of the glass layer.In addition, it is difficult to ensure stable quality over a long period of time. There was a disadvantage.

この点に関する先行文献として例えば特開昭56−55
004号公報あるいは特開昭57−188476号公報
などが参照される。
As a prior document on this point, for example, Japanese Patent Application Laid-Open No. 56-55
No. 004 or Japanese Unexamined Patent Publication No. 57-188476 are referred to.

(発明が解決しようとする課題) 上記公報に開示の技術、は、電圧非直線抵抗体の製造場
程において素子の側面に直接シリコン樹脂あるいはふ、
っ素樹脂、をコーティングすることによって、該素子の
特性や品質の向上を図ろうとするところにある。しかし
ながら素子の、側面にシリコンやふっ素の如き樹脂を単
にコーティングするだけでは、素子側面の絶縁性能が不
充分で長期間安定した品質を確保するのが難しいという
問題があった。
(Problems to be Solved by the Invention) The technique disclosed in the above publication is a technique in which silicone resin or plastic is directly applied to the side of the element in the manufacturing process of voltage nonlinear resistors.
The aim is to improve the characteristics and quality of the element by coating it with fluorine resin. However, simply coating the side surfaces of the element with a resin such as silicon or fluorine has the problem that the insulation performance of the side surfaces of the element is insufficient and it is difficult to ensure stable quality over a long period of time.

この発明は上述したような従来問題を解消し、電気的緒
特性、とくに電圧非直線指数や雷サージ放電耐量の良好
な電圧非直線抵抗体を与えることが目的である。
The object of the present invention is to solve the above-mentioned conventional problems and to provide a voltage nonlinear resistor with good electrical characteristics, particularly voltage nonlinearity index and lightning surge discharge resistance.

(課題を解決するための手段) この発明は酸化亜鉛を主成分とする焼結体の電極形成面
を除く領域に被覆した絶縁被覆層の外周面に、シリコン
樹脂又はふっ素樹脂のコーティング層を備えてなる電圧
非直線抵抗体である。
(Means for Solving the Problems) This invention includes a coating layer of silicone resin or fluororesin on the outer circumferential surface of an insulating coating layer that covers an area other than the electrode forming surface of a sintered body containing zinc oxide as a main component. It is a voltage non-linear resistor.

ここに電圧非直線抵抗体のVl−Aが400 V/+n
+nを超えるものを対象とする場合には、雷サージ放電
耐量の低下等を防止するために、絶縁被覆層とシリコン
又はふっ素樹脂のコーティング層の間にガラス層を設け
るのが有効である。
Here, Vl-A of the voltage nonlinear resistor is 400 V/+n
When the target is a material exceeding +n, it is effective to provide a glass layer between the insulating coating layer and the silicone or fluororesin coating layer in order to prevent a decrease in lightning surge discharge resistance.

(作 用) 酸化亜鉛を主成分とする電圧非直線抵抗体の製造におい
て、絶縁被覆層の表面にさらにシリコン樹脂又はふっ素
樹脂のコーティング層を形成すると、素子側面の絶縁性
が改善され、長期的に安定した特性となるので、素子の
特性は改善され、品質のばらつきも小さく、しかも素子
のVl、A 400V/mm未満、とくに200 V/
mm程度の素子を対象とする場合においては、ガラス層
を形成する熱処理工程を省略できるのでこれに起因した
特性の劣化は皆無となる。
(Function) When manufacturing a voltage nonlinear resistor whose main component is zinc oxide, if a coating layer of silicone resin or fluororesin is further formed on the surface of the insulating coating layer, the insulation properties of the side surfaces of the element will be improved and the long-term resistance will be improved. As a result, the characteristics of the element are improved and the variation in quality is small, and the Vl and A of the element are less than 400V/mm, especially 200V/mm.
In the case of a device with a size of about mm, the heat treatment step for forming the glass layer can be omitted, so there is no deterioration in characteristics caused by this.

以下、この発明に従う電圧非直線抵抗体の製造要領につ
いて説明する。
Hereinafter, a method for manufacturing a voltage nonlinear resistor according to the present invention will be explained.

