JPH01224169A - Method for removing oxide of flash butt welding method - Google Patents

Method for removing oxide of flash butt welding method

Info

Publication number
JPH01224169A
JPH01224169A JP5138788A JP5138788A JPH01224169A JP H01224169 A JPH01224169 A JP H01224169A JP 5138788 A JP5138788 A JP 5138788A JP 5138788 A JP5138788 A JP 5138788A JP H01224169 A JPH01224169 A JP H01224169A
Authority
JP
Japan
Prior art keywords
flash
butt welding
steel materials
oxides
upsetting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5138788A
Other languages
Japanese (ja)
Inventor
Mitsusane Kawasaki
河崎 充実
Junya Matsuyama
松山 準也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP5138788A priority Critical patent/JPH01224169A/en
Publication of JPH01224169A publication Critical patent/JPH01224169A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PURPOSE:To effectively remove an oxide produced at the time of welding by setting the flash voltage specifically and further, holding applied current density between steels in the specific range and in addition, limiting the upset force. CONSTITUTION:The process to impress the flash voltage between the steels is divided into the preceding period and the latter period and the preceding period and the latter period are limited in the ranges of 7.5-11.0V and 4.0-6.0V respectively and further, the applied current density between the steels in the upset process is held in the range of 1-20A/mm<2> and in addition, the upset force is limited in the range of 2-6kg f/mm<2>. By this method, the oxide produced on the joining surface at the time of performing flash butt welding is fined and dispersed uniformly and can be removed effectively.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はフラッシュ・バット溶接法における酸化物除去
方法に係り、詳しくは、フラッシュ・バット溶接時の溶
接部若しくは接合部に生成介在する鹸化物等を微細化し
、しかも、この酸化物等をきわめて高いアプセット力を
与えて効果的に除去し、なかでも、大径鋼管やレール、
ハイテンションチェン、厚板等で引張強さ50kgf/
閣2以上の鋼材で、引張強さならびに曲げ特性等にすぐ
れた溶接部が得られるフラッシュ・バット溶接ができる
溶接部や接合部から酸化物を除去する方法に係る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for removing oxides in flash butt welding, and more specifically, for removing saponified substances and the like that are generated in welds or joints during flash butt welding. Furthermore, it effectively removes these oxides by applying an extremely high upsetting force, especially for large diameter steel pipes, rails, etc.
Tensile strength 50kgf/ for high tension chains, thick plates, etc.
This invention relates to a method for removing oxides from welds and joints that allow flash butt welding, which produces welds with excellent tensile strength, bending properties, etc., of steel materials of Grade 2 or higher.

従  来  の  技  術 一般に、M扱や小径鋼管等の薄物の溶接には、突合せ溶
接が用いられている。これに対し、大径鋼管や厚板、レ
ール、ハイテンションチェン等の如き、所謂厚物には、
突合せ溶接で入熱情が不足することから、フラッシュ・
バット溶接法が用いられている。フラッシュ・バット溶
接法とは、フラッシュ過程とアプセット過程とから成っ
ているもので、フラッシュ過程で一対の鋼材間にフラッ
シュを発生させて鋼材接合面を溶融し、その後のアプセ
ット過程でこの鋼材の溶融接合面を互いに接近突合せて
鋼材を互いに加圧接合する。しかしながら、フラッシュ
・バット溶接法では、溶接時の高温加熱によって溶接部
若しくは接合部のオーステナイト結晶粒が粗大化するほ
か、鋼材を突合せ状態で加圧溶融接合する突合せ溶接に
較べると、フラッシュ過程で接合面を溶融する時に、酸
化が起こり易(、この酸化物がアプセット過程でも接合
部に残存介在し、得られる溶接部の性質や強度が損なわ
れる欠点がある。
Conventional technology In general, butt welding is used for welding thin materials such as M-class steel pipes and small diameter steel pipes. On the other hand, so-called thick materials such as large diameter steel pipes, thick plates, rails, high tension chains, etc.
Due to the lack of passion for butt welding, flash
Butt welding is used. The flash butt welding method consists of a flash process and an upset process. In the flash process, a flash is generated between a pair of steel materials to melt the joint surface of the steel materials, and in the subsequent upset process, this steel material is melted. Steel materials are joined together under pressure by bringing their joining surfaces into close contact with each other. However, in the flash butt welding method, the austenite grains in the welded area or joint area become coarse due to the high temperature heating during welding. When the surfaces are melted, oxidation tends to occur (this oxide remains in the joint even during the upsetting process, which has the disadvantage of impairing the properties and strength of the resulting weld).

