JPS61166110A - Ferromagnetic powder and manufacture thereof - Google Patents

Ferromagnetic powder and manufacture thereof

Info

Publication number
JPS61166110A
JPS61166110A JP60007967A JP796785A JPS61166110A JP S61166110 A JPS61166110 A JP S61166110A JP 60007967 A JP60007967 A JP 60007967A JP 796785 A JP796785 A JP 796785A JP S61166110 A JPS61166110 A JP S61166110A
Authority
JP
Japan
Prior art keywords
magnetic
semiconductor particles
particles
metal layer
magnetic metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60007967A
Other languages
Japanese (ja)
Inventor
Mikio Kishimoto
幹雄 岸本
Tomoji Kawai
知二 川合
Nanao Kawai
河合 七雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP60007967A priority Critical patent/JPS61166110A/en
Publication of JPS61166110A publication Critical patent/JPS61166110A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the durability of a magnetic recording medium by a method wherein a magnetic metal layer mainly composed of the metal containing at least a kind of iron, cobalt and nickel is formed on the surface of the non-magnetic semiconductor particles having the specific value or a greater value of hardness. CONSTITUTION:Non-magnetic semiconductor particles are dispersed into the liquid medium containing a reducing agent and magnetic metal ions for the purpose of forming a magnetic metal layer, which is mainly composed of at least a kind of iron, cobalt and nickel on the surface of a non-magnetic semiconductor particles having the Mohs hardness 3. Metal ions are reduced by projecting the light, having the energy laser than that of the band gas of the semiconductor particles, on said dispersed liquid. The abrasive particles such as alpha-Fe2O3, TiO2, Al2O3, Cr2O3 and the like are used as the non-magnetic semiconductor particles, and a sedium hypophosphorous acid, hydrazine, formalin and the like can be used as the reducing agent. The magnetic metal ions are formed by dissolving a metal sulfate, a nitrate, a chloride and the like into a liquid medium. A light is made to irradiate on said dispersion liquid, and an optical catalytic reaction is performed. The magnetic metal layer formed as above is adhered to the surface of the semiconductor particles uniformly and in excellent adhesiveness, thereby enabling to manufacture a magnetic tape which satisfies both durability and electromagnetic conversion characteristics.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はモース硬度3以」二の非磁性半導体粒子の表
面に磁性金属層を設けてなる強磁性粉末とその製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a ferromagnetic powder comprising a magnetic metal layer provided on the surface of non-magnetic semiconductor particles having a Mohs hardness of 3" or more, and a method for producing the same.

〔従来の技術〕[Conventional technology]

一般に、ポルエステルフィルムなどのベース上に磁性粉
およびバインダを含む磁性層を設けてなる磁気記録媒体
は、磁性層とヘッドとの摺接により、磁性層が摩耗して
各種磁気特性が低下するのを防ぐため、磁性層中に研摩
剤であるCr2O3。
In general, magnetic recording media, which have a magnetic layer containing magnetic powder and a binder on a base such as a polyester film, suffer from abrasion of the magnetic layer and deterioration of various magnetic properties due to sliding contact between the magnetic layer and the head. To prevent this, Cr2O3, an abrasive, is added to the magnetic layer.

Aj?203. TiO2、a!−Fe203などを添
加している。
Aj? 203. TiO2, a! -Fe203 etc. are added.

充分な耐久性を得るためには、これらの研摩剤を多量に
添加する必要がある。
In order to obtain sufficient durability, it is necessary to add large amounts of these abrasives.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかるに、これらの研摩剤は非磁性物質であるため、多
量に添加すると磁性層の磁束密度が低下して、感度や’
S/N比などの電磁変換特性が劣下するという問題があ
った。
However, since these abrasives are non-magnetic substances, if they are added in large amounts, the magnetic flux density of the magnetic layer decreases, resulting in sensitivity and
There was a problem that electromagnetic conversion characteristics such as S/N ratio deteriorated.

