JPH01223703A - Ferromagnetic powder and magnetic recording medium using the same - Google Patents

Ferromagnetic powder and magnetic recording medium using the same

Info

Publication number
JPH01223703A
JPH01223703A JP63049321A JP4932188A JPH01223703A JP H01223703 A JPH01223703 A JP H01223703A JP 63049321 A JP63049321 A JP 63049321A JP 4932188 A JP4932188 A JP 4932188A JP H01223703 A JPH01223703 A JP H01223703A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic powder
powder
metal
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63049321A
Other languages
Japanese (ja)
Inventor
Tetsuya Nakazumi
中住 哲也
Mikio Kishimoto
幹雄 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP63049321A priority Critical patent/JPH01223703A/en
Publication of JPH01223703A publication Critical patent/JPH01223703A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain an excellent antistatic effect without deteriorating electromagnetic conversion characteristics by forming a ferromagnetic metal or alloy such as metal cobalt, a cobalt-nickel alloy or the like onto the surfaces of magnetic powder of oxide and attaching a specific metal onto the surface of the magnetic powder. CONSTITUTION:A magnetic alloy mainly comprising cobalt and nickel is formed onto the surfaces of oxide magnetic powder composed of iron oxide magnetic powder, barium ferrite magnetic powder and chromium oxide magnetic powder, thus shaping magnetic powder. A nonmagnetic metal, oxidation-reduction potential of which extends over 0V or more to standard hydrogen electrode potential, is attached onto the surfaces of magnetic powder having such constitution, and electric resistance is brought to 1-5X10<6>OMEGA. Ru, Rh, Pd, Ag, Os, Ir, Pt, Au, and Cu can be cited as said nonmagnetic metal. It is preferable that the coverage of these nonmagnetic metal is brought to 0.1-2.0 pts.wt. to the 100 pts.wt. magnetic powder of powder to be treated. An expected effect is not acquired when coverage is little, and excess coverage is not preferable because it damages electromagnetic conversion characteristics.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁気記録媒体用酸化物強磁性粉末およびその磁
性粉末を用いた磁気記録媒体に係わり。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to oxide ferromagnetic powder for magnetic recording media and magnetic recording media using the magnetic powder.

さらに詳しくは、その電気伝導度の改良に関する。More specifically, it relates to improving its electrical conductivity.

〔従来の技術〕[Conventional technology]

従来より、磁気テープの走行トラブルの原因の一つとな
る、磁気ヘッド等との摺接によって起るテープの帯電現
象を防止するために、磁性ノー中に導電性のカーボンブ
ラックf界面活性剤系の帯電防止剤などを添加混合する
方法が提案されている。
Conventionally, in order to prevent the charging phenomenon of tapes caused by sliding contact with magnetic heads, etc., which is one of the causes of running troubles of magnetic tapes, conductive carbon black f surfactant type has been added to magnetic particles. A method of adding and mixing an antistatic agent and the like has been proposed.

しかし、これらの方法は、十分な帯電防止効果を達成す
るためには、これらの物質を多量に添加する必要がある
。ところが、多量の添加はテープの電磁変換特性を低下
させる原因となるため、龜加量は出来るだけ少なくする
ことが望ましい。しかし現在、少量の添加量で十分な帯
電防止効果を発揮させる方法は見出されていない。
However, these methods require the addition of large amounts of these substances in order to achieve a sufficient antistatic effect. However, since adding a large amount causes deterioration of the electromagnetic conversion characteristics of the tape, it is desirable to reduce the amount of addition as much as possible. However, at present, no method has been found to achieve a sufficient antistatic effect with a small amount added.

〔発明がN決しようとする問題点〕[Issues that lead to an N decision on the invention]

この発明は、従来製品が持っていた磁性層への導電剤の
添加によシ帯電防止を行うと磁気記録媒体の電磁変換特
性が低下すると云う問題点を、磁性粉末自体の導電性を
高めることにより、1に磁変換特性が良好で帯電防止効
果を得ることを目的としている。
This invention solves the problem of conventional products, where adding a conductive agent to the magnetic layer to prevent static electricity deteriorates the electromagnetic conversion characteristics of the magnetic recording medium, by increasing the conductivity of the magnetic powder itself. The purpose is to obtain good magnetic conversion characteristics and antistatic effect in 1.

