JPH01225093A - Manufacture of electroluminescence element - Google Patents

Manufacture of electroluminescence element

Info

Publication number
JPH01225093A
JPH01225093A JP63049354A JP4935488A JPH01225093A JP H01225093 A JPH01225093 A JP H01225093A JP 63049354 A JP63049354 A JP 63049354A JP 4935488 A JP4935488 A JP 4935488A JP H01225093 A JPH01225093 A JP H01225093A
Authority
JP
Japan
Prior art keywords
gas
thin film
silicon nitride
nitride thin
plasma cvd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63049354A
Other languages
Japanese (ja)
Inventor
Ryuzo Fukao
隆三 深尾
Akira Kawakami
章 川上
Yoshihiro Hamakawa
圭弘 浜川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP63049354A priority Critical patent/JPH01225093A/en
Publication of JPH01225093A publication Critical patent/JPH01225093A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

PURPOSE:To obtain an EL element with low driving voltage and a long life and hardly having dielectric breakdown in the continuous use by constituting at least part of insulating layers inserted between mating electrodes and a phosphor layer with a specific silicon nitride thin film. CONSTITUTION:A phosphor layer 4 and insulating layers 3 and 5 are arranged between mating electrodes 2 and 6 at least one of which is transparent, at least part of the insulating layers is constituted with a silicon nitride thin film with the thickness of 2.000Angstrom or below and formed by the plasma CVD method, silane gas and ammonia gas diluted by hydrogen gas are used at the flow ratio (volume) of 5 or above between ammonia gas and silane gas as the source gas in the plasma CVD method. The silicon nitride thin film is made a very fine insulating film layer, when at least part of the insulating layer of an electro luminescence EL element is constituted with this silicon nitride thin film, the driving voltage is sharply reduced, dielectric breakdown hardly occurs in the long-term continuous use, no propagation type dielectric breakdown occurs under severe conditions, and a long life is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はデイスプレィ装置などに使用されるエレクト
ロルミネッセンス(以下、ELという)素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electroluminescent (hereinafter referred to as EL) element used in display devices and the like.

〔従来の技術〕[Conventional technology]

この種E L素子は、少なくとも一方が透明でありかつ
通常どちらか一方がパターン化された一対の電極間に、
発光体層とこれに隣接する絶縁層とを介在させた構造を
有しており、上記絶縁層が発光体層の片側のみに設けら
れた卓絶縁型ならびに同じく両側に設けられた二重絶縁
型のものが存在し、また発光体層が一層に限らず絶縁層
を介して二層以上に積層されたものもある。このような
EL素子の駆動は、両電極間に発光体層の発光開始電圧
以上の交流電界を印加して発光させ、その発光色を透明
電極側の基板表面に表出させることにより、所定のパタ
ーン表示を行わせるものである。
This type of EL element has a structure between a pair of electrodes, at least one of which is transparent and usually one of which is patterned.
It has a structure in which a light emitter layer and an insulating layer adjacent to it are interposed, and there is a table insulation type in which the insulating layer is provided on only one side of the light emitter layer, and a double insulation type in which the insulating layer is provided on both sides. In addition, the luminescent layer is not limited to one layer, and there are also devices in which two or more layers are laminated with an insulating layer interposed therebetween. To drive such an EL element, an alternating current electric field higher than the emission starting voltage of the luminescent layer is applied between the two electrodes to emit light, and the color of the emitted light is exposed on the surface of the substrate on the transparent electrode side. This is to display a pattern.

ところで、上記の絶縁層にはY2 oa 、Aβ203
.5iOz 、Si:+ N4、Taz Osなどの比
較的絶縁耐圧の高い材料が用いられ、その形成手段とし
て従来では電子ビーム蒸着法やスパッタリング法などが
汎用されている。また、E L素子の駆動電圧は対向す
る電極間の厚めが小さいほど低くできる点から、上記絶
縁層としても膜厚を薄くすることが望ましいとされてい
る(文献不詳)。
By the way, the above insulating layer contains Y2 oa and Aβ203.
.. A material having a relatively high dielectric strength, such as 5iOz, Si:+N4, or Taz Os, is used, and electron beam evaporation, sputtering, or the like has conventionally been widely used as a forming method. Furthermore, since the driving voltage of the EL element can be lowered as the thickness between the opposing electrodes is smaller, it is said that it is desirable to reduce the thickness of the insulating layer as well (unspecified literature).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、電子ビーム蒸着法やスパッタリング法に
よって形成される絶縁層は、緻密性に劣り層中にビンボ
ールなどの多数の欠陥部分が存在し、これら欠陥部分を
起点として素子の絶縁破壊を生じやすいことがら膜厚を
薄くできず、一般に3.000Å以上の膜厚が必要とさ
れ、通常では4゜000〜5,000人程度の膜厚に形
成されている。
However, insulating layers formed by electron beam evaporation or sputtering have poor density and have many defects such as bottle balls in the layer, and these defects are likely to cause dielectric breakdown of the device. The film thickness cannot be made thinner, and a film thickness of 3,000 angstroms or more is generally required, and the film thickness is usually about 4.000 to 5,000 angstroms.