したがって、この発明は、上記従来の問題点を克服する
こと、つまり電磁変換特性を低下させることなく、磁気
記録媒体の耐久性を向上させることを目的としている。
Therefore, the present invention aims to overcome the above-mentioned conventional problems, that is, to improve the durability of a magnetic recording medium without degrading the electromagnetic conversion characteristics.

〔問題点を解決するための手段1 この発明者らは、上記目的を達成するため検討を重ねた
結果、前記従来の研摩剤の如きモース硬度3以上の非磁
性半導体粒子の表面にFe、Co。
[Means for Solving the Problems 1] As a result of repeated studies to achieve the above object, the inventors discovered that Fe, Co and .

Niのうちの少なくとも一種の金属を主体的に含む磁性
金属層を形成させることにより、団摩剤としての性質と
磁性粉としての性質とを両方兼ねそなえた、全く新しい
磁性粉を得ることに成功した。
By forming a magnetic metal layer that primarily contains at least one metal among Ni, we succeeded in obtaining a completely new magnetic powder that has both the properties of an aggregating agent and the properties of a magnetic powder. did.

すなわち、この磁性粉は、研摩剤としての性質をもって
いるために、従来の磁気記録媒体のように磁性層中に前
述の如き研摩剤を添加する必要はなく、この磁性粉を単
独で使用することにより、電磁変換特性および耐久性と
もにすぐれた磁気記録媒体が得られるものである。
That is, since this magnetic powder has properties as an abrasive, there is no need to add the aforementioned abrasive to the magnetic layer as in conventional magnetic recording media, and this magnetic powder can be used alone. As a result, a magnetic recording medium with excellent electromagnetic conversion characteristics and durability can be obtained.

このような磁性粉は、今日まで全く知られていなかった
ものであるが、この発明者らは、前記従来の研摩剤粒子
が半導体特性を有していることに注目し、この特性を利
用した光触媒反応により、これらの非磁性粒子の表面に
磁性金属を析出させる方法を思い付き、この着想にもと
づいてさらに広範囲の検討を加えることによって、はじ
めて得ることに成功したものである。
Although such magnetic powder was completely unknown until now, the inventors noted that the conventional abrasive particles have semiconducting properties, and developed a method using this property. It was only by coming up with a method of depositing magnetic metal on the surface of these non-magnetic particles through a photocatalytic reaction, and conducting further extensive studies based on this idea, that we succeeded in obtaining it.

上記の光触媒反応とは、半導体粒子を水中に分散させて
、これに半導体粒子の価電子帯から伝導エネルギーを有
する光を照射したときに、伝導帯に電子を価電子帯に正
孔を生じる。ここで、」―配分散液中に予め金属イオン
とともに還元剤を共存させておくと、価電子帯に生じた
上記正孔は還元剤と反応して消滅し、その結果粒子には
電子のみが残存する。この電子のみが残存した半導体粒
子は、分散液中の金属イオンを強く引きつけるとともに
金属に還元し、これにより極めて密着性のよい金属層が
半導体粒子の表面に形成される。
The photocatalytic reaction described above is when semiconductor particles are dispersed in water and irradiated with light having conduction energy from the valence band of the semiconductor particles, generating electrons in the conduction band and holes in the valence band. Here, if a reducing agent is made to coexist with metal ions in the dispersion in advance, the holes generated in the valence band will react with the reducing agent and disappear, and as a result, only electrons will remain in the particles. remain. The semiconductor particles in which only the electrons remain strongly attract the metal ions in the dispersion liquid and are reduced to metal, thereby forming a metal layer with extremely good adhesion on the surface of the semiconductor particles.