〔問題を解吠するための+段〕[+ steps to solve the problem]

本発明者らは、上記従来欠点を解消するため鋭意検討し
た結果、酸化物磁性粉末の表面に金属コバルトあるいは
コバルト−ニッケル合金などの強磁性金属あるいは合金
を形成させたうえ、これらの磁性粉末の表面に、さらに
特定の金属を付着させたときに、111s変換特性を低
下させることなく艮好な帯電防止効果が得られることを
知り、この発明を完成するに至った。
As a result of intensive studies to solve the above-mentioned conventional drawbacks, the present inventors formed a ferromagnetic metal or alloy such as metal cobalt or cobalt-nickel alloy on the surface of oxide magnetic powder, and then They found that when a specific metal is further attached to the surface, a good antistatic effect can be obtained without deteriorating the 111s conversion characteristics, and this invention was completed.

酸化物磁性粉末の表面にコバルトおよびニッケルを主体
とする強磁性金属合金を形成させる手段は、特に限定さ
れず無電解メツキ法など金属ノーを形成するための一般
的な手法を任意に採用できる。
The means for forming a ferromagnetic metal alloy mainly composed of cobalt and nickel on the surface of the oxide magnetic powder is not particularly limited, and any general method for forming a metal layer such as electroless plating can be employed.

なかでも、特願昭59−141003号で詳述したよう
な光触媒反応を利用する方法が最も望ましい方法として
推奨できる。すなわち、光触媒反応によれば、酸化物磁
性粉末の表面にこの粉末の形状を損うことのない非常に
均一な磁性金属合金−を形成でき1Mi気特性上特に望
ましい結果が得られる。
Among these, a method using a photocatalytic reaction as detailed in Japanese Patent Application No. 141003/1988 can be recommended as the most desirable method. That is, according to the photocatalytic reaction, a very uniform magnetic metal alloy can be formed on the surface of the oxide magnetic powder without damaging the shape of the powder, and a particularly desirable result can be obtained in terms of 1Mi characteristics.

酸化物磁性粉体の表面に形成させる強磁性金属あるいは
合金1−の童としては、磁性粉中の含有量が5〜sow
t%の範囲が適当である、この童が5wt%より少ない
と十分な磁気特性の向上が認められず、50wt%以と
にすると磁性粉の形状が著しく変化してしまい、バイン
ダ中への分散性。
As for the ferromagnetic metal or alloy 1 to be formed on the surface of the oxide magnetic powder, the content in the magnetic powder is 5 to sow.
The range of t% is appropriate.If the powder content is less than 5wt%, sufficient improvement in magnetic properties will not be observed, and if it is more than 50wt%, the shape of the magnetic powder will change significantly and it will be difficult to disperse it in the binder. sex.

配向性が低下する。さらにこの含有量をlO〜40wt
%vcy4整すれば、最も大きな効果が得られる。
Orientation deteriorates. Furthermore, this content is 1O ~ 40wt
The greatest effect can be obtained by adjusting %vcy4.

原料として用いる酸化物磁性粉末としてはγ−F@z0
3 、 Co含有r−Fe2α1FesO4,Co含有
Fe504.バリウムフェライト、 CrO2等の磁気
記録媒体に適した強磁性酸化物磁性粉末が挙げられる。
The oxide magnetic powder used as a raw material is γ-F@z0
3. Co-containing r-Fe2α1FesO4, Co-containing Fe504. Examples include barium ferrite, CrO2, and other ferromagnetic oxide magnetic powders suitable for magnetic recording media.

次に、表面に強磁性金属j−を有する酸化物磁性粉末の
表面に付着させる非磁性金属は、その酸化還元電位が0
V以上であることが直装である。すなわち、酸化還元電
位が0V禾祠の金属では酸化され始<、このため磁性粉
末表面金属、1が容易に酸化され、磁性粉末の電気抵抗
が高くなって++j1JL防止効果が得られなくなる。
Next, the non-magnetic metal attached to the surface of the oxide magnetic powder having the ferromagnetic metal j- on the surface has a redox potential of 0.
Direct mounting means that it is V or more. That is, metals whose redox potential is 0 V begin to oxidize, and therefore the surface metal of the magnetic powder, 1, is easily oxidized, and the electrical resistance of the magnetic powder becomes high, making it impossible to obtain the ++j1JL prevention effect.

−万0◆■以上の非磁性金属は酸化さ7″L難いので磁
性粉末に艮好な導電性を与え磁性層の帯電防止に有効に
機能する。
Non-magnetic metals with a particle diameter of -0,000◆■ or more are difficult to oxidize by 7"L, so they impart excellent conductivity to the magnetic powder and effectively function to prevent the magnetic layer from being charged.