更に詳しく説明すると、フラッシュ・バット溶接は大電
流のもとで溶込みを太き(して高能率で溶接でき、この
ため、厚物の如く、接合面の面積の大きい鋼材であって
も安定した溶接部を得ることができる長所を持って、こ
れ故に、レール、ハイテンションチェン、大径鋼管等の
溶接に広く利用されている。しかし、フラッシュ・バッ
ト溶接によって得られる継手部について、引張試験、曲
げ試験を行なうと、接合部で破断してしまうといった欠
点がある。そこで、この原因を検討すると、次の2つの
ところが挙げられる。
To explain in more detail, flash butt welding allows for high efficiency welding by increasing the penetration depth under a large current, and for this reason, it is possible to weld stably even with thick steel materials with a large joint surface area. For this reason, it is widely used for welding rails, high-tension chains, large-diameter steel pipes, etc. However, the joints obtained by flash butt welding cannot be tested in tensile tests. However, when a bending test is performed, it has the disadvantage that it breaks at the joint.If we examine the causes of this, we can point to the following two reasons.

(1)フラッシュ過程、なかでも、大電流で溶込みを太
き(すると、接合面の酸化物の生成が促進され、この酸
化物がアプセット過程でも残存し、接合部若しくは溶接
部に酸化物が介在し、溶接部の強度や性質が損なわれる
こと、(2)フラッシュ・バット溶接時の^温和熱によ
り接合部のオーステナイト結晶粒が粗大化し、溶接部の
性質、強度が損なわれること、 このとごろから、特開昭60−96378号公報に示す
如く、フラッシュ・バット溶接による溶接部の品質向上
をはかることが提案されている。
(1) In the flash process, in particular, thickening the penetration with a large current (this promotes the formation of oxides on the joint surface, and this oxide remains during the upset process, causing oxides to form in the joint or weld. (2) Mild heat during flash butt welding causes austenite grains in the joint to coarsen, impairing the properties and strength of the weld. For some time, it has been proposed to improve the quality of welded parts by flash butt welding, as shown in Japanese Patent Laid-Open No. 60-96378.

このフラッシュ・バット溶接法では、フラッシュ過程を
前期と後期とに分け、前期で被溶接材によって決められ
る所定温度まで加熱し、その慢、後期でフラッシュ電圧
を前期のフラッシュ電圧よりおとして接合面全体にわた
って安定かつ微細なフラッシュを発生させる。また、そ
の債のアプセット過程では、鋼材への電力供給を停止し
、この状態で鋼材に対し再結晶温度付近の変形抵抗より
わずかに大きいアプセット力を加えて溶融接合面を圧接
する。
In this flash butt welding method, the flash process is divided into the first and second stages. In the first stage, the material to be welded is heated to a predetermined temperature determined by the material to be welded. In the second stage, the flash voltage is lowered from the flash voltage of the first stage to cover the entire joint surface. Generates a stable and fine flash over an extended period of time. In addition, in the upsetting process of the bond, the power supply to the steel material is stopped, and in this state, an upsetting force slightly larger than the deformation resistance near the recrystallization temperature is applied to the steel material to press the molten joint surface.