そこで、この発明では、」−記半尊体粒子として特に前
記研摩剤粒子の如きモース硬度3以上のものを使用し、
かつ上記金属イオンとしてFe、NI+゛Coの中から
選ばれた少なくとも一種の磁性金属を含むものを用いる
ことにより、上記粒子の表面に密着性の良い均一な磁性
金属層が形成された前記新規構成の磁性粉を得ることに
成功したものである。そして、この磁性粉の磁気特性は
、表面の金属層の磁気特性により決定され、上記金属層
の厚さや金属の種類を変えることにより、磁気特性を任
意にコントロールできるという特徴を有している。
Therefore, in the present invention, as the hemispherical particles, particles with a Mohs hardness of 3 or more, such as the abrasive particles mentioned above, are used,
and the novel structure, wherein a uniform magnetic metal layer with good adhesion is formed on the surface of the particles by using, as the metal ion, at least one magnetic metal selected from Fe, NI+゛Co. We succeeded in obtaining magnetic powder. The magnetic properties of this magnetic powder are determined by the magnetic properties of the metal layer on the surface, and the magnetic properties can be controlled arbitrarily by changing the thickness of the metal layer and the type of metal.

この発明は、以上の知見をもとにしてなされたものであ
り、モース硬度3以上の非磁性半導体粒子の表面に鉄、
コバルト、ニッケルのうちの少なくとも一種の金属を主
成分とする磁性金属層を形成してなる強磁性粉末に係る
第一の発明と、この強磁性粉末を工業的有利に得る方法
として、還元剤と鉄、コバルト、ニッケルのうちの少な
くとも一種の金属を主成分とする磁性金属イオンとを含
ませた液媒体中に、非磁性半導体粒子を分散させ、この
分散液に上記半導体粒子のバンドギャップより大きなエ
ネルギーを有する光を照射することにより、上記半導体
粒子の表面に上記金属イオンを還元させて磁性金属層を
形成させることを特徴とする強磁性粉末の製造方法に係
る第二の発明とからなるものである。
This invention was made based on the above findings, and includes iron and iron on the surface of nonmagnetic semiconductor particles with a Mohs hardness of 3 or more.
A first invention relating to a ferromagnetic powder formed by forming a magnetic metal layer containing at least one metal selected from cobalt and nickel as a main component, and an industrially advantageous method for obtaining this ferromagnetic powder using a reducing agent. Non-magnetic semiconductor particles are dispersed in a liquid medium containing magnetic metal ions whose main component is at least one metal selected from iron, cobalt, and nickel, and this dispersion contains particles with a band gap larger than that of the semiconductor particles. A second invention relating to a method for producing ferromagnetic powder, characterized in that the metal ions are reduced on the surface of the semiconductor particles to form a magnetic metal layer by irradiating the semiconductor particles with energetic light. It is.

[発明の構成・作用] この発明において用いられるモース硬度3以上の非磁性
半導体粒子としては、Q4−Fe203、TiO3、A
l2O3、Cr2O3などの従来汎用の研摩剤粒子のほ
か、モース硬度が3以上である各種粒子、たとえばS 
iC,GaP、 Si、GaAs、 CdS、 5rT
i03、I nP、 Cd Se、 Ba SO2、C
aCO3、ZnOなどの各種粒子が包含される。これら
粒子の平均粒子径としては、通常1.ooX〜2−程度
であるのが望ましい。また、これらの半導体特性として
は、価電子帯から伝導帯までのバンドギャップのエネル
ギーが一般に05〜6.OeV程度で、伝導帯のエネル
ギーレベルが標準水素電極電位に対して負の電位を有す
るものが好ましい。
[Structure and operation of the invention] Non-magnetic semiconductor particles having a Mohs hardness of 3 or more used in the present invention include Q4-Fe203, TiO3, A
In addition to conventional general-purpose abrasive particles such as l2O3 and Cr2O3, various particles with a Mohs hardness of 3 or more, such as S
iC, GaP, Si, GaAs, CdS, 5rT
i03, I nP, Cd Se, Ba SO2, C
Various particles such as aCO3 and ZnO are included. The average particle diameter of these particles is usually 1. It is desirable that it be about ooX to 2-. In addition, as for the characteristics of these semiconductors, the energy of the band gap from the valence band to the conduction band is generally 0.5 to 6. It is preferable that the energy level of the conduction band is about OeV and has a negative potential with respect to the standard hydrogen electrode potential.

