JPH01225911A - Manufacture of hermetic-coat optical fiber - Google Patents

Manufacture of hermetic-coat optical fiber

Info

Publication number
JPH01225911A
JPH01225911A JP63051632A JP5163288A JPH01225911A JP H01225911 A JPH01225911 A JP H01225911A JP 63051632 A JP63051632 A JP 63051632A JP 5163288 A JP5163288 A JP 5163288A JP H01225911 A JPH01225911 A JP H01225911A
Authority
JP
Japan
Prior art keywords
fibers
coating
hermetic
spinning
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63051632A
Other languages
Japanese (ja)
Inventor
Suehiro Miyamoto
宮本 末広
Taiichiro Tanaka
大一郎 田中
Takao Shioda
塩田 孝夫
Shinji Araki
荒木 真治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP63051632A priority Critical patent/JPH01225911A/en
Publication of JPH01225911A publication Critical patent/JPH01225911A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

PURPOSE:To fix the linear speed of optical fibers so as to realize a uniform coating which is free from unevenness in film thickness in the length direction of the fibers by not performing the hermetic coat to the fibers in tandem with a spinning (wire drawing) process, but as a separate process. CONSTITUTION:In order to prevent optical fibers just wire-drawn from being scratched, the fibers are first covered with an ordinary coating material immediately after they are wire-drawn, thereafter, hermetic coat is performed on the fibers after the coating material is removed by means of a non-contacted means in another process. The above-mentioned non-contacted means means heat- resolution performed on the coating material covering the fibers and, as occasion demands, a removing means using an etching gas is added to the heat-resolution. In other words, the hermetic coat is performed on the optical fibers 1 by means of a coating device 4 of a process which is different from the spinning (wire- drawing) process. Therefore, control of the feeding speed of the optical fibers 1 becomes unnecessary in the coating process since the control of the outer diameter of the fibers is already performed in the spinning process. As a result, unevenness in the thickness of the coating thin film caused by unevenness in speed can be eliminated and a uniform thickness is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、高強度、耐水性、耐水素性、耐熱性等を特
徴とする特殊な環境で使用して好適なハーメチックコー
ト光ファイバの製造方法に関するもので、均一厚に施す
方法を提供する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention provides a method for manufacturing a hermetic coated optical fiber suitable for use in special environments, which is characterized by high strength, water resistance, hydrogen resistance, heat resistance, etc. It provides a method for applying the coating to a uniform thickness.

(従来の技術) 光伝送用のガラスファイバの被覆は、紡糸直後の未だそ
の表面が無傷なうちに施されており、極く一般的な熱硬
化型や紫外線硬化型の樹脂を塗布、硬化させて形成する
だけでなく、ハーメチック材であるカーボン、アモルフ
ァスカーボン、シリコンオキシナイトライド、シリコン
カーバイド、チタンカーバイド、無水の炭化水素、A 
l gos、ZnOz等をCVD、プラズマ、スパッタ
リングにより形成している。
(Prior art) Glass fibers for optical transmission are coated immediately after spinning, while their surfaces are still intact, by coating and curing extremely common thermosetting or ultraviolet curing resins. In addition to forming the hermetic materials carbon, amorphous carbon, silicon oxynitride, silicon carbide, titanium carbide, anhydrous hydrocarbons,
1 Gos, ZnOz, etc. are formed by CVD, plasma, and sputtering.

(発明が解決しようとする課題) 前者の場合には本質的に水を阻止できないためバーメチ
7クコートは不可能である。一方後者の場合には形成さ
れる膜厚がファイバの線引き速度に依存するため、それ
を一定に保つためには線引き速度を一定に保たねばなら
ないが、逆にガラスファイバの径を一定に保つためには
線引き速度を制御せねばならず、こちらが優先するため
、線引きとコーティングとをタンデムで行う場合には形
成される薄膜が長さ方向にムラとなってしまい、ファイ
バの強度の低下を生じさせるということがあった。
(Problem to be Solved by the Invention) In the former case, water cannot be essentially blocked, and therefore vermech coating is impossible. On the other hand, in the latter case, the film thickness formed depends on the fiber drawing speed, so in order to keep it constant, the drawing speed must be kept constant, but conversely, the diameter of the glass fiber must be kept constant. In order to achieve this, it is necessary to control the drawing speed, which takes priority, so if drawing and coating are performed in tandem, the thin film formed will be uneven in the length direction, which will reduce the strength of the fiber. There was something about it that caused it.