しかしながら、このフラッシュ・バット溶接法は、被溶
接材として薄板等の薄物までも対象としていることもあ
って、アプセット力を例えば5〜7 k(1/ CI’
程度に高めると、突合せ時に座屈が起こることから、ア
プセット力は5〜7klJ/CI2以下の如(、非常に
低い力しか加えておらず、このため、アプセット過程で
接合部に残存する酸化物は微細分散化して除去できず、
引張、曲げ試験において接合部で破断するといった欠点
がある。要するに、フラッシュ・バット溶接法では溶接
部に介在する酸化物が不利な結果をもたらすのにも拘ら
ず、このところを解消する効果的な手段が未だ開発され
ていないのが現況である。
However, this flash butt welding method uses even thin materials such as thin plates as materials to be welded, and the upset force is, for example, 5 to 7 k (1/CI'
If the force is increased to a certain degree, buckling will occur during butt, so the upset force is less than 5 to 7 klJ/CI2 (only a very low force is applied, and for this reason, the oxide remaining in the joint during the upset process is is finely dispersed and cannot be removed.
It has the disadvantage that it breaks at the joint during tensile and bending tests. In short, although the flash butt welding method has disadvantageous effects due to oxides present in the weld, no effective means to overcome this problem has yet been developed.

発明が解決しようとする課題 本発明は上記欠点の解決を目的とし、具体的には、フラ
ッシュ・バット溶接の適用が好適な大径鋼管、レール、
ハイテンションチェン等の溶接において、介在する酸化
物を微細化、分散化、更に除去して、溶接部の性質、機
械的特性の改善をはかる方法を提案する。
Problems to be Solved by the Invention The present invention aims to solve the above-mentioned drawbacks, and specifically, it provides large diameter steel pipes, rails, and rails suitable for flash butt welding.
This paper proposes a method for improving the properties and mechanical properties of welded parts by refining, dispersing, and removing intervening oxides during welding of high-tension chains and the like.

課題を解決するための 手段ならびにその作用 まず、本発明法は、一対の鋼材間にフラッシュを発生さ
せてこれら鋼材の接合面を溶融するフラッシュ過程を経
てから、その後のアプセット過程で鋼材の溶融接合面を
接近させて圧接するフラッシュ・バット溶接法であって
、しかも、この溶接のときに、鋼材間の溶接部に介在す
る酸化物を効果的に除去する。
Means for Solving the Problems and Their Effects First, the method of the present invention involves a flash process in which a flash is generated between a pair of steel materials to melt the joining surfaces of these steel materials, and then, in the subsequent upsetting process, the steel materials are fused and joined. This is a flash butt welding method in which surfaces are brought close together and pressure-welded, and moreover, during this welding, oxides present in the weld between steel materials are effectively removed.

また、本発明法では、フラッシュ工程を前期と後期とに
分け、好ましくは、前期と後期とを1対1若しくはそれ
に近い割合に分け、この際のフラッシュ電圧を前期で1
.5〜11.0v%慢期で4.0〜6.0Vに設定する
ほか、アプセット過程で2〜6kgf/III’のアプ
セット力を加えると共に、鋼材間に電流を通電しその電
流密度を1〜20A/llI2の範囲に保つ。従って、
溶接部に介在する酸化物は微細化分散し、更に、効果的
に除去できる。
In addition, in the method of the present invention, the flash step is divided into an early stage and a latter stage, and preferably, the former stage and the latter stage are divided at a ratio of 1:1 or close to that, and the flash voltage at this time is set to 1:1 in the early stage.
.. 5-11.0v% In addition to setting it at 4.0-6.0V in the chronic phase, an upsetting force of 2-6kgf/III' is applied during the upsetting process, and a current is passed between the steel materials to increase the current density to 1-6.0V. Keep in the range of 20A/llI2. Therefore,
Oxides present in the weld zone are finely dispersed and can be effectively removed.

そこで、これら手段たる構成ならびにその作用について
具体的に説明すると、次の通りである。
Therefore, the configuration of these means and their functions will be specifically explained as follows.