この半導体粒子の表面に形成される磁性金属層は、鉄、
コバルl−、ニッケルのうちの少なくとも一種の金属を
主成分とするものであるが、この磁性金属に少量の非磁
性金属や非金属が含まれたものであってもよい。この金
属層の厚みは、前記半導体粒子100重量部に対して5
0〜]、、 000重量部、好ましくは100〜500
重量部となるようにするのがよい。この量が少なすきて
は充分な飽和磁化量が得られず、また多くなりずきると
層内体が不均一となり、安定した磁気特性を望めない場
合があり、いずれも好ましくない。
The magnetic metal layer formed on the surface of this semiconductor particle is made of iron,
The main component is at least one of cobal l- and nickel, but the magnetic metal may also contain a small amount of nonmagnetic metal or nonmetal. The thickness of this metal layer is 5 parts by weight based on 100 parts by weight of the semiconductor particles.
0~], 000 parts by weight, preferably 100~500
It is preferable that the amount be in parts by weight. If this amount is too small, a sufficient amount of saturation magnetization cannot be obtained, and if this amount is too large, the inner layer may become non-uniform and stable magnetic properties may not be expected, so both are undesirable.

このような構成要素からなるこの発明に係る強磁性粉末
は、本質的には前記半導体粒子の表面に前記磁性金属層
を無電解メッキなどの手法で形成することにより得るこ
とも可能である。しかし、より安定した磁気特性を得る
上で、既述した光触媒反応を利用した磁性金属層の形成
方法がもつとも推奨できる方法である。
The ferromagnetic powder according to the present invention comprising such constituent elements can also be obtained essentially by forming the magnetic metal layer on the surface of the semiconductor particles by a technique such as electroless plating. However, in order to obtain more stable magnetic properties, the method of forming a magnetic metal layer using the photocatalytic reaction described above is the most recommended method.

この光触媒反応においては、まず還元剤と鉄。In this photocatalytic reaction, first a reducing agent and iron are used.

コバルト、ニッケルのうちの少なくとも一種の金属を主
成分とする磁性金属イオンとを含ませた液媒体中に非磁
性半導体粒子を分散させた分散液を調製する。上記還元
剤としては、次亜リン酸ナトリウム、ヒドラジン、ホル
マリン、エタノール、ギ酸、ギ酸すトリウムなどの無電
解メッキに用いられている還元剤がいずれも使用できる
。」二記磁性金属イオンは通常相当する金属の硫酸塩、
硝酸塩、塩化物などの塩としてこれを液媒体に溶解させ
ることにより生成される。
A dispersion liquid is prepared in which non-magnetic semiconductor particles are dispersed in a liquid medium containing magnetic metal ions whose main component is at least one of cobalt and nickel. As the reducing agent, any reducing agent used in electroless plating, such as sodium hypophosphite, hydrazine, formalin, ethanol, formic acid, and thorium formate, can be used. ” Magnetic metal ions are usually sulfates of the corresponding metals,
It is produced as a salt such as nitrate or chloride by dissolving it in a liquid medium.

液媒体としては通常水が用いられるが、磁性金属塩を溶
解できかつ光触媒反応に支障をきたさないものであれば
水辺外の各種溶媒を使用できる。
Water is usually used as the liquid medium, but various solvents outside water can be used as long as they can dissolve the magnetic metal salt and do not interfere with the photocatalytic reaction.

液媒体が水である場合の各成分の分散液中の濃度として
は、一般に還元剤が1〜2009/l水、磁性金属塩が
1〜200 y/l水、非磁性半導体粒子が1〜200
 y/l水となるようにすればよい。
When the liquid medium is water, the concentrations of each component in the dispersion are generally 1 to 2009 y/l water for the reducing agent, 1 to 200 y/l water for the magnetic metal salt, and 1 to 200 y/l water for the nonmagnetic semiconductor particles.
What is necessary is just to make it y/l water.