したがって、従来のEl−素子は、高い駆動電圧を必要
とするという問題かあった。
Therefore, the conventional El-element has the problem of requiring a high driving voltage.

この発明は、上記問題点を解決すべくなされたものであ
り、駆動電圧が低くかつ長寿命であって、しかも発光特
性にもすくれるEL素子の製造方法を擢供することを目
的としている。
The present invention has been made to solve the above-mentioned problems, and aims to provide a method for manufacturing an EL element that has a low driving voltage, a long life, and has excellent light emitting characteristics.

〔課題を解決するための手段〕 この発明者らは、上記目的を達成するために鋭意検討を
重ねた結果、特定のソースガスを使用して行うプラズマ
CVD法によって形成される窒化シリコン薄膜が極めて
緻密でかつ絶縁性の高い膜となり、この窒化シリコン薄
膜にてEl−素子の絶縁層の少なくとも一部を構成した
場合、従来のものに比較して駆動電圧が大幅に低減され
、かつ長期の連続使用によっても絶縁破壊を生しにくく
、また苛酷な条件下でも伝播形絶縁破壊がみられず長寿
命であり、しかも電圧増大に伴なう発光輝度の上昇が大
きく発光特性にすぐれるEL素子が得られることを見い
出し、この発明をなすに至った。
[Means for Solving the Problems] As a result of intensive studies to achieve the above object, the inventors found that silicon nitride thin films formed by plasma CVD using a specific source gas are extremely It becomes a dense and highly insulating film, and when this silicon nitride thin film forms at least a part of the insulating layer of an El-element, the driving voltage is significantly reduced compared to conventional ones, and it can be used continuously for a long time. An EL element that does not easily cause dielectric breakdown even when used, has a long life without propagating dielectric breakdown even under harsh conditions, and has excellent luminous properties with a large increase in luminance as the voltage increases. They discovered that it can be obtained and came up with this invention.

すなわち、この発明は、少なくとも一方が透明である対
向する電極間に発光体層および絶縁層が配設されてなる
EL素子の製造方法において、」二記絶縁層の少なくと
も一部をプラズマCV D法にて形成される厚さ2,0
00Å以下の窒化シリコン薄膜にて構成するとともに、
このプラズマCVD法におけるソースガスとして水素ガ
スで希釈したシランガスとアンモニアガスとをアンモニ
アガス/シランガスの流量比(容積)が5以上となる割
合で使用することを特徴とするEL素子の製造方法に係
る。
That is, the present invention provides a method for manufacturing an EL element in which a light emitter layer and an insulating layer are disposed between opposing electrodes, at least one of which is transparent. Thickness formed by 2,0
Consisting of a silicon nitride thin film with a thickness of 00 Å or less,
A method for manufacturing an EL element characterized in that silane gas diluted with hydrogen gas and ammonia gas are used as source gases in this plasma CVD method at a ratio such that the flow rate ratio (volume) of ammonia gas/silane gas is 5 or more. .

〔発明の構成・作用〕[Structure and operation of the invention]

CVD法は、周知のとおり、半導体分野を始めとして各
種薄膜の形成に利用されている化学的気相成長(Che
mical  Vaper  Desposition
)法の略称であって、二種以上のガス化成分を高真空の
チャンバー内に導き、基板上で反応させて目的とする化
合物の薄膜を成長させる方法である。そして、この発明
においてEL素子の絶縁層の形成に利用する前記のプラ
ズマCVD法とは、ソースガスを高周波放電によってプ
ラズマ化し、プラズマ同志の反応によって上記薄膜を形
成するものである。なお、CVD法としては、プラズマ
CVD法のほか、上記反応の励起に光エネルギーを利用
する光CVD法や基板を高温加熱する熱CVD法などが
ある。
As is well known, the CVD method is a chemical vapor deposition method that is used to form various thin films, including in the semiconductor field.
Mical Vaper Deposition
) is a method in which two or more gasified components are introduced into a high vacuum chamber and reacted on a substrate to grow a thin film of the desired compound. The plasma CVD method used to form the insulating layer of the EL element in the present invention is a method in which a source gas is turned into plasma by high-frequency discharge, and the thin film is formed by a reaction between the plasmas. Note that the CVD method includes, in addition to the plasma CVD method, an optical CVD method that uses light energy to excite the reaction, a thermal CVD method that heats the substrate to a high temperature, and the like.

この発明では、プラズマCVD法にて形成される厚さ2
,000Å以下の窒化シリコン薄膜にて絶縁層の少なく
とも一部を構成するが、このプラズマCVD法において
反応ガスとして既述の如く水素ガスで希釈したシラン(
SiH4)ガスとアンモニア(NH3)ガスとを使用し
、かつアンモニアガス/シランガスの流量比を5以上と
する。
In this invention, the thickness 2 is formed by plasma CVD method.
At least a part of the insulating layer is made of a silicon nitride thin film of .
SiH4) gas and ammonia (NH3) gas are used, and the flow rate ratio of ammonia gas/silane gas is set to 5 or more.