まず、フラッシュ過程を前期と後期に分けて、好ましく
は、前期ならびに後期を、例えば、1対1若しくはそれ
に近い割合に分けて、冬期にそれぞれ所定のフラッシュ
電圧をかけて、鋼材の接合面間でフラッシュを発生させ
て溶融する。
First, the flashing process is divided into an early stage and a latter stage. Preferably, the first stage and the latter stage are divided, for example, at a ratio of 1:1 or close to that, and a predetermined flash voltage is applied to each in the winter season, and the flashing process is performed between the joint surfaces of the steel materials. Generates flash and melts.

すなわち、前期のフラッシュ電圧は、常法の通り、被溶
接物の鋼材の突合せ接合面を全面にわたって溶融させる
目的で印加する。この場合、7.5vより少ないと、全
面を溶融するどころか、被溶接物の鋼材の接近スピード
に溶融速度が追いつけなくなり、フリージングが生じる
。また、フラッシュ電圧が11.OVより大きいと、電
気的エネルギーが過大になって、フラッシュの発生が過
大になり、被溶接材の接合面に著しく凹凸の激しい凹凸
部が発生し、この接合面の凹凸部に残存した酸化物はア
プセット過程を経た後も残存し、得られる継手の機械的
特性に悪影響が与えられる。
That is, the flash voltage in the first period is applied, as is the usual method, for the purpose of melting the entire butt joint surface of the steel material of the workpiece. In this case, if it is less than 7.5V, not only will the entire surface be melted, but the melting speed will not be able to keep up with the approaching speed of the steel material to be welded, and freezing will occur. Also, the flash voltage is 11. If it is larger than OV, the electric energy will be excessive, flash will be generated excessively, extremely uneven parts will be generated on the joint surface of the welded materials, and oxides remaining on the uneven parts of the joint surface will be generated. remains even after the upsetting process, adversely affecting the mechanical properties of the resulting joint.

また、後期においては、そのフラッシュ電圧を前期のフ
ラッシュ電圧より下げ、4.0〜6.Ovの範囲内に設
定する。この理由は、前期のフラッシュ過程で生じた接
合面の凹凸を後期で平滑化して、アプセット過程におい
て円滑に酸化物が排出できるようにするためである。更
に詳しく説明すると、前期でフラッシュ電圧を上記適正
範囲内に保っても、接合面の全体にわたって溶融させる
以上、程度の差はあるが、どうしても凹凸部が生成し、
この凹凸部がそのままであると、なかでも、凹部に酸化
物が付看し、残存することが多い。このために、後期で
はフラッシュの発生を調整し、前期で発生した凹凸部を
平滑化して、この平滑化された接合面上に酸化物を付看
させ、後記のアプセット過程で所定のアプセット力を加
えて、酸化物を排出できるようにする。このため、後期
のフラッシュ電圧は前期よりも低下させて、4.0〜6
. OVにする。すなわち、後期のフラッシュ電圧が6
.Ovより高いと、凹凸部がアプセットのときまで残り
、4. OVより低いと、溶融速度がプラテンの移動速
度より小さくなり、フリージングが生じる。
In addition, in the latter half, the flash voltage is lowered from the flash voltage in the first half to 4.0 to 6. Set within the range of Ov. The reason for this is that the unevenness of the bonding surface caused in the flashing process in the first stage is smoothed out in the latter stage, so that oxides can be smoothly discharged in the upsetting process. To explain in more detail, even if the flash voltage is maintained within the above-mentioned appropriate range in the first stage, as long as the entire joint surface is melted, uneven parts will inevitably be generated, although there are differences in degree.
If these uneven portions remain as they are, oxides often stick to and remain in the recessed portions. For this purpose, in the latter stage, the occurrence of flash is adjusted, the unevenness that occurred in the first stage is smoothed, and the oxide is attached to the smoothed joint surface, and a predetermined upsetting force is applied in the upsetting process described later. In addition, it allows oxides to be excreted. For this reason, the flash voltage in the second half was lowered from the first half to 4.0 to 6.
.. Make it an OV. In other words, the flash voltage in the latter half is 6
.. If it is higher than Ov, the uneven portion will remain until the upset, and 4. Below OV, the melting rate becomes less than the platen movement rate and freezing occurs.