所定の粒度に調整した酸化亜鉛の主原料と所定粒度に調
整した酸化ビスマス、酸化コバルト、酸化マンガン、酸
化アンチモン、酸化クロム、酸化ケイ素、酸化ニッケル
等よりなる添加物および好ましくは銀を含むホウケイ酸
ビスマスガラスの所定量を混合する。次いでこれらの原
料粉末に対して所定量のポリビニルアルコール水溶液お
よび酸化アルミニウム源として硝酸アルミニウム溶液の
所定量を添加する。この混合操作は好ましくは乳化機を
用いる。
The main raw material of zinc oxide adjusted to a predetermined particle size, additives such as bismuth oxide, cobalt oxide, manganese oxide, antimony oxide, chromium oxide, silicon oxide, nickel oxide, etc. adjusted to a predetermined particle size, and borosilicate preferably containing silver. Mix a predetermined amount of bismuth glass. Next, a predetermined amount of an aqueous polyvinyl alcohol solution and a predetermined amount of an aluminum nitrate solution as an aluminum oxide source are added to these raw material powders. This mixing operation preferably uses an emulsifying machine.

次に好ましくは200 mmm1(以下の真空度で減圧
脱気を行い混合泥漿を得る。混合泥漿の水分量は30〜
35wt%程度に、またその混合泥漿の粘度は100C
II±50とするのが好ましい。
Next, a mixed slurry is obtained by degassing under reduced pressure, preferably at a vacuum degree of 200 mm 1 (or less).The water content of the mixed slurry is 30 to
About 35wt%, and the viscosity of the mixed slurry is 100C.
It is preferable to set it to II±50.

次に得られた混合泥漿を噴霧乾燥装置に供給して平均粒
径50〜150μm、好ましくは80〜120μmで、
水分量が0,5〜2. Qwt%、より好ましくは1.
0〜l、5wt%の造粒粉を造粒する。
Next, the obtained mixed slurry is fed to a spray drying device so that the average particle size is 50 to 150 μm, preferably 80 to 120 μm,
Moisture content is 0.5-2. Qwt%, more preferably 1.
Granulated powder of 0 to 1 and 5 wt% is granulated.

次に得られた造粒粉を、成形工程において、成形圧力8
00〜1000kg/ CIItの下で所定の形状に成
形する。そしてその成形体を昇降温度50〜70℃/h
rで800〜1000℃、保持時間1〜5時間という条
件で仮焼成して結合剤を飛散除去する。
Next, the obtained granulated powder was subjected to a molding process at a molding pressure of 8
It is molded into a predetermined shape under 00 to 1000 kg/CIIt. Then, the molded body is raised and lowered at a temperature of 50 to 70°C/h.
The binder is scattered and removed by calcination under the conditions of 800 to 1000[deg.] C. and a holding time of 1 to 5 hours.

次に、仮焼成した仮焼体の側面に絶縁被覆層を形成する
。絶縁被覆層は酸化ケイ素を5lO3に換算して50〜
80モル%、より好ましくは60〜70モル%、酸化亜
鉛をZnOに換算して10〜40モル%、より好ましく
は20〜30モル% 、酸化ビスマスを81□03 に
換算して1〜5モル%、残部酸化アンチモンの混合物に
有機結合剤としてエチレンセルロース、プチルカルビト
ーノベ酢酸nブチル等を加えた酸化物ペーストよりなる
ものとし、これを30〜300μmの厚さで仮焼体側面
に塗布する。
Next, an insulating coating layer is formed on the side surface of the calcined body. The insulating coating layer has a silicon oxide content of 50 to 5 lO3.
80 mol%, more preferably 60 to 70 mol%, zinc oxide 10 to 40 mol%, more preferably 20 to 30 mol%, bismuth oxide 1 to 5 mol% converted to 81□03 %, the remainder being antimony oxide, and an organic binder such as ethylene cellulose, butyl carbitone, n-butyl acetate, etc. added to the mixture, and this is applied to the side surface of the calcined body in a thickness of 30 to 300 μm. .

次にこれを昇降温速度30〜60℃/hr 、保持温度
1000〜1300℃、好ましくは1000〜1250
℃で2〜7時間という条件で本焼成する。
Next, this is heated at a temperature raising/lowering rate of 30 to 60°C/hr and a holding temperature of 1000 to 1300°C, preferably 1000 to 1250°C.
Main firing is performed at ℃ for 2 to 7 hours.

次に、従来法によればガラス粉末に有機結合剤としてエ
チルセルロース、ブチルカルピトール、酢酸nブチル等
を加えたガラスペーストを上記絶縁被覆層上に例えば5
0〜300μmの厚さに塗布し、それをさらに空気中で
昇降温速度100〜200℃/hr 。
Next, according to the conventional method, a glass paste prepared by adding ethyl cellulose, butyl calpitol, n-butyl acetate, etc. as an organic binder to glass powder is applied to the insulating coating layer, for example, 5
It is coated to a thickness of 0 to 300 μm, and then heated and cooled in air at a rate of 100 to 200°C/hr.