すなわち、上記条件のプラズマCVD法にて形成される
窒化シリコン薄膜は極めて緻密でかつ絶縁性が高いこと
から、これを絶縁層に用いるこの発明方法で得られるE
L素子は、たとえば後述する実施例1の方法によるEL
素子の輝度−電圧特性を示す第3図の曲線A、と同比較
例3の方法によるEL素子の同特性を示す同図の曲線り
との対比から明らかなように、電子ビーム蒸着法やスパ
ッタリング法を利用して絶縁層を形成する従来方法にて
得られるEL素子に比較して、発光開始電圧が大幅に低
下し、しかも曲線A1で示されるように電圧に対する輝
度の立ち上がりが急峻であること、つまり電圧増加に伴
う発光輝度の上昇が大きいことから、実際に利用する輝
度を得るための駆動電圧は従来方法によるものに比べて
格段に低くなる。また、この低い駆動電圧によって絶縁
層に加わる電圧も低くなることと絶縁層自体が極めて緻
密で欠陥部分が非常に少ないことから、この発明方法に
よるEL素子は、通常の条件下で長期連続使用しても絶
縁破壊を生しにくく、さらに高輝度を得る高電圧の苛酷
な条件で使用して局部破壊を生じても周囲へ破壊が伝播
せず、自己修復型破壊に留まることから、耐久性にすぐ
れて長寿命である。
That is, since the silicon nitride thin film formed by the plasma CVD method under the above conditions is extremely dense and has high insulating properties, the E
The L element is, for example, an EL formed by the method of Example 1 described later.
As is clear from the comparison between the curve A in FIG. 3 showing the brightness-voltage characteristics of the device and the curve in the same figure showing the same characteristics of the EL device obtained by the method of Comparative Example 3, it is clear that the electron beam evaporation method and sputtering method Compared to an EL element obtained by the conventional method of forming an insulating layer using a method, the emission start voltage is significantly lower, and the rise of luminance with respect to voltage is steeper, as shown by curve A1. In other words, since the luminance increases greatly with the increase in voltage, the driving voltage required to obtain the luminance that is actually used is much lower than that in the conventional method. Furthermore, because this low driving voltage also reduces the voltage applied to the insulating layer, and the insulating layer itself is extremely dense and has very few defects, the EL device produced by the method of this invention can be used continuously for long periods of time under normal conditions. Furthermore, even if a local breakdown occurs when used under harsh conditions of high voltage to obtain high brightness, the breakdown does not propagate to the surrounding area and remains a self-repairing breakdown, so it has excellent durability. It has an excellent long life.

これに対し、プラズマCVD法による窒化シリコン薄膜
の形成に際し、シランガスをアルゴンなどの不活性ガス
で希釈したり、アンモニアガス/シランガスの流量比を
5より小さくした場合は、第3図の曲F/ABおよびC
で示す比較例1,2の方法で得られたEL素子の輝度−
電圧特性にて示されるように、発光開始電圧は低くなる
が、電圧増加に伴う輝度の上昇が小さいため、実用上の
駆動電圧はこの発明方法によるEL素子よりかなり高く
なり、また長期連続使用すると絶縁破壊を生じやすく、
かつこの破壊は素子全体の破壊につながる伝播型となる
On the other hand, when forming a silicon nitride thin film by the plasma CVD method, if the silane gas is diluted with an inert gas such as argon, or if the flow rate ratio of ammonia gas/silane gas is made smaller than 5, the curve F/ AB and C
The luminance of the EL element obtained by the method of Comparative Examples 1 and 2 shown in -
As shown in the voltage characteristics, the emission starting voltage is lower, but the increase in brightness with the increase in voltage is small, so the practical driving voltage is considerably higher than that of the EL element produced by the method of this invention, and when used continuously for a long period of time, Easily causes dielectric breakdown,
Moreover, this destruction becomes a propagation type that leads to destruction of the entire element.

上述のように、この発明方法によるEL素子が低い電圧
で駆動できかつ長寿命となる理由は、明確ではないが、
一般にCVD法自体が電子ビーム蒸着法やスパッタリン
グ法に比べて高エネルギー粒子による成長膜の欠陥発生
やこれに基づく不純物の混入が回避されることから緻密
な薄膜を形成しやすく、とくにこの発明において窒化シ
リコン薄膜を形成するプラズマCVD法では、シランガ
スを水素ガスで希釈しているために、気相中におけるケ
イ素原子相互間の結合力が水素によって封じられ、ケイ
素成分が微視的にも雰囲気中で偏在せず理想的な均一分
散状態で存在することになり、これによって極めて緻密
な薄膜が形成されるとともに、シランに対するアンモニ
アの濃度が高いことにより、膜組成が絶縁耐圧の大きい
Si3N。
As mentioned above, the reason why the EL element according to the method of this invention can be driven at a low voltage and has a long life is not clear, but
In general, compared to electron beam evaporation or sputtering, the CVD method itself avoids the occurrence of defects in the grown film due to high-energy particles and the contamination of impurities due to this, making it easier to form dense thin films. In the plasma CVD method for forming silicon thin films, silane gas is diluted with hydrogen gas, so the bonding force between silicon atoms in the gas phase is sealed by hydrogen, and the silicon component is dispersed even microscopically in the atmosphere. Si3N exists in an ideal uniformly dispersed state without being unevenly distributed, and as a result, an extremely dense thin film is formed, and the film composition has a high dielectric strength voltage due to the high concentration of ammonia relative to silane.