次に、以上の通りにフラッシュ過程を経た後、アプセッ
ト過程において、例えば、2〜6klJf/−2の大き
なアプセット力を加えて、フラッシュ過程で生成した酸
化物を追出す。また、これに併せて、アプセット過程で
は被溶接物の鋼材間に通電して、この際の電流密度を1
〜20A/−2に保ち、フラッシュ過程で生成した酸化
物を微細化して、上記アプセット力により容易に追出し
できるようにする。
Next, after passing through the flashing process as described above, in the upsetting process, a large upsetting force of, for example, 2 to 6 klJf/-2 is applied to expel the oxides generated during the flashing process. In addition, in the upset process, current is passed between the steel materials of the workpiece to reduce the current density to 1.
~20 A/-2 to make the oxides generated during the flashing process finer so that they can be easily expelled by the foregoing upsetting force.

すなわち、フラッシュ過程で一対の鋼材接合面や、その
上に生成した酸化物を、上記の如(調整し、この上で、
アプセット過程において両接合面を突合せて接合し、こ
のときに、大きなアプセット力を加えることによって、
酸化物を除去し、機械的特性などに慣れる溶接継手を得
る。
In other words, the bonding surfaces of a pair of steel materials and the oxides generated thereon in the flashing process are adjusted as described above, and then,
In the upsetting process, both joining surfaces are butted and joined, and at this time, by applying a large upsetting force,
Remove oxides and obtain welded joints familiar with mechanical properties, etc.

口の際、アプセット力が2kQf/閣2より小さいと、
突合せ面に生成した酸化物が外部に排出されに<<、接
合部に残存し、引張、曲げシャルピー等に悪影響を及ぼ
す。
When the upset force is less than 2kQf/kaku2,
The oxides generated on the abutting surfaces are discharged to the outside and remain at the joint, adversely affecting tensile, bending, Charpy, etc.

また、6klJr/−2より大きいと、接合面の冷接部
分、つまり、固相接合部が生成し、得られる溶接継手は
溶接欠陥を持つことになって、良好な結果を示さない。
On the other hand, if it is larger than 6klJr/-2, a cold welded part of the joint surface, that is, a solid phase joint, will be generated, and the resulting welded joint will have welding defects and will not show good results.

また、アプセット過程で通電するのは、この通電によっ
て酸化物を微細化し、酸化物の排出を助長促進するため
である。
Further, the reason why electricity is applied during the upset process is to make the oxide finer and promote the discharge of the oxide.

このところから、電流密度は1A/mm2以上必要であ
るが、20A/mm2をこえると、溶接機の容鴫に支障
をきたすことになる。と(に、鋼材突合せ面の断面積が
きわめて大きいときには、電流密度を10A/mm2よ
り太き(すると、溶接機の容l1tf−きわめて太き(
なって好ましくない。
From this point, the current density must be 1 A/mm2 or more, but if it exceeds 20 A/mm2, the capacity of the welding machine will be affected. (In addition, when the cross-sectional area of the steel butt surfaces is extremely large, the current density is set to be thicker than 10 A/mm2 (then, the capacity of the welding machine l1tf - extremely thick (
I don't like it.

実施例 まず、第1表に示す化学組成からなる高張力鋼板(厚さ
18閤X幅100閣×長さ500閤)を用意し、下記の
条件で、本発明法によってフラッシュ・バット溶接を行
ない、その後、常温まで冷却(放冷)した。
Example First, a high-tensile steel plate (thickness: 18 mm x width: 100 mm x length: 500 mm) having the chemical composition shown in Table 1 was prepared, and flash butt welding was performed using the method of the present invention under the following conditions. Then, it was cooled to room temperature (cooled naturally).