(課題を解決するための手段) この発明は、上記の課題を解決するためハーメチックコ
ートをガラスファイバの線引きと分離してオフラインで
行う方法であり、まず裸ファイバが傷付くのを防止する
目的でその線引き直後に極(−膜内な被覆材を施し、そ
の後に別工程で先に施した被覆材を非接触手段によって
除去し、次いでハーメチックコートを施すようにしたも
のである。なおここで非接触手段とは、ファイバ上に被
覆された被覆材を加熱分解することをいい、必要に応じ
てこれにエツチングガスによる除去手段を加えたものを
いう。具体的には被覆材としては、500〜600℃程
度の温度に加熱すると分解するUV硬化型樹脂、200
℃位で分解するPOM等が挙げられる。なお被覆材の分
解を促進するために電子線を照射したり、酸素等を添加
することもできる。
(Means for Solving the Problems) In order to solve the above problems, the present invention is a method that separates the hermetic coating from the drawing of the glass fiber and performs it off-line. Immediately after drawing the wire, a coating material inside the electrode (-film) is applied, and then the previously applied coating material is removed by non-contact means in a separate process, and then a hermetic coating is applied. The contact means refers to thermal decomposition of the coating material coated on the fiber, and if necessary, means to add removal means using etching gas.Specifically, the coating material is 500~ UV curable resin that decomposes when heated to a temperature of about 600℃, 200
Examples include POM, which decomposes at about ℃. Note that in order to promote the decomposition of the coating material, electron beam irradiation or oxygen or the like may be added.

またエツチングガスとしてはSF4 、CF4 、CC
l1zFzが挙げられる。
Etching gases include SF4, CF4, and CC.
l1zFz is mentioned.

(作 用) ガラスファイバの紡糸(線引き)工程と別工程でハーメ
チックコートを施すことで、既に線引き工程でガラスフ
ァイバの外径制御は終わっていてガラスファイバの送出
し速度を制御する必要がないので速度ムラに伴う薄膜の
膜厚ムラをな(して均一厚さのものを得ることができる
(Function) By applying the hermetic coating in a process separate from the glass fiber spinning (drawing) process, the outer diameter of the glass fiber has already been controlled in the drawing process, so there is no need to control the glass fiber delivery speed. It is possible to obtain a uniform thickness by eliminating unevenness in the thickness of the thin film due to unevenness in speed.

(実施例) 第1図は、この発明方法に用いられる装置の概略図であ
り、まずその構成について説明する。
(Example) FIG. 1 is a schematic diagram of an apparatus used in the method of this invention, and the configuration thereof will first be explained.

1は、送出しボビンlOから送出される被覆ファイバ素
線で、このファイバ素線は予め前工程で裸ファイバの紡
糸(線引き)直後にデイツプ法により被覆層を施してボ
ビン10に巻きとったものである。2は、ファイバにコ
ーティングされた被覆層を分解させるための装置で、全
体として円筒形でその両端が細径にされてファイバが通
される出入口をなしている石英ガラス管22、この石英
ガラス管22の周囲に巻回されたヒータ23、石英ガラ
ス管22の中央部に設けられた分解助剤供給口24およ
び排気口25、石英ガラス管22両端の細径部に設けら
れた、外気の侵入を狙止するためのシールガス供給口2
6.26とからなっている。3は分解装置2の後に位置
されたエツチング装置で、その構造は分解装置2と同一
であり、その差は分解助剤供給口がエッチ、ングガスお
よびプラズマガス供給口34に代わるだけである。そし
てここで未だガラスファイバに付着したままの被覆材あ
るいはその残渣をガラス表面層まで含めてエツチングす
ることにより取除く。4はエツチング装置3の後に位置
されたコーティング装置で、その構造は分解装置2と同
一であり、その差は分解助剤供給口が反応ガスおよびプ
ラズマガス供給口44に代わるだけである。
Reference numeral 1 denotes a coated fiber wire delivered from the delivery bobbin 10, which has been previously coated with a coating layer by the dip method immediately after spinning (drawing) the bare fiber in a previous step and wound onto the bobbin 10. It is. 2 is a device for decomposing the coating layer coated on the fiber; the quartz glass tube 22 is generally cylindrical and has a small diameter at both ends to form an entrance and exit through which the fiber is passed; heater 23 wound around the quartz glass tube 22, a decomposition aid supply port 24 and an exhaust port 25 provided in the center of the quartz glass tube 22, and external air infiltration ports provided at narrow diameter portions at both ends of the quartz glass tube 22. Seal gas supply port 2 for targeting
It consists of 6.26. Reference numeral 3 denotes an etching device located after the decomposition device 2, and its structure is the same as that of the decomposition device 2, the only difference being that the decomposition aid supply port is replaced by the etching gas and plasma gas supply port 34. Then, the coating material or its residue still attached to the glass fiber is removed by etching, including the glass surface layer. Reference numeral 4 denotes a coating device located after the etching device 3, and its structure is the same as that of the decomposition device 2, the only difference being that the decomposition aid supply port is replaced by the reaction gas and plasma gas supply port 44.