400〜600℃で0.5〜2時間という条件で熱処理
することによりガラス層を形成するが、この発明では、
シリコン樹脂又はふっ素樹脂を0゜3〜3.0mm好ま
しくは0.8〜2.0の厚さに塗布し、それに自然乾燥
させるかもしくは100〜200℃の温度域にて強制的
に乾燥させ、上記樹脂のコーティング層を形成する。こ
こで例えば素子のV、m八が400V/mmを超える場
合は、上記絶縁被覆層の表面にまずガラス層を設け、そ
れからシリコン又はふっ素樹脂のコーティング層を設け
る。
A glass layer is formed by heat treatment at 400 to 600°C for 0.5 to 2 hours, but in this invention,
Apply silicone resin or fluororesin to a thickness of 0.3 to 3.0 mm, preferably 0.8 to 2.0 mm, and dry naturally or forcefully in a temperature range of 100 to 200 ° C. A coating layer of the above resin is formed. Here, for example, when the V and m8 of the element exceed 400 V/mm, a glass layer is first provided on the surface of the above-mentioned insulating coating layer, and then a coating layer of silicon or fluorine resin is provided.

そして最後に得られた素体の両端面を平滑に研磨し、そ
こに例えばアルミニウムの如き材質になる電極を溶射に
より形成する。
Finally, both end faces of the obtained element body are polished smooth, and electrodes made of a material such as aluminum are formed thereon by thermal spraying.

(実施例) 側面に絶縁被覆層を介してシリコン樹脂又はふっ素樹脂
のコーティング層(1,0am)を形成した直径47m
m、厚さ22.5+nmの電圧非直線抵抗体(V、、A
:200v /++ua )と絶縁被覆層の表面にガラ
ス層を形成した同じく直径47mm、厚さ22.5+n
mの電圧非直線抵抗体をそれぞれ製造し、得られた素子
の電圧非直線指数(α)および雷サージ放電耐量につい
て調査した。その結果を表−1に示す。なお電圧非直線
指数αは、I=KV″ (I:電流、V:電圧、K:比
例定数)の式に基づきV、、 AとV100μAとの値
から、また雷サージ放電耐量は、110にA1120K
Aおよび130KAの電流をそれぞれ4710μsの電
流波形で2回繰り返し印加した後、素子が破壊しなかっ
た割合について示す。
(Example) A diameter of 47 m with a coating layer (1.0 am) of silicone resin or fluororesin formed on the side surface via an insulating coating layer.
m, thickness 22.5+nm voltage nonlinear resistor (V,,A
:200v/++ua) and a glass layer formed on the surface of the insulating coating layer.The diameter is 47mm and the thickness is 22.5+n.
m of voltage nonlinear resistors were manufactured, and the voltage nonlinearity index (α) and lightning surge discharge resistance of the obtained devices were investigated. The results are shown in Table-1. The voltage non-linearity index α is calculated from the values of V, A and V100μA based on the formula I=KV'' (I: current, V: voltage, K: proportionality constant), and the lightning surge discharge withstand capacity is 110. A1120K
The graph shows the percentage of devices that were not destroyed after repeatedly applying currents of A and 130 KA twice with current waveforms of 4710 μs each.

表−1より明らかなようにこΦ発明に適合する電圧非直
線抵抗体は、電圧非直線指数および雷サージ放電耐量が
ともに良好であることが確認できた。
As is clear from Table 1, it was confirmed that the voltage nonlinear resistor conforming to the Φ invention had good voltage nonlinearity index and lightning surge discharge resistance.

次に、側面の絶縁被覆層とシリコン樹脂又はふっ素樹脂
のコーティング層の間にガラス層を設けた直径:47m
m、厚さ22.5mm5 Vla^:4QQV/mm以
上になる電圧非直線抵抗体を製造し、その素子の雷サー
ジ放電耐量について調査した。その結果比較例の調査結
果とともに表−2に示す。
Next, a glass layer was provided between the side insulation coating layer and the silicone resin or fluororesin coating layer.Diameter: 47m
A voltage non-linear resistor having a voltage of 22.5 mm and a thickness of 22.5 mm5 Vla^:4QQV/mm or more was manufactured, and the lightning surge discharge resistance of the element was investigated. The results are shown in Table 2 along with the investigation results of comparative examples.