なお、液媒体が水である場合、通常適宜の錯化剤とP 
H調整剤を分散液中に含まぜるのが好ましし)。錯化剤
としては、クエン酸ナトリウム、酒石酸ナトリウムが一
般に用いられ、またP H調整剤としては、ホウ酸、硫
酸アンモニウム、苛性ソーダ、苛性カリ、アンモニアな
どが用いられ、液のPHが60〜110、好ましくは7
0〜100の範囲となるように調整する。
In addition, when the liquid medium is water, an appropriate complexing agent and P
It is preferable to include an H regulator in the dispersion). As the complexing agent, sodium citrate and sodium tartrate are generally used, and as the pH adjusting agent, boric acid, ammonium sulfate, caustic soda, caustic potash, ammonia, etc. are used, and the pH of the liquid is 60 to 110, preferably 7
Adjust so that it is in the range of 0 to 100.

分散液の温度は、磁性金属を均一に析出させるために、
還元剤が熱的に分解しない温度、通常80°C以下、好
適には10〜60°Cとするのがよい。
The temperature of the dispersion liquid is adjusted to uniformly precipitate the magnetic metal.
The temperature is preferably set at a temperature at which the reducing agent does not decompose thermally, usually 80°C or less, preferably 10 to 60°C.

このような分散液についで光を照射して前述の光触媒反
応を行わせる。光としては半導体粒子のバンドギャップ
より大きなエネルギーを有するものであればよく、通常
は200〜800nmの波長を有する光が用いられる。
Such a dispersion liquid is then irradiated with light to cause the aforementioned photocatalytic reaction to occur. The light may be any light having energy greater than the bandgap of the semiconductor particles, and light having a wavelength of 200 to 800 nm is usually used.

もちろん、この光は単色光である必要は特にないため、
キセノンランプまたは水銀ランプを光源とした多色光を
適用して差し支えない。照射時間は、析出させるべき磁
性金属の量や液温などによって大きく異なるが、一般的
には1〜10時間程度である。
Of course, this light does not need to be monochromatic, so
Polychromatic light from a xenon lamp or mercury lamp as a light source may be applied. The irradiation time varies greatly depending on the amount of magnetic metal to be deposited, the liquid temperature, etc., but is generally about 1 to 10 hours.

このようにして形成される磁性金属層は、半導体粒子表
面に密着性良くかつ均一に付着されてなるものであるた
め、これが磁気特性の安定化に寄与し、従来の磁性粉に
代わる磁気的性能にすぐれた強磁性粉末を与える。
The magnetic metal layer formed in this way is adhered to the surface of the semiconductor particle with good adhesion and uniformity, which contributes to stabilizing the magnetic properties and provides magnetic performance that can replace conventional magnetic powder. Provides excellent ferromagnetic powder.

「発明の効果」 以」二のように、この発明によれば、研摩剤としての性
質と磁性粉としての性質を兼ね備えた強磁性粉末を提供
でき、この磁性粉末を磁気記録素子として用いることに
より耐久性と電磁変換特性とを共に満足する磁気テープ
その他の磁気記録媒体の製造が可能となる。
``Effects of the Invention'' As described in 2 below, according to the present invention, it is possible to provide a ferromagnetic powder that has both properties as an abrasive and as a magnetic powder, and by using this magnetic powder as a magnetic recording element. It becomes possible to manufacture magnetic tapes and other magnetic recording media that satisfy both durability and electromagnetic conversion characteristics.

〔実施例〕〔Example〕

以下に、この発明の実施例を記載してより具体的に説明
する。
EXAMPLES Below, examples of the present invention will be described in more detail.

実施例1 水                    101硫
酸コバルト     950y 次亜リン酸ナトリウム       675yクエン酸
ナトリウム     1,850yホ     ウ  
   酸            975 g上記成分
を混合し、これにさらに苛性ソーダを適量加えて液のP
Hを90に調整し、この液に粒子径約500Xの酸化チ
タンCT i02 )粒子50y−を添加して、よく分
散させた。次に、この分散液をかくはんしながら出力1
1慴のキセノンランプを用いて8時間光照射した。その
後分散粒子を取り出し、水洗、乾燥して、TlO2粒子
の表面に金属コバルト層が形成された強磁性粉末を得た
Example 1 Water 101 Cobalt sulfate 950y Sodium hypophosphite 675y Sodium citrate 1,850y Ho
Acid: 975 g Mix the above ingredients, add an appropriate amount of caustic soda to the solution, and adjust the P of the liquid.
H was adjusted to 90, and titanium oxide CT i02 ) particles 50y- with a particle size of about 500X were added to this liquid and well dispersed. Next, while stirring this dispersion, output 1
Light was irradiated for 8 hours using a xenon lamp. Thereafter, the dispersed particles were taken out, washed with water, and dried to obtain a ferromagnetic powder in which a metallic cobalt layer was formed on the surface of the TlO2 particles.