の理論比に近くなり、この窒化シリコン薄膜のすぐれた
緻密性および絶縁性の故にその薄膜を2,000Å以下
と薄くでき、これにより駆動電圧が著しく低減され、こ
の低電圧駆動と膜の緻密性とによって長寿命化が実現す
るものと推測される。
Because of the excellent density and insulation properties of this silicon nitride thin film, the thin film can be made as thin as 2,000 Å or less, which significantly reduces the driving voltage. It is assumed that this will lead to a longer life.

上記プラズマCVD法において使用するシランガスの水
素ガスによる希釈量は、この希釈されたガス全量(S 
i Ha 十Hz )中のシランガス量が2〜20容量
%、とくに好ましくは5〜15容量%を占める範囲とす
るのがよい。またアンモニアガス/シランガスの流量比
(容積)は、前記の如く5以上であるが、好ましくは6
〜8とするのがよい。この流量比が5より小さくなると
、窒化シリコン薄膜中の窒素成分が不足してその絶縁性
が不充分になる。
The amount of dilution of silane gas with hydrogen gas used in the above plasma CVD method is the total amount of diluted gas (S
It is preferable that the amount of silane gas in the i Ha 10 Hz ranges from 2 to 20% by volume, particularly preferably from 5 to 15% by volume. Further, the flow rate ratio (volume) of ammonia gas/silane gas is 5 or more as described above, but preferably 6
It is best to set it to 8. When this flow rate ratio becomes smaller than 5, the nitrogen component in the silicon nitride thin film becomes insufficient and its insulating properties become insufficient.

なお、プラズマCVD法の各条件としては、チャンバー
内の雰囲気は真空度0.5〜1.5Torr程度、プラ
ズマ化を行う高周波電源としては出力25〜150W程
度、基板温度は200〜350°C程度がよい。
The conditions for the plasma CVD method are as follows: the atmosphere in the chamber has a degree of vacuum of about 0.5 to 1.5 Torr, the output of the high frequency power source for plasma generation is about 25 to 150 W, and the substrate temperature is about 200 to 350°C. Good.

この発明方法にて形成するEL素子の絶縁膜は、その全
体を上記プラズマCVD法による厚さ2,000Å以下
の窒化シリコン薄膜にて構成する以外に、この窒化シリ
コン薄膜と他の絶縁膜との複合膜にて構成しても差し支
えない。
The insulating film of the EL element formed by the method of the present invention is not only composed entirely of a silicon nitride thin film with a thickness of 2,000 Å or less formed by the plasma CVD method described above, but also a combination of this silicon nitride thin film and other insulating films. There is no problem even if it is composed of a composite membrane.

上記複合膜とする場合の他の絶縁膜としては、従来より
EL素子の絶縁層に利用される種々の材料を使用できる
が、とくにPbTiO3,5rTi○3、TiO□など
の誘導率100以上の強誘電体からなるものが好適であ
る。すなわち、このような強誘電体はAl103 、Y
203 、SiO2などに比べて誘電性が高いことから
、これを絶縁層に用いたEL素子の駆動電圧を低くでき
る反面、耐絶縁破壊特性に劣る難点があるが、この絶縁
膜と上記窒化シリコン薄膜との複合膜では窒化シリコン
薄膜が薄くてもその高い絶縁性によって充分な耐絶縁破
壊特性が得られる。したがって、この複合膜にあっては
、窒化シリコン薄膜の厚みを200〜1,000人程度
と非常に薄クシてこれよる駆動電圧の低下を図ることが
できる。
As the other insulating film in the case of forming the above composite film, various materials conventionally used for insulating layers of EL elements can be used, but in particular, strong materials with a dielectric constant of 100 or more such as PbTiO3, 5rTi○3, and TiO□ are used. It is preferable to use a dielectric material. That is, such ferroelectric materials are Al103, Y
203 has a higher dielectric property than SiO2, etc., so it is possible to lower the driving voltage of an EL element using it as an insulating layer, but it has the disadvantage of poor dielectric breakdown resistance. Even if the silicon nitride thin film is thin, sufficient dielectric breakdown resistance can be obtained due to its high insulation properties. Therefore, in this composite film, the thickness of the silicon nitride thin film can be made very thin, on the order of 200 to 1,000 layers, thereby reducing the driving voltage.

なお、上記の強誘導体からなる絶縁膜は、その形成手段
として電子ビーム蒸着法、スパッタリング法、各種CV
D法などの既存の薄膜形成手段をいずれも採用可能であ
る。またその膜厚は3,000〜6,000人程度とす
るのがよい。
The insulating film made of the above-mentioned ferroelectric material can be formed by electron beam evaporation, sputtering, or various CVD methods.
Any existing thin film forming means such as the D method can be employed. The thickness of the film is preferably about 3,000 to 6,000 people.

一方、絶縁層を上記のCVD法による窒化シリコン薄膜
のみで形成する場合は、その厚みを好ましくは500Å
以上、最適には1,000〜2,000人とするのがよ
い。
On the other hand, when the insulating layer is formed using only a silicon nitride thin film by the above-mentioned CVD method, the thickness is preferably 500 Å.
As mentioned above, it is best to set the number to 1,000 to 2,000 people.