そしてここで被覆が除去された裸フアイバ上にハーメチ
ックコート層が施される。なお、50はハーメチックコ
ート層が施されたファイバを巻き取るボビンである。
A hermetic coating layer is then applied onto the bare fiber from which the coating has been removed. Note that 50 is a bobbin for winding up the fiber coated with a hermetic coating layer.

(具体例) 直径125μmの裸フアイバ上に、その紡糸直後に20
μm厚にウレタンアクリレートを塗布してなる被覆ファ
イバ1をボビン10から送出し、分解装置2、エツチン
グ装置3、コーティング装置4内を順次通過させボビン
50に巻取速度1m/分で巻き取った。なおこの時の分
解装置2、エツチング装置3、コーティング装置4の条
件はそれぞれ以下のとおりであった。
(Specific example) On a bare fiber with a diameter of 125 μm, immediately after spinning, 20
A coated fiber 1 coated with urethane acrylate to a μm thickness was sent out from a bobbin 10, passed through a decomposition device 2, an etching device 3, and a coating device 4 in order, and wound onto a bobbin 50 at a winding speed of 1 m/min. The conditions of the decomposition device 2, etching device 3, and coating device 4 at this time were as follows.

分解装置2 石英ガラス管内の温度       800 ℃0□ガ
ス供給量          217分^rシールガス
供給量       If/分エツチング装置3 交流プラズマ出力          3KWプラズマ
ガス             計石英ガラス管内圧力
        1 torrエツチングガス(CF、
)       500cc/分Arシールガス供給量
       1j?/分コーティング装置4 交流プラズマ出力          5KWプラズマ
ガス             Ar石英ガラス管内圧
力        1 torr反応ガス NH3500cc/分 SiH*              200cc/分
Arシールガス供給量       117分コーテイ
ング材(Si3Nm) の膜厚          0.05μm/分かくして
得られたこの発明の方法によるシリコンナイトライド薄
膜(0,5μm厚)の上に、さらにUV樹脂を施して外
径250μmの被覆ファイバとした。このファイバと従
来法によるファイバの紡糸直後にタンデムでシリコンナ
イトライド薄膜を施し、その上にUV樹脂を施して外径
250μmの被覆ファイバとしたものとの引張破断強度
特性と静疲労特性とを比較したところ、前者については
従来品は最大強度7.5kg/125μm、平均強度3
.0kg/125μmであったが、この発明品は最大強
度8.0kg/125 # m 、平均強度6.5kg
/125 p mであった。また後者について温度30
.60.80℃の水中にそれぞれ浸漬したときの疲労係
数nを測定したところ、従来品はn=20〜30であっ
たが、この発明品は温度に係わりな(n−100以上で
あり、従来品の3〜4倍の寿命であった。
Decomposition device 2 Temperature inside quartz glass tube 800 °C 0□ Gas supply amount 217 minutes^r Seal gas supply amount If/min Etching device 3 AC plasma output 3KW plasma gas meter Pressure inside quartz glass tube 1 torr Etching gas (CF,
) 500cc/min Ar seal gas supply amount 1j? /min Coating device 4 AC plasma output 5KW plasma gas Ar quartz glass tube pressure 1 torr Reaction gas NH3500cc/min SiH* 200cc/min Ar sealing gas supply rate 117 minutes Coating material (Si3Nm) film thickness 0.05 μm/min A UV resin was further applied onto the silicon nitride thin film (0.5 μm thick) obtained by the method of the present invention to obtain a coated fiber with an outer diameter of 250 μm. Comparison of the tensile rupture strength and static fatigue properties of this fiber and that of a coated fiber with an outer diameter of 250 μm by applying a silicon nitride thin film in tandem immediately after spinning the fiber using the conventional method and applying UV resin thereon. Regarding the former, the conventional product had a maximum strength of 7.5 kg/125 μm and an average strength of 3.
.. 0kg/125μm, but this invention has a maximum strength of 8.0kg/125 #m and an average strength of 6.5kg.
/125 pm. Regarding the latter, the temperature is 30
.. 60. When the fatigue coefficient n was measured when immersed in water at 80°C, the conventional product had n = 20 to 30, but this invention's product was independent of the temperature (n-100 or more, which was higher than the conventional product). The lifespan was 3 to 4 times longer than that of other products.

このようにこの発明品が従来品よりも優れているのは、
ファイバの移動速度を一定に保ちつつハーメチックコー
トを施すことができるために被覆ムラが抑制されてピン
ホールの発生が防止されファイバ長さ方向の均一性が向
上したためであると考えられる。
The advantages of this invention over conventional products are as follows:
This is thought to be because the hermetic coating can be applied while keeping the fiber moving speed constant, which suppresses coating unevenness, prevents the occurrence of pinholes, and improves the uniformity in the fiber length direction.