このような非磁性金属の代表的なものとしては。Typical examples of such non-magnetic metals include:

Ru、 Rh、 Pd、 Ag、 08. Ir、 P
t、 Au、 Cuを挙げることができ、これらの金属
の中から一種もしくは二種以上を使用すればよい。これ
らの非磁性金属の付着量としては、被処理粉の磁性粉末
100重量部に対して0.1〜2.0重量部、好適には
0.2〜1重を部となるようにするのがよい。付着量が
少ないと所期の効果が得られず、多すぎると電磁変特性
を損なうため好ましくない。
Ru, Rh, Pd, Ag, 08. Ir, P
Examples of the metals include tungsten, Au, and Cu, and one or more of these metals may be used. The amount of these non-magnetic metals to be deposited is 0.1 to 2.0 parts by weight, preferably 0.2 to 1 part by weight, per 100 parts by weight of the magnetic powder to be treated. Good. If the amount of adhesion is too small, the desired effect cannot be obtained, and if it is too large, the electromagnetic characteristics will be impaired, which is not preferable.

この非磁性金属を付着させる手段は、強磁性金属合金成
させる場合と同様、特に限定されず上記の光触媒反応を
利用する方法、第一一イオンを含む水溶液中に被処理粉
を?!!漬したのち、上記非磁性金属の塩などを含む水
溶液中で還元析出させる無電解メツキ法など、金属層を
形成するための一般的な手法を任意に採用できる。
The means for attaching this non-magnetic metal is not particularly limited, as in the case of forming a ferromagnetic metal alloy, and the above-mentioned photocatalytic reaction may be used, or the powder to be treated may be placed in an aqueous solution containing 1-1 ions. ! ! Any general method for forming a metal layer can be employed, such as an electroless plating method in which the metal layer is soaked and then reduced and precipitated in an aqueous solution containing a salt of the nonmagnetic metal.

上記の方法によって得られた母性微粉末を用いて、常法
により磁気テープ、磁気ディスクt−製作したとき、を
磁変換特性に優れると共に表面磁気抵抗の低い磁気記録
媒体が得られる。
When magnetic tapes and magnetic disks are manufactured by conventional methods using the mother fine powder obtained by the above method, magnetic recording media with excellent magnetic conversion characteristics and low surface magnetic resistance can be obtained.

〔実施例〕〔Example〕

実施例1 平均長軸径0.3μ涌、平均軸比8.飽和磁化72.5
emu/、5’、保磁力3200eの7”−FezOs
粉末10007硫酸ニッケル3009.i酸コバル) 
1700.9、次亜燐酸ナトリウム1000.p、クエ
ン酸ナトリウム32509.はう酸2150.9 t−
水100JIC溶解し。
Example 1 Average major axis diameter 0.3 μm, average axial ratio 8. Saturation magnetization 72.5
emu/, 5', 7"-FezOs with coercive force 3200e
Powder 10007 Nickel Sulfate 3009. cobal i acid)
1700.9, sodium hypophosphite 1000. p, sodium citrate 32509. Hydrolic acid 2150.9 t-
Dissolve 100JIC in water.

水酸化ナトリウムt−適量加えてp)i9.0に調整し
た溶液中に分散させた。この分散液を撹拌しながら。
It was dispersed in a solution adjusted to p)i 9.0 by adding an appropriate amount of sodium hydroxide. While stirring this dispersion.

液温を50℃に維持し′C出力IKWのキセノンランプ
を用いて5時間光照射したのち、濾過、乾燥することに
よりγ−Fezesの粒子表面にニッケルーコバルト分
金被膜を形成する。この磁性粉を塩化第一錫700 p
を浴解し次30ノの0.INの塩酸水溶液に40℃の加
温下で約30分間撹拌した。
After maintaining the liquid temperature at 50 DEG C. and irradiating it with light for 5 hours using a xenon lamp with a C output IKW, it is filtered and dried to form a nickel-cobalt gold coating on the surface of the .gamma.-Fezes particles. This magnetic powder was mixed with 700 p of stannous chloride.
The next 30 minutes of 0. The mixture was stirred in an aqueous hydrochloric acid solution of IN for about 30 minutes while heating at 40°C.