第1図および第2図はこの発明方法にて得られる二重絶
縁型のEL素子の構造例を示す。
FIGS. 1 and 2 show an example of the structure of a double insulation type EL element obtained by the method of the present invention.

両図において、■はガラスなどの透光性材料からなる基
板であり、この上に順次、インジウム−スズ複合酸化物
(以下、IT○という)膜などからなる厚さ1,000
〜3,000人程度の表示側の透明電極2、第1の絶縁
層3、発光体層4、第2の絶縁層5、Aj2薄膜やIT
O膜からなる所要形状にパターン化された厚さ500〜
3,000人程度の背面電極6、が設けられている。
In both figures, ■ is a substrate made of a translucent material such as glass, and on this is a 1,000 mm thick film made of indium-tin composite oxide (hereinafter referred to as IT○), etc.
~3,000 people display side transparent electrode 2, first insulating layer 3, light emitter layer 4, second insulating layer 5, Aj2 thin film and IT
Patterned into a desired shape made of O film with a thickness of 500~
Approximately 3,000 back electrodes 6 are provided.

そして、第1図のEL素子では第1および第2の絶縁層
3.5がともに前記のプラズマCVD法にて形成された
厚さ2,000Å以下の窒化シリコン薄膜にて構成され
ている。また第2図のE L素子では、第2の絶縁層5
は上記同様の窒化シリコン薄膜にて構成されているが、
第1の絶縁層3は前記の強誘導電体からなる基板側の絶
縁膜3aと上記同様の窒化シリコン薄膜からなる発光体
層側の絶縁膜3bとの複合膜にて構成されている。
In the EL device shown in FIG. 1, both the first and second insulating layers 3.5 are made of silicon nitride thin films with a thickness of 2,000 Å or less formed by the plasma CVD method described above. Further, in the E L element shown in FIG. 2, the second insulating layer 5
is composed of the same silicon nitride thin film as above, but
The first insulating layer 3 is composed of a composite film of an insulating film 3a on the substrate side made of the above-mentioned ferroelectric material and an insulating film 3b on the light emitting layer side made of the same silicon nitride thin film as described above.

発光体層4の構成材料としては、E L素子用として知
られる各種発光体材料がいずれも使用可能であり、通常
ではZnSなどの母材に少量の発光付活剤を配合したも
の、たとえばZnS:TbF3 (緑色発光) 、Z 
n S : S m F 3(赤色発光)、ZnS:M
n(黄橙色発光) 、ZnS :TmF3(青色発光)
、ZnS:PrFa  (白色発光)、ZnS:DyF
3 (黄色発光)などが好適に使用される。このような
発光体層4は、電子ビーム蒸着法、スパッタリング法を
始めとする種々の薄膜形成手段によって第1の絶縁層3
上に厚さ3,000〜6,000人程度に設けられる。
As the constituent material of the luminescent layer 4, any of the various luminescent materials known for use in EL devices can be used, and usually a base material such as ZnS mixed with a small amount of a luminescence activator, such as ZnS, is used. :TbF3 (green emission), Z
nS: SmF3 (red emission), ZnS:M
n (yellow-orange emission), ZnS:TmF3 (blue emission)
, ZnS:PrFa (white light emission), ZnS:DyF
3 (yellow emission) and the like are preferably used. Such a light emitting layer 4 is formed by forming the first insulating layer 3 by various thin film forming methods including electron beam evaporation and sputtering.
It will be installed on the top with a thickness of about 3,000 to 6,000 people.

なお、第2図のEL素子では第1の絶縁層3を前記のプ
ラズマCVD法による窒化シリコン薄IFJからなる絶
縁膜と強誘電体からなる絶縁膜との複合膜としているが
、逆に第2の絶縁層5を同様の複合膜としたり、両絶縁
層3,5をともに同様の複合膜としても差し支えない。
In the EL device shown in FIG. 2, the first insulating layer 3 is a composite film of an insulating film made of silicon nitride thin IFJ produced by the plasma CVD method and an insulating film made of ferroelectric material. The insulating layer 5 may be a similar composite film, or both the insulating layers 3 and 5 may be a similar composite film.

また、これら複合膜は窒化シリコン薄膜からなる絶縁膜
を発光体層4側とその反対側のいずれの側に配してもよ
い。
Further, in these composite films, an insulating film made of a silicon nitride thin film may be disposed on either the light emitting layer 4 side or the opposite side.

さらに、この発明方法は、図示の如き二重絶縁型のEL
素子のほか、卓絶縁型のEL素子、発光体層が2層以上
の多層構造であるEL素子、対向する一方の電極が相互
間に絶縁層を介して積層された複数の電極層からなるE
L素子など、種々のEL素子の製造に適用可能である。
Further, the method of the present invention can be applied to a double insulation type EL as shown in the figure.
In addition to devices, there are also table-insulated EL devices, EL devices with a multilayer structure with two or more light-emitting layers, and E with multiple electrode layers in which one electrode facing each other is laminated with an insulating layer interposed between them.
It is applicable to manufacturing various EL elements such as L elements.