(発明の効果) この発明方法は、以上のようにファイバ上へのハーメチ
ックコートをその紡糸(線引き)工程とタンデムに行う
ことな(別工程で行うものであるから、ファイバの線速
を一定に維持することができファイバの長さ方向に膜厚
のムラのない均一な被覆が可能となり、以ってハーメチ
ック特性に優れたものを提供できる。
(Effect of the invention) As described above, the method of this invention does not involve performing the hermetic coating on the fiber in tandem with the spinning (drawing) process (because it is performed in a separate process), the fiber drawing speed is kept constant. This allows the fiber to be coated with an even and uniform coating thickness in the longitudinal direction of the fiber, thereby providing excellent hermetic properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明方法に用いられる装置の概略図であ
る。図において、1・・・被覆ファイバ、2・・・分解
装置、3・・・エツチング装置、4・・・コーティング
装置。 代理人 弁理士  竹  内   守
FIG. 1 is a schematic diagram of the apparatus used in the method of this invention. In the figure, 1... coated fiber, 2... decomposition device, 3... etching device, 4... coating device. Agent Patent Attorney Mamoru Takeuchi

Claims (1)

【特許請求の範囲】[Claims] 光伝送用のガラスファイバ上に、その紡糸直後に被覆層
を施し、次いで別工程でこの被覆層を無接触手段によっ
て除去し、引続きこの除去工程とタンデムでハーメチッ
ク層を設けたことを特徴とするハーメチックコート光フ
ァイバの製造方法。
A coating layer is applied to a glass fiber for optical transmission immediately after spinning, and then this coating layer is removed by a non-contact means in a separate process, and a hermetic layer is subsequently provided in tandem with this removal process. A method for manufacturing hermetic coated optical fiber.
JP63051632A 1988-03-07 1988-03-07 Manufacture of hermetic-coat optical fiber Pending JPH01225911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63051632A JPH01225911A (en) 1988-03-07 1988-03-07 Manufacture of hermetic-coat optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63051632A JPH01225911A (en) 1988-03-07 1988-03-07 Manufacture of hermetic-coat optical fiber

Publications (1)

Publication Number Publication Date
JPH01225911A true JPH01225911A (en) 1989-09-08

Family

ID=12892221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63051632A Pending JPH01225911A (en) 1988-03-07 1988-03-07 Manufacture of hermetic-coat optical fiber

Country Status (1)

Country Link
JP (1) JPH01225911A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03233319A (en) * 1990-02-09 1991-10-17 Sumitomo Electric Ind Ltd Optical fiber measuring instrument
JPH05224097A (en) * 1992-02-14 1993-09-03 Nec Corp Optical fiber array

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03233319A (en) * 1990-02-09 1991-10-17 Sumitomo Electric Ind Ltd Optical fiber measuring instrument
JPH05224097A (en) * 1992-02-14 1993-09-03 Nec Corp Optical fiber array

Similar Documents

Publication Publication Date Title
JPH0283240A (en) Airtight sealed treated optical fiber
KR20020089344A (en) Method for Forming Thin Film, Article Having Thin Film, Optical Film, Dielectric Coated Electrode, and Plasma Discharge Processor
JP2797335B2 (en) Splicing method of hermetic coated optical fiber
US4473599A (en) Process for providing optical fibers conditioned for hostile environments and fibers thus formed
JP2798486B2 (en) Method and apparatus for producing hermetic coated optical fiber
JPH01225911A (en) Manufacture of hermetic-coat optical fiber
US5246746A (en) Method for forming hermetic coatings for optical fibers
US4540601A (en) Aluminum oxide optical fiber coating
US4790625A (en) Method of applying hermetic coating on optical fiber
GB2156858A (en) Coating optical fibres with hydrogen-impermeable material
JP2614949B2 (en) Optical fiber coating forming method and coating forming apparatus
JPS6025381B2 (en) Optical fiber coating furnace
CA1262307A (en) Aluminum oxide optical fiber coating
JP3039949B2 (en) Optical fiber manufacturing method
JPS58156546A (en) Production of high-strength optical fiber
JPH0515243B2 (en)
JPH02212340A (en) Device for coating optical fiber with thin film
JP3039961B2 (en) Optical fiber manufacturing method
JP3293967B2 (en) Optical fiber carbon coating method
JPH04119947A (en) Production of heat resistant optical fiber
EP0214331A1 (en) Aluminum oxide optical fiber coating
JP3804389B2 (en) Optical fiber manufacturing method
JPH02149450A (en) Production of optical fiber
JPH1059749A (en) Production of coated optical fiber
JPH061625A (en) Production of quartz base optical fiber