この磁性粉を十分に水洗したのち、塩化パラジウムを1
2p溶解した10!loσO5Nの塩酸水溶液に。
After thoroughly washing this magnetic powder with water, add 1 portion of palladium chloride.
2p dissolved 10! loσO5N in aqueous hydrochloric acid solution.

40℃の加温下で添加して約20分間撹拌処理した。そ
の後水洗、f1過し九のち乾燥して非磁性金属被膜を有
する磁性粉末を得た。
The mixture was added under heating at 40°C and stirred for about 20 minutes. Thereafter, it was washed with water, passed through an F1 filter, and then dried to obtain a magnetic powder having a non-magnetic metal coating.

この磁性粉を用いて 磁性粉            800重量部塩化ビニ
ル−酢酸ビニル系共電合体(UCC社製、 VAGH)
          110ffi*Wポリウレタン樹
月旨(大日本インキ社製、バンデックスT−5201)
         70重量部ポリイソシアネート化合
物(日本ポリウレタン社製、コロネー)L)     
   20重量部ステアリン酸−n−ブチル     
8重量部メチルインブチルケトン     5ooit
sトルエン            500重量部上記
組成からなる磁性塗料を調製し、この塗料’?Jlさ2
Sμ情のポリエステルフィルム上に乾燥後の厚みが4μ
慣となるように塗匝、乾燥して磁性層を形成し、カンン
ダリング処理を施したのち。
Using this magnetic powder, 800 parts by weight of vinyl chloride-vinyl acetate co-electric composite (manufactured by UCC, VAGH) was prepared.
110ffi*W polyurethane jutsuji (manufactured by Dainippon Ink Co., Ltd., Bandex T-5201)
70 parts by weight polyisocyanate compound (manufactured by Nippon Polyurethane Co., Ltd., Coronae L)
20 parts by weight n-butyl stearate
8 parts by weight Methyl in butyl ketone 5ooit
500 parts by weight of toluene A magnetic paint having the above composition was prepared, and this paint'? Jlsa2
The thickness after drying is 4μ on Sμ polyester film.
After applying it as usual, drying it to form a magnetic layer, and applying the conundration process.

所定の偏に截断して磁気テープを作製した。A magnetic tape was produced by cutting it into a predetermined shape.

実施例2 実施例1の塩化パラジウム溶液濃度1.29/lk2.
59/lに変更し次以外は、実施例1と同様にして強磁
性粉末と合成し、またこの磁性粉末を用いて磁気テープ
を作成した。
Example 2 Palladium chloride solution concentration of Example 1 1.29/lk2.
59/l and synthesized with ferromagnetic powder in the same manner as in Example 1 except for the following, and a magnetic tape was produced using this magnetic powder.

実施例3 実施例1の塩化パラジウムに代えて、塩化銀1.0&/
lの水溶液10J1&:用いた以外は、実施例2と同様
にして強磁性粉末を合成し、またこの磁性粉末を用いて
磁気テープを作成した。
Example 3 In place of palladium chloride in Example 1, silver chloride 1.0&/
A ferromagnetic powder was synthesized in the same manner as in Example 2, except that an aqueous solution of 10J1&: was used, and a magnetic tape was made using this magnetic powder.

実兄例4 実施例1の塩化パラジウムに代えて、塩化第一銅1.3
 El/lの水浴液litを用い友以外は、実施例1と
同様にして強磁性粉末を合成し、この磁性粉を用いて磁
気テープ金作成した、 実施例5 実施例1のγ−Fezesの代りに平均板径0.06μ
溝、飽和磁化54.1 emu/、!i’ 、保磁力5
500e。
Actual Example 4 Instead of palladium chloride in Example 1, cuprous chloride 1.3
A ferromagnetic powder was synthesized in the same manner as in Example 1 except that a water bath liquid of El/l was used, and a magnetic tape was made using this magnetic powder. Example 5 The γ-Fezes of Example 1 Instead, the average plate diameter is 0.06μ
Groove, saturation magnetization 54.1 emu/,! i', coercive force 5
500e.

角型比0.44のバリウムフェライト紛を便用した以外
は、実施例1と同様にして強磁性粉末を合成し、この磁
性粉を用いて磁気テープを作成した。
A ferromagnetic powder was synthesized in the same manner as in Example 1, except that barium ferrite powder with a squareness ratio of 0.44 was used, and a magnetic tape was made using this magnetic powder.