く溶接条件〉 前期  後期 フラッシュ電圧 7.5〜it、0(V)  4.0〜
6.0(Vlフラッシュ時間      50(秒)フ
ラッシュ代       25(■)アプセット力(試
料単位断面積あたり)2〜6(k124/I+112)
アプセット電流密度  1.0〜20.0(A/m2)
次に、溶接部における余島部をグラインダーにて除去し
、板厚の中心から径10閣の丸棒引張試験片を切り出し
て引張に験を行なった。また、曲げ試験は18tX12
.5WX200jのサイドベンド試片で行なった。その
結果を第2表に示す。
Welding conditions〉 First period Second period Flash voltage 7.5~it, 0(V) 4.0~
6.0 (Vl flash time 50 (seconds) Flash distance 25 (■) Upset force (per unit cross-sectional area of sample) 2 to 6 (k124/I+112)
Upset current density 1.0-20.0 (A/m2)
Next, the residual portion at the welded part was removed using a grinder, and a round rod tensile test piece with a diameter of 10 mm was cut out from the center of the plate thickness and subjected to a tensile test. In addition, the bending test is 18tX12
.. The test was carried out using a side bend specimen of 5WX200j. The results are shown in Table 2.

なお、第2表において、A〜Fは本発明方法で溶接した
ものであるのに対し、6〜には比較例(すなわち、G%
Hはアプセット力が高いもの、■は前期のフラッシュ電
圧が高いもの、J、には前期のフラッシュ電圧が低いも
のを示す。)である。
In Table 2, A to F are those welded by the method of the present invention, while 6 to 6 are welded by the comparative example (i.e., G%
H indicates a high upsetting force, ■ indicates a high flash voltage in the first period, and J indicates a low flash voltage in the first period. ).

第2表から明らかなように、本発明法によって得られる
溶接継手の引張特性及び曲げ特性は良好であるが、比較
例E、トのようにアプセット力が9.0.11,0kq
f/a2の値であると、曲げ試験で熱影響部メタル70
−に割れが生じたり、引張試験においては、接合部で破
断し、継手強度も母材より低下した。また、比較例1の
如く、前期のフラッシュ電圧が高いときは酸化物の生成
が多いこともあって、引張試験で接合部において破断し
、反対に、比較例J、にの如く、前期のフラッシュ電圧
が低いときでも、接合面の溶込みかヤヤ不足することか
ら、同様に接合部で破断した。
As is clear from Table 2, the tensile and bending properties of the welded joints obtained by the method of the present invention are good, but as in Comparative Examples E and G, the upsetting force is 9.0.11,0 kq.
f/a2 value, heat affected zone metal 70 in bending test
In the tensile test, cracks occurred at the joint, and the strength of the joint was lower than that of the base metal. In addition, as in Comparative Example 1, when the flash voltage in the first period is high, there is a large amount of oxide generated, which causes fracture at the joint in the tensile test. Even when the voltage was low, the joints similarly broke due to insufficient penetration of the joint surfaces.