実施例2 非磁性半導体粒子として酸化チタン粒子の代わりに平均
粒子径1.、oooXの炭化ケイ素(SiC)粒子50
yを用いた以外は、実施例1と同様にして、SiC粒子
の表面に金属コバルI・層が形成された強磁性粉末を得
た。
Example 2 As non-magnetic semiconductor particles, titanium oxide particles were replaced with particles having an average particle diameter of 1. , oooX silicon carbide (SiC) particles 50
A ferromagnetic powder in which a metal cobal I layer was formed on the surface of SiC particles was obtained in the same manner as in Example 1 except that y was used.

実施例3 非磁性半導体粒子として酸化チタンの代わりに平均粒子
径500Xのアルファへマタイト(α−Fez03)粒
子50Pを用いた以外は、実施例1と同様にしてα−F
e203粒子の表面に金属コバルト層が形成された強磁
性粉末を得た。
Example 3 α-F was produced in the same manner as in Example 1, except that alpha hematite (α-Fez03) particles 50P with an average particle diameter of 500
A ferromagnetic powder was obtained in which a metallic cobalt layer was formed on the surface of e203 particles.

実施例4 非磁性半導体粒子として酸化チタンの代わりに平均粒子
径1,000人のアルミナ(A1203)粒子50yを
用いた以外は、実施例1と同様にしてAl2O3粒子の
表面に金属コバルト層が形成された強磁性粉末を得た。
Example 4 A metallic cobalt layer was formed on the surface of Al2O3 particles in the same manner as in Example 1, except that alumina (A1203) particles 50y with an average particle diameter of 1,000 were used instead of titanium oxide as nonmagnetic semiconductor particles. ferromagnetic powder was obtained.

実施例5 硫酸コバルトの添加量を950yから7507に変更し
た以外は、実施例1と同様にT103粒子の表面に金属
コバルト層が形成された強磁性粉末を得た。
Example 5 A ferromagnetic powder in which a metallic cobalt layer was formed on the surface of T103 particles was obtained in the same manner as in Example 1, except that the amount of cobalt sulfate added was changed from 950y to 7507y.

実施例6 硫酸コパルl−950pの代わりに、硫酸第一鉄150
yと硫酸コバルI−800yとを用いた以外は、実施例
1と同様にして、TlO2粒子の表面に鉄−コバルト合
金層が形成された強磁性粉末を得た。
Example 6 Ferrous sulfate 150 instead of copal sulfate l-950p
A ferromagnetic powder in which an iron-cobalt alloy layer was formed on the surface of TlO2 particles was obtained in the same manner as in Example 1 except that y and cobalt sulfate I-800y were used.

実施例7 1コバル)950yの代わりに、硫酸ニッケル150y
と硫酸コバルト800yとを用いた以外は、実施例1と
同様にして、Tie、、粒子の表面にニッケルーコバル
ト合金層が形成された強磁性粉末を得た。
Example 7 1 Kobal) Instead of 950y, 150y of nickel sulfate
A ferromagnetic powder in which a nickel-cobalt alloy layer was formed on the surface of Tie particles was obtained in the same manner as in Example 1, except that Tie and cobalt sulfate 800y were used.

比較例1 実施例ゴにおいて、酸化チタン粒子を添加することなく
、混合液にさらにIA’の水に1yのPdC/、。
Comparative Example 1 In Example 3, 1y of PdC was added to IA' water to the mixed solution without adding titanium oxide particles.