比較例1 実施例1にふ・いてコバルト−ニッケルo合金+i*を
形成することなしに、塩化第−賜、塩化パラジウム処理
以下を*雄側1と同様にして強磁性粉末を合成し、この
磁性粉を用いて磁気テープを作成した。
Comparative Example 1 A ferromagnetic powder was synthesized in the same manner as in Example 1, except that the cobalt-nickel o alloy +i* was not formed, but the treatment with dichloromethane and palladium chloride was carried out in the same manner as in Male Side 1. A magnetic tape was created using magnetic powder.

比較例2 実施例1において用い之γ−Fe20sに、磁性合金層
、非磁性金属J−を設けないものを磁性粉とし。
Comparative Example 2 Magnetic powder was prepared using γ-Fe20s used in Example 1 without providing a magnetic alloy layer and non-magnetic metal J-.

実施例1の磁性塗料に導[性力−ボンブラックを30重
を部追加し、このMi性塗料?用いて、実施例1と同様
にして磁気テープを作成した。
To the magnetic paint of Example 1, add 30 parts of atomic black to the magnetic paint. A magnetic tape was prepared in the same manner as in Example 1.

上記各実施例、比f例で得られた強磁性粉末については
、liB性初0.3 、@採取し、直径13αのベレッ
トに加圧成形し、このペレットをアルミニウム!極板に
はさみ、テスターで電気抵抗全測定した。
The ferromagnetic powder obtained in each of the above Examples and Ratio Example was collected with a liB property of 0.3 and pressed into a pellet with a diameter of 13α, and this pellet was made of aluminum! It was sandwiched between electrode plates and the total electrical resistance was measured using a tester.

″1念、?!r実施例、比較例で得た磁気テープについ
ては、電磁変換特性および磁性/imの表面電気抵抗を
測定した。
For the magnetic tapes obtained in Examples and Comparative Examples, electromagnetic conversion characteristics and surface electrical resistance of magnetism/im were measured.

感度、MoLI/′i比較例2の磁気テープを基準とし
Sensitivity, MoLI/'i based on the magnetic tape of Comparative Example 2.

それとの比較塩で示した。It is shown in comparison with that.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、酸化物磁性粉末表面にコバルト−
ニッケルの磁性合金j媚を形成し、さらにその上に非磁
性金属J−を形成し、電気抵抗を下げた強磁性粉を用い
た磁気記録媒体は、従来の酸化物磁性粉末を用いた磁気
記録媒体に比し、電磁変換特注を低下させることなく1
表面電気抵抗を下げることができる。よって1Mi気テ
ープなどの走行トラブル七人]陽に減少させることがで
きる。
As explained above, cobalt is added to the surface of the oxide magnetic powder.
Magnetic recording media using ferromagnetic powder, which has a magnetic alloy of nickel and a non-magnetic metal on top of it to lower electrical resistance, are different from conventional magnetic recording using oxide magnetic powder. 1 without reducing electromagnetic conversion customization compared to media
Surface electrical resistance can be lowered. Therefore, running troubles such as 1M tape can be significantly reduced.

特許出願人  日立マクセル株式会社 代表者  水  井     厚Patent applicant: Hitachi Maxell, Ltd. Representative Atsushi Mizu

Claims (4)