、〔発明の効果〕 この発明方法によれば、対向する電極と発光体層との間
に介在する絶縁層の少なくとも一部を特定条件のプラズ
マCVD法にて形成される厚さ2゜000Å以下の窒化
シリコン薄膜にて構成することから、この窒化シリコン
薄膜のすぐれた緻密性および絶縁性と薄い膜厚に起因し
て、駆動電圧が著しく低く、かつ連続使用によっても絶
縁破壊を生じにくい長寿命のEL素子を得ることができ
る。
[Effects of the Invention] According to the method of the invention, at least a part of the insulating layer interposed between the facing electrode and the light emitting layer is formed by plasma CVD under specific conditions to a thickness of 2°,000 Å or less. Due to the excellent density and insulation properties of this silicon nitride thin film, as well as its thin film thickness, the driving voltage is extremely low, and it has a long lifespan that is unlikely to cause dielectric breakdown even with continuous use. It is possible to obtain an EL element of.

〔実施例〕〔Example〕

以下に、この発明を実施例に基づいて具体的に説明する
The present invention will be specifically described below based on examples.

実施例1 厚さ1. l mmの無アルカリガラスからなる基板の
一面にスパッタリング法によりITO膜からなる厚さ2
,000人の透明電極を形成したのら、この透明電極上
にプラズマCVD法によって窒化シリコン薄膜からなる
厚さ1,500人の第1の絶縁層を形成し、この上に電
子ビーム蒸着法によってZns:TbF、からなる厚さ
5,000人の発光体層を形成し、さらにこの発光体層
上にプラズマCVD法によって厚さ1,500人の第2
の絶縁層を形成し、最後に第2の絶縁層上に抵抗加熱蒸
着法によって厚さ2,000人のAN薄膜からなる背面
電極を形成し、第1図で示す構造のF、 L素子A1を
作製した。
Example 1 Thickness 1. A 2 mm thick ITO film was deposited on one surface of a 1 mm alkali-free glass substrate by sputtering.
After forming a transparent electrode with a thickness of 1,000 μm, a first insulating layer made of a silicon nitride thin film with a thickness of 1,500 μm was formed on the transparent electrode using a plasma CVD method, and a first insulating layer with a thickness of 1,500 μm was formed on this transparent electrode using an electron beam evaporation method. A 5,000-layer thick phosphor layer made of Zns:TbF is formed, and a second 1,500-layer phosphor layer is formed on this phosphor layer by plasma CVD.
Finally, on the second insulating layer, a back electrode consisting of a 2,000-thick AN thin film was formed by resistance heating evaporation, and the F and L elements A1 having the structure shown in FIG. 1 were formed. was created.

なお、第1および第2の絶縁層を形成するプラズマCV
D法はいずれも、真空度I To r r、 &板温度
250°C1高周波(13,56Mllz)出力100
Wにおいて、ソースガスとしてSiH4ガスをH2ガス
で10容量%濃度に希釈したガスとNH3ガスとをN 
Hsガス/ S i H4ガスの流量比が7となる割合
で用い、その供給速度を総量で80mA/分とし、膜成
長速度100人/分として行った。
Note that plasma CV for forming the first and second insulating layers
For both method D, the vacuum degree is I Torr, the board temperature is 250°C, the high frequency (13,56 Mllz) output is 100
In W, SiH4 gas diluted to a concentration of 10% by volume with H2 gas and NH3 gas are used as source gases.
The flow rate ratio of Hs gas/S i H4 gas was 7, the total supply rate was 80 mA/min, and the film growth rate was 100 people/min.

比較例1 第1および第2の絶縁層を、ソースガスとしてSiH4
ガスをArガスで10容量%濃度に希釈したガスとNH
3ガスとをNH3ガス/ S I Haガスの流量比が
7となる割合で用い、他の条件を実施例1と同様とした
プラズマCVD法によって形成した窒化シリコン薄膜と
した以外は、実施例1と同様にしてEL素子Bを作製し
た。
Comparative Example 1 The first and second insulating layers were formed using SiH4 as a source gas.
Gas diluted with Ar gas to a concentration of 10% by volume and NH
Example 1 except that the silicon nitride thin film was formed by the plasma CVD method under the same conditions as Example 1, using 3 gases at a flow rate ratio of NH3 gas/S I Ha gas of 7. EL element B was produced in the same manner as above.

比較例2 第1および第2の絶縁層を、ソースガスとしてSiH4
ガスをH2ガスで10容量%濃度に希釈したガスとN 
H3ガスとをN H3ガス/SiH。
Comparative Example 2 The first and second insulating layers were formed using SiH4 as a source gas.
Gas diluted with H2 gas to a concentration of 10% by volume and N
H3 gas and N H3 gas/SiH.

ガスの流量比が1となる割合で用い、他の条件を実施例
1と同様としたプラズマCVD法によって形成した窒化
シリコン薄膜とした以外は、実施例1と同様にしてEL
素子Cを作製した。
EL was carried out in the same manner as in Example 1, except that the gas flow rate ratio was 1 and the silicon nitride thin film was formed by plasma CVD under the same conditions as in Example 1.
Element C was produced.

比較例3 第1および第2の絶縁層をともに電子ビーム蒸着法にて
形成した厚さ4.000人のY2O3膜とした以外は、
実施例1と同様にしてEL素子りを作製した。
Comparative Example 3 The first and second insulating layers were both Y2O3 films with a thickness of 4,000 yen formed by electron beam evaporation.
An EL device was produced in the same manner as in Example 1.