また、アプセット過程においてアプセット力を変化させ
て、低アプセット力と高アプセット力で行なった場合の
典型的な溶接断面のマクロ組織例を示すと、第1図(a
)ならびに(b)の通りであった。第1図+11)に示
す如く、高アプセット力では、メタル70−が接合部に
近づく程急激に立上がり、接合部自身も白色溶融層は認
めら〈発明の効果〉 以上詳しく説明した通り、本発明法は、フラッシュ過程
で一対の被溶接物の鋼材間にフラッシュ電圧を印加する
場合、フラッシュ過程を前期と後期とに分け、前期のフ
ラッシュ電圧を7.5〜11.0(V)、後期のフラッ
シュ電圧を4.0〜6.Onの範囲で印加し、更に、ア
プセット過程では一対の被溶接物の鋼材間に通電し、そ
の際のW1重密度を1〜20(A/閤2)に保持し、こ
れに併せて、アプセット力を2〜6(ktlf/閤2)
の範囲にする。
Figure 1 (a) shows an example of the macrostructure of a typical weld cross section when the upsetting force is changed during the upsetting process to perform low upsetting force and high upsetting force.
) and (b). As shown in Fig. 1+11), when the forge force is high, the closer the metal 70- is to the joint, the more rapidly it rises, and no white molten layer is observed at the joint itself. In this method, when a flash voltage is applied between a pair of steel materials to be welded during the flash process, the flash process is divided into an early stage and a latter stage, and the flash voltage for the early stage is set at 7.5 to 11.0 (V), and the flash voltage for the latter stage is set at 7.5 to 11.0 (V). Flash voltage 4.0-6. Furthermore, in the upsetting process, electricity is applied between the steel materials of a pair of workpieces, and the W1 load density at that time is maintained at 1 to 20 (A/2), and in conjunction with this, the upsetting Power 2-6 (ktlf/閤2)
range.

従って、このフラッシュ−バット時に接合面に生成する
酸化物は微細化、均一に分散され、更に、これら酸化物
は効果的に除去できる。このため、大径鋼管を溶接する
ときでも、その溶接部の機械的特性は大巾に改善できる
。換言すると、本発明法によって、フラッシュ・バット
溶接し、この際に生成する酸化物を除去すると、母材の
機械的特性と変わらない継手引張特性、継手曲げ特性に
優れた高張力鋼の溶接部を1qることができる。
Therefore, the oxides generated on the joint surface during this flash-butt are made fine and uniformly dispersed, and furthermore, these oxides can be effectively removed. Therefore, even when welding large diameter steel pipes, the mechanical properties of the welded portion can be greatly improved. In other words, by performing flash butt welding using the method of the present invention and removing the oxides generated during this process, a welded part of high-strength steel with excellent joint tensile properties and joint bending properties that are the same as the mechanical properties of the base metal can be obtained. 1q can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)ならびに(b)は低アプセット力及び高ア
プセット力で溶接を行なった場合の溶接部の断面組織を
示す顕微鏡写真である。
FIGS. 1(a) and 1(b) are micrographs showing the cross-sectional structures of welded parts when welding was performed with low upsetting force and high upsetting force.

Claims (1)

【特許請求の範囲】 1)一対の鋼材間にフラッシュを発生させてこれら鋼材
の接合面を溶融するフラッシュ過程を経てから、その後
のアプセット過程で鋼材の溶融接合面を接近させて圧接
するフラッシュ・バット溶接法で、前記鋼材間の溶接部
に介在する酸化物を除去する際に、 前記フラッシュ工程を前期と後期とに分け、この際のフ
ラッシュ電圧を前期で7.5〜11.0V、後期で4.
0〜6.0Vに設定するほか、前記アプセット過程で2
〜6kgf/mm^2のアプセット力を加えると共に、
鋼材間に電流を通電しその電流密度を1〜20A/mm
^2の範囲に保つことを特徴とするフラッシュ・バット
溶接法における酸化物除去方法。
[Claims] 1) A flash process in which a flash is generated between a pair of steel materials to melt the joint surfaces of these steel materials, and then in a subsequent upsetting process, the molten joint surfaces of the steel materials are brought close together and pressure-welded. When removing oxides present in the weld between the steel materials using the butt welding method, the flashing process is divided into an early stage and a latter stage, and the flash voltage at this time is 7.5 to 11.0 V in the first stage and 7.5 to 11.0 V in the latter stage. So 4.
In addition to setting it to 0 to 6.0V, 2V is set in the upset process.
Adding upsetting force of ~6kgf/mm^2,
A current is passed between the steel materials at a current density of 1 to 20 A/mm.
A method for removing oxides in a flash butt welding method, which is characterized by maintaining the oxides within a range of ^2.
JP5138788A 1988-03-04 1988-03-04 Method for removing oxide of flash butt welding method Pending JPH01224169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5138788A JPH01224169A (en) 1988-03-04 1988-03-04 Method for removing oxide of flash butt welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5138788A JPH01224169A (en) 1988-03-04 1988-03-04 Method for removing oxide of flash butt welding method