V、mAが400V/mmを超える電圧非直線抵抗体の
製造に際しては、絶縁被覆層とガラス層の上にさらにシ
リコン又はふっ素樹脂のコーティング層を設けるのが有
効であることが明らかである。
When manufacturing a voltage nonlinear resistor with V and mA exceeding 400 V/mm, it is clear that it is effective to further provide a coating layer of silicon or fluororesin on the insulating coating layer and the glass layer.

(発明の効果) この発明によれば、電圧非直線指数や雷サージ放電耐量
が良好であり、しかも品質の安定した電圧非直線抵抗体
を得ることができる。
(Effects of the Invention) According to the present invention, it is possible to obtain a voltage nonlinear resistor that has a good voltage nonlinearity index and lightning surge discharge capacity, and has stable quality.

特許出願人  日本碍子株式会社Patent applicant: Nippon Insulator Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 1.酸化亜鉛を主成分とする焼結体の電極形成面を除く
領域に被成した絶縁被覆層の外周面に、シリコン樹脂又
はふっ素樹脂のコーティング層を備えてなる電圧非直線
抵抗体。
1. A voltage nonlinear resistor comprising a silicone resin or fluororesin coating layer on the outer peripheral surface of an insulating coating layer formed on an area other than the electrode forming surface of a sintered body mainly composed of zinc oxide.
2.絶縁被覆層と、シリコン樹脂又はふっ素樹脂のコー
ティング層との間にガラス層を備える請求項1記載の電
圧非直線抵抗体。
2. 2. The voltage nonlinear resistor according to claim 1, further comprising a glass layer between the insulating coating layer and the silicone resin or fluororesin coating layer.
JP63052507A 1988-03-08 1988-03-08 Non-linear voltage-dependent resistor Pending JPH01227401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63052507A JPH01227401A (en) 1988-03-08 1988-03-08 Non-linear voltage-dependent resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63052507A JPH01227401A (en) 1988-03-08 1988-03-08 Non-linear voltage-dependent resistor

Publications (1)

Publication Number Publication Date
JPH01227401A true JPH01227401A (en) 1989-09-11

Family

ID=12916645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63052507A Pending JPH01227401A (en) 1988-03-08 1988-03-08 Non-linear voltage-dependent resistor

Country Status (1)

Country Link
JP (1) JPH01227401A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4943749B1 (en) * 1969-10-02 1974-11-22
JPS502707A (en) * 1973-05-10 1975-01-13
JPS57128904A (en) * 1981-02-03 1982-08-10 Mitsubishi Electric Corp Method of forming protective film layer for nonlinear resistor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4943749B1 (en) * 1969-10-02 1974-11-22
JPS502707A (en) * 1973-05-10 1975-01-13
JPS57128904A (en) * 1981-02-03 1982-08-10 Mitsubishi Electric Corp Method of forming protective film layer for nonlinear resistor

Similar Documents

Publication Publication Date Title
JPH0252404B2 (en)
EP0452511B1 (en) Zinc oxide varistor, manufacture thereof, and crystallized glass composition for coating
JPH0429204B2 (en)
US5039971A (en) Voltage non-linear type resistors
JPS5941284B2 (en) Manufacturing method of voltage nonlinear resistor
JPH01227401A (en) Non-linear voltage-dependent resistor
JPH01228105A (en) Manufacture of non-linear voltage resistance
JPH0379850B2 (en)
JP2942027B2 (en) Method of manufacturing voltage non-linear resistor
JP4157237B2 (en) Voltage nonlinear resistor and manufacturing method thereof
JPH0476482B2 (en)
JP2695639B2 (en) Method of manufacturing voltage non-linear resistor
JP2533597B2 (en) Method of manufacturing voltage non-linear resistor
JP2572859B2 (en) Voltage non-linear resistor and surge arrester
JPH0734406B2 (en) Voltage nonlinear resistor
JPH0917613A (en) Manufacture of voltage nonlinear resistance
JPH07105286B2 (en) Voltage nonlinear resistor
JPH0258306A (en) Voltage-dependent nonlinear resistor and manufacture thereof
JPH0381285B2 (en)
JPH0425682B2 (en)
JPS63132401A (en) Manufacture of voltage nonlinear resistor
JPS5951724B2 (en) Ceramic voltage nonlinear resistor
JPH0812806B2 (en) Voltage nonlinear resistor
JPH01222403A (en) Manufacture of voltage dependent non-linear resistor
JPH03250605A (en) Manufacture of voltage non-linearity resistor