実施例2 第1の絶縁層を、高周波スパッタリング法にて形成した
厚さ5,000人のPbTiO2(誘電率100)膜か
らなる基板側の絶縁膜と実施例1と同様条件のプラズマ
CVD法にて形成した厚さ500人の窒化シリコン薄膜
からなる発光体層側の絶縁膜との複合膜とした以外は、
実施例1と同様にして第2図で示す構造のEL素子A2
を作製した。
Example 2 The first insulating layer was a substrate-side insulating film made of a 5,000-thick PbTiO2 (dielectric constant: 100) film formed by high-frequency sputtering and plasma CVD under the same conditions as in Example 1. Except for the composite film with the insulating film on the light emitting layer side, which was made of a silicon nitride thin film with a thickness of 500 μm.
EL element A2 having the structure shown in FIG. 2 in the same manner as in Example 1
was created.

以上の実施例および比較例にて得られたEL素子AI−
Dについて、透明電極と背面電極との間に5 K Hz
の交流パルス電圧を印加し、この電圧を次第に増大させ
ることによって輝度−電圧特性を調べた。その結果を第
3図に示す。なお、図中の各曲線の符号は各EL素子の
符号A、−Dに対応している。
EL element AI- obtained in the above Examples and Comparative Examples
For D, 5 KHz between the transparent electrode and the back electrode
The brightness-voltage characteristics were investigated by applying an alternating current pulse voltage of 100 mL and gradually increasing this voltage. The results are shown in FIG. Note that the symbol of each curve in the figure corresponds to the symbol A, -D of each EL element.

また、各EL素子について、第1の絶縁層の誘電率と絶
縁破壊電界強度と誘電損失、5KIlz−150Vの交
流パルス電圧を印加して連続駆動させたときの絶縁破壊
を生じるまでの時間で示す耐久性を、それぞれ測定した
。これらの結果を、上記電圧印加における発光開始電圧
と実用的輝度(約100 Cd/+yf)が得られる駆
動電圧とともに下表に示す。
In addition, for each EL element, the dielectric constant of the first insulating layer, the dielectric breakdown field strength, the dielectric loss, and the time until dielectric breakdown occurs when continuously driven by applying an AC pulse voltage of 5Kilz-150V are shown. Durability was measured for each. These results are shown in the table below along with the emission start voltage and the drive voltage at which practical brightness (approximately 100 Cd/+yf) was obtained when the above voltage was applied.

なお、上表中、耐久性の項で比較例1〜3によるE L
素子B−Dに生した破壊はいずれも伝播形破壊であり、
破壊後には実用的表示が不能となった。また、実施例1
.2によるEL素子A+、A2について、さらに5KH
z、140Vの交流パルス電圧を印加して1,000時
間の連続駆動後に観察したところ、ともに僅かに局部破
壊を生していたが、これら破壊部分は周囲に伝播してお
らず、実用上支障のない自己修復形破壊に留まっている
ことが確認された。
In addition, in the above table, in the durability section, E L according to Comparative Examples 1 to 3
The fractures that occurred in elements B-D are all propagation type fractures,
After its destruction, it was no longer possible to display it for practical purposes. In addition, Example 1
.. For EL elements A+ and A2 according to 2, an additional 5KH
When observed after 1,000 hours of continuous operation by applying an alternating current pulse voltage of 140 V and 140 V, slight local destruction occurred in both cases, but these destruction areas did not propagate to the surrounding area and were not a practical problem. It was confirmed that the damage remained in a self-repairing type of failure.

上表および第3図の結果から明らかなように、特定条件
のプラズマCVD法にて形成される窒化シリコン薄膜に
て絶縁層の少なくとも一部を構成したこの発明方法にて
得られるEL素子A、、A2は、従来汎用の電子ビーム
蒸着法にて絶縁層を形成したEL素子りに比較して、発
光開始電圧がEL素子A1では約50V、EL素子A2
では約80Vそれぞれ低く、実用輝度を得る駆動電圧が
EL素子A1では約70V、EL素子A2では約90V
も大幅に低下しており、しかも長期連続使用によっても
絶縁破壊を生じず著しく長寿命であることが判る。一方
、絶縁層をプラズマCV D法にて形成される窒化シリ
コン薄膜としたE■、素子であっても、反応成分のシラ
ンガスが水素ガス以外で希釈されたガスを用いて得られ
たもの(EL素子B)や、シランガス/アンモニアガス
の流量比が小さすぎるソースガスを用いて得られたもの
(EL素子C)では、発光開始電圧は低くなるが、駆動
電圧はこの発明方法によるEL素子AI、A2よりかな
り高く、また寿命でも劣ることが判る。
As is clear from the results shown in the table above and FIG. 3, EL element A obtained by the method of the present invention in which at least a part of the insulating layer is made of a silicon nitride thin film formed by plasma CVD under specific conditions; , A2 has a luminescence starting voltage of approximately 50 V for EL element A1, compared to an EL element in which an insulating layer is formed using a conventional general-purpose electron beam evaporation method;
The driving voltage to obtain practical brightness is approximately 70V for EL element A1 and approximately 90V for EL element A2.
Moreover, even after long-term continuous use, no dielectric breakdown occurs and the lifespan is extremely long. On the other hand, even if the insulating layer is a silicon nitride thin film formed by the plasma CVD method, the element is obtained using a gas in which the silane gas as a reaction component is diluted with a gas other than hydrogen gas (EL). In the device B) and the device obtained using a source gas with a too small flow rate ratio of silane gas/ammonia gas (EL device C), the emission start voltage is low, but the driving voltage is lower than that of the EL device AI according to the method of this invention. It is found that it is considerably more expensive than A2 and also has a shorter lifespan.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はこの発明方法にて得られるエレク
トロルミネッセンス素子の構造例を示す断面図、第3図
はこの発明の実施例および比較例の方法にて得られたエ
レクトロルミネッセンス素子の輝度−電圧特性図である
。 2.6・・・電極、3.5・・・絶縁層、4・・・発光
体層特許出願人  日立マクセル株式会社(外1名)第
1図 第3図 7仄 (V)
1 and 2 are cross-sectional views showing structural examples of electroluminescent devices obtained by the method of the present invention, and FIG. 3 shows the luminance of electroluminescent devices obtained by the methods of Examples and Comparative Examples of the present invention. - It is a voltage characteristic diagram. (V)