Publications (1)

Publication Number Publication Date
JPH01224169A true JPH01224169A (en) 1989-09-07

Family

ID=12885534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5138788A Pending JPH01224169A (en) 1988-03-04 1988-03-04 Method for removing oxide of flash butt welding method

Country Status (1)

Country Link
JP (1) JPH01224169A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100470065B1 (en) * 2002-10-31 2005-02-05 주식회사 포스코 Method for flash butt welding high strength steel sheet
WO2011052562A1 (en) * 2009-10-30 2011-05-05 新日本製鐵株式会社 Flash-butt welding method for rail steel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100470065B1 (en) * 2002-10-31 2005-02-05 주식회사 포스코 Method for flash butt welding high strength steel sheet
WO2011052562A1 (en) * 2009-10-30 2011-05-05 新日本製鐵株式会社 Flash-butt welding method for rail steel
JP4902021B2 (en) * 2009-10-30 2012-03-21 新日本製鐵株式会社 Flash butt welding method for rail steel
CN102665994A (en) * 2009-10-30 2012-09-12 新日本制铁株式会社 Flash-butt welding method for rail steel
RU2507045C2 (en) * 2009-10-30 2014-02-20 Ниппон Стил Энд Сумитомо Метал Корпорейшн Method of flush-butt welding of rail steel
US9617690B2 (en) 2009-10-30 2017-04-11 Nippon Steel & Sumitomo Metal Corporation Flash butt welding method of rail steel
EP2495064A4 (en) * 2009-10-30 2017-07-19 Nippon Steel & Sumitomo Metal Corporation Flash-butt welding method for rail steel

Similar Documents

Publication Publication Date Title
US11084119B2 (en) Electrode for resistance spot welding of dissimilar materials
JP4902021B2 (en) Flash butt welding method for rail steel
KR102650264B1 (en) Resistance spot welding method and manufacturing method of resistance spot welding seam
JP2007268604A (en) Resistance spot welding method
JP2012101280A (en) Method of flash butt welding of rail steel
WO2004105994A1 (en) Liquid phase diffusion welding method for metallic machine part and metallic machine part
Han et al. Weld nugget development and integrity in resistance spot welding of high-strength cold-rolled sheet steels
JP5206448B2 (en) Resistance spot welding method for high strength thin steel sheet
KR100765036B1 (en) Joining method of high carbon steel for endless hot rolling
Singh et al. High cycle fatigue performance of cold metal transfer (CMT) brazed C-Mn-440 steel joints
JP2002172469A (en) Spot welding method for high strength steel plate
JP2004098107A (en) Aluminum material resistance spot welding method
JP6105993B2 (en) Molded product made of stainless steel foil joined by resistance heat
JPH01224169A (en) Method for removing oxide of flash butt welding method
JP7115223B2 (en) Method for manufacturing resistance spot welded joints
Viňáš et al. Optimization of resistance spot welding parameters for microalloyed steel sheets
Huda et al. Study on the mechanism of nugget growth behavior in three sheets stack resistance spot welding
KR20140016268A (en) Method of producing a welded article of dispersion strengthened platinum based alloy with two steps welding
JPH0331554B2 (en)
CA3172876A1 (en) Solid-phase spot-welding method and solid-phase spot-welding device
JP3786001B2 (en) Steel, steel structure and joining method
Shajan et al. Effect of initial jaw distance and preheating pulses in eliminating oxide entrapment and weld failures in flash butt welds
JP3750002B2 (en) Friction welding method of spheroidal graphite cast iron material
Rajesh et al. Selection of parameters for flash butt welding on mild steel brake tension rods
JP2870433B2 (en) Manufacturing method of welded pipe