【特許請求の範囲】[Claims] (1)酸化物磁性粉末の表面にコバルトおよびニツケル
を主成分とする磁性合金属を形成させた磁性粉表面に酸
化還元電位が、標準水素電極電位に対して0V以上の非
磁性金属を付着させ、電気抵抗が1Ω〜5×10^6Ω
であることを特徴とする強磁性粉末。
(1) A non-magnetic metal whose oxidation-reduction potential is 0V or more with respect to the standard hydrogen electrode potential is attached to the surface of the magnetic powder, in which a magnetic alloy mainly composed of cobalt and nickel is formed on the surface of the oxide magnetic powder. , electrical resistance is 1Ω~5×10^6Ω
A ferromagnetic powder characterized by:
(2)酸化物磁性粉末が、酸化鉄磁性粉末、バリウムフ
ェライト磁性粉末、酸化クロム磁性粉末から選ばれる少
なくとも一種であることを特徴とする請求項(1)記載
の強磁性粉末。
(2) The ferromagnetic powder according to claim (1), wherein the oxide magnetic powder is at least one selected from iron oxide magnetic powder, barium ferrite magnetic powder, and chromium oxide magnetic powder.
(3)非磁性金属の付着量が磁性粉末100重量部に対
して0.1〜2.0重量部であることを特徴とする請求
項(1)ないし(2)記載の強磁性粉末。
(3) The ferromagnetic powder according to any one of claims (1) and (2), wherein the amount of the non-magnetic metal deposited is 0.1 to 2.0 parts by weight per 100 parts by weight of the magnetic powder.
(4)非磁性支持体上に形成された磁性層中に、酸化物
磁性粉末の表面にコバルトおよびニツケルを主成分とす
る磁性合金層を形成させた磁性粉表面に酸化還元電位が
、標準水素電極電位に対して0V以上の非磁性金属を付
着させ、電気抵抗が1Ω〜S×10^−^6Ωである強
磁性粉末を含有することを特徴とする磁気記録媒体。
(4) In a magnetic layer formed on a non-magnetic support, a magnetic alloy layer mainly composed of cobalt and nickel is formed on the surface of an oxide magnetic powder. A magnetic recording medium characterized in that it contains a ferromagnetic powder having an electric resistance of 1Ω to S×10^-^6Ω and a nonmagnetic metal having a voltage of 0V or more with respect to an electrode potential attached thereto.
JP63049321A 1988-03-02 1988-03-02 Ferromagnetic powder and magnetic recording medium using the same Pending JPH01223703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63049321A JPH01223703A (en) 1988-03-02 1988-03-02 Ferromagnetic powder and magnetic recording medium using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63049321A JPH01223703A (en) 1988-03-02 1988-03-02 Ferromagnetic powder and magnetic recording medium using the same

Publications (1)

Publication Number Publication Date
JPH01223703A true JPH01223703A (en) 1989-09-06

Family

ID=12827707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63049321A Pending JPH01223703A (en) 1988-03-02 1988-03-02 Ferromagnetic powder and magnetic recording medium using the same

Country Status (1)

Country Link
JP (1) JPH01223703A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019146661A1 (en) * 2018-01-23 2019-08-01 パウダーテック株式会社 Composite particle, powder, resin composition, and molded article
JPWO2019159800A1 (en) * 2018-02-13 2021-02-12 パウダーテック株式会社 Composite particles, powders, resin compositions and moldings

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019146661A1 (en) * 2018-01-23 2019-08-01 パウダーテック株式会社 Composite particle, powder, resin composition, and molded article
JPWO2019146661A1 (en) * 2018-01-23 2021-03-25 パウダーテック株式会社 Composite particles, powders, resin compositions and moldings
JPWO2019159800A1 (en) * 2018-02-13 2021-02-12 パウダーテック株式会社 Composite particles, powders, resin compositions and moldings

Similar Documents

Publication Publication Date Title
US4017265A (en) Ferromagnetic memory layer, methods of making and adhering it to substrates, magnetic tapes, and other products
US3494760A (en) Production of metal and alloy particles by chemical reduction
JP2003166040A (en) Fine particles of metal alloy and manufacturing method therefor
US3977985A (en) Magnetic recording medium comprising cobalt or cobalt alloy coated particles of spicular magnetite
US3902888A (en) Process for preparing ferromagnetic alloy powder
EP0092394B1 (en) Ferro magnetic recording materials
JPH01223703A (en) Ferromagnetic powder and magnetic recording medium using the same
US3958068A (en) Process for the production of powdered magnetic material
US4803132A (en) Magnetic recording medium
JP3056503B2 (en) White magnetic powder and method for producing the same
JP2659957B2 (en) Magnetic powder, manufacturing method thereof, and magnetic recording medium using the magnetic powder
US3751345A (en) Method of producing a magnetic storage medium
JP2982070B2 (en) Ferromagnetic metal powder and magnetic recording medium
JPS6120302A (en) Ferromagnetic powder and manufacture thereof
JPH01235211A (en) Ferromagnetic powder and magnetic recording medium using it
US3549418A (en) Magnetic recording films of cobalt
JPS6110031A (en) Improved multilayer process for cobalt treatment of ferromagnetic oxide
JPS6161406A (en) Manufacture of ferromagnetic powder
JPS60212822A (en) Ferromagnetic powder and its production
JPS61140109A (en) Magnetic powder of iron oxide containing cobalt and manufacture thereof
JPS61166110A (en) Ferromagnetic powder and manufacture thereof
JP2583070B2 (en) Magnetic recording media
KR960003298B1 (en) Megnetic recording medium
JPS63157405A (en) Ferromagnetic powder and magnetic recording medium using the same
JPS608607B2 (en) Manufacturing method of magnetic powder