Claims (1)

【特許請求の範囲】[Claims] (1) 少なくとも一方が透明である対向する電極間に
発光体層および絶縁層が配設されてなるエレクトロルミ
ネツセンス表示素子の製造方法において、上記絶縁層の
少なくとも一部をプラズマCVD法にて形成される厚さ
2,000Å以下の窒化シリコン薄膜にて構成するとと
もに、このプラズマCVD法におけるソースガスとして
水素ガスで希釈したシランガスとアンモニアガスとをア
ンモニアガス/シランガスの流量比(容積)が5以上と
なる割合で使用することを特徴とするエレクトロルミネ
ツセンス素子の製造方法。
(1) In a method for manufacturing an electroluminescent display element in which a light emitter layer and an insulating layer are disposed between opposing electrodes, at least one of which is transparent, at least a portion of the insulating layer is formed by plasma CVD. It is composed of a silicon nitride thin film formed with a thickness of 2,000 Å or less, and silane gas diluted with hydrogen gas and ammonia gas are used as source gases in this plasma CVD method, and the flow rate ratio (volume) of ammonia gas/silane gas is 5. A method for manufacturing an electroluminescent element, characterized in that the electroluminescent element is used in the above ratio.
JP63049354A 1988-03-01 1988-03-01 Manufacture of electroluminescence element Pending JPH01225093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63049354A JPH01225093A (en) 1988-03-01 1988-03-01 Manufacture of electroluminescence element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63049354A JPH01225093A (en) 1988-03-01 1988-03-01 Manufacture of electroluminescence element

Publications (1)

Publication Number Publication Date
JPH01225093A true JPH01225093A (en) 1989-09-07

Family

ID=12828681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63049354A Pending JPH01225093A (en) 1988-03-01 1988-03-01 Manufacture of electroluminescence element

Country Status (1)

Country Link
JP (1) JPH01225093A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6933250B2 (en) 2002-04-15 2005-08-23 Mitsubishi Denki Kabushiki Kaisha Process for manufacturing a semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6933250B2 (en) 2002-04-15 2005-08-23 Mitsubishi Denki Kabushiki Kaisha Process for manufacturing a semiconductor device

Similar Documents

Publication Publication Date Title
JP4528923B2 (en) EL element
TW200304938A (en) Phosphor thin film, manufacturing method of the same and electroluminescence panel
US20020125821A1 (en) Electroluminescent display formed on glass with a thick film dielectric layer
JPH11185964A (en) Organic luminous element and its manufacture
JPH01225093A (en) Manufacture of electroluminescence element
US7811678B2 (en) Low process temperature thin film phosphor for electroluminescent displays
JPH077713B2 (en) Thin film EL device
KR20020091640A (en) Electroluminescent display with carbon contained electron generating material and method for fabricating the same
JPH0158839B2 (en)
WO2002073708A2 (en) Electroluminescent display device
JP2985096B2 (en) Zn lower 2 SiO lower 4: Method of manufacturing AC driven thin film electroluminescent device using Mn thin film as light emitting layer
JPS62295391A (en) Electroluminescence device
JP5046637B2 (en) Inorganic electroluminescent device
JP2000173775A (en) Ultraviolet emission electroluminescent element and its manufacture
JPH01130495A (en) Film type electroluminescence element
KR970006081B1 (en) Manufacturing method of thin-film el display element
JPH0294289A (en) Manufacture of thin film type electroluminescence element
JPS6386294A (en) Thin film electriluminescence device
JPS6391996A (en) Display with electroluminescence device
JPH10308282A (en) Thin film electroluminescence element and its manufacture
JPH02306591A (en) Manufacture of thin film electroluminescence element
JPH03105898A (en) Organic el device
JPS5956390A (en) Method of forming el thin film
JPH01243391A (en) Thin-film el device
JPH04249094A (en) Manufacture of film type electroluminescence element