を溶解したPd溶液を20CC加えた後、光を照射する
ことなく、80°Cで1時間加熱反応させて、球状の金
属コバルト粒子を得た。
After adding 20 CC of a Pd solution in which Pd was dissolved, a heating reaction was carried out at 80°C for 1 hour without irradiation with light to obtain spherical metal cobalt particles.

上記実施例および比較例で得られた磁性粉末を、下記組
成によりボールミル中で48時間混合分散させることに
より、磁性塗料を調製した。
Magnetic paints were prepared by mixing and dispersing the magnetic powders obtained in the above Examples and Comparative Examples in a ball mill for 48 hours according to the following composition.

強磁性粉末     800重量部 ポリウレタン        70重量部ポリイソシア
ネート      20重量部メチルイソブチルケトン
   500重量部ト  ル  エ  ン      
 500重量部つぎに、上記の磁性塗料を、厚さ12/
17nのポリエステルベースフィルム上に、乾燥厚みが
4. Irmとなるように塗布乾燥したのち、所定の幅
に裁断して磁気テープを作製した。第1表に、−に記実
施例および比較例で得られた磁性粉末の磁気特性ととも
に、上記磁気テープのprrn、p飽和磁束密度、残留
磁束密度および各テープの同一箇所をV T Rの回転
ヘッドに1時間摺接させて摺接前後の出力信号の変化を
測定した結果を示す。
Ferromagnetic powder 800 parts by weight Polyurethane 70 parts by weight Polyisocyanate 20 parts by weight Methyl isobutyl ketone 500 parts by weight Toluene
Next, add 500 parts by weight of the above magnetic paint to a thickness of 12/2.
17n polyester base film with a dry thickness of 4. After coating and drying to obtain Irm, a magnetic tape was produced by cutting into a predetermined width. Table 1 shows the magnetic properties of the magnetic powders obtained in the Examples and Comparative Examples, as well as the prrn, p saturation magnetic flux density, and residual magnetic flux density of the magnetic tapes, as well as the rotation of the VTR at the same point on each tape. The results are shown in which the head was brought into sliding contact for one hour and the change in the output signal before and after the sliding contact was measured.

なお、第1表中の比較例2−は、比較例1の磁性粉を用
いて、さらに磁性塗料中に平均粒子径1 )tynの酸
化チタン粒子48重量部を加えて」二記同様にして作製
した磁気テープの結果を示したものである。また、各摺
接前後の出力は比較例1の摺接前の出力を基準(OdB
)として、その相対値で表わしたものである。
In addition, in Comparative Example 2- in Table 1, the magnetic powder of Comparative Example 1 was used, and 48 parts by weight of titanium oxide particles with an average particle diameter of 1) tyn were added to the magnetic paint, and the same procedure as described in 2. This figure shows the results of the produced magnetic tape. In addition, the output before and after each sliding contact is based on the output before sliding contact of Comparative Example 1 (OdB
) and is expressed as a relative value.

」1表から明らかなように、研摩剤を添加していない磁
気テープ(比較例1)では、磁束密度は大きいが、耐久
性が悪いためヘッドが目詰りをおこして、再生不能とな
り、また研摩剤を添加した磁気テープ(比較例2)では
、耐久性は改善されるが、出力の低いものしか得られな
い。これに対し、この発明によるもの(実施例1〜7)
は、磁束密度が高くて出力が大きく、しかも耐久性にす
ぐれている。
As is clear from Table 1, the magnetic tape with no abrasive added (Comparative Example 1) has a high magnetic flux density, but its durability is poor and the head becomes clogged, making it unplayable. The magnetic tape containing the additive (Comparative Example 2) has improved durability, but only low output can be obtained. In contrast, those according to this invention (Examples 1 to 7)
has a high magnetic flux density, a large output, and excellent durability.

Claims (3)

【特許請求の範囲】[Claims] (1)モース硬度3以上の非磁性半導体粒子の表面に鉄
、コバルト、ニッケルのうちの少なくとも一種の金属を
主成分とする磁性金属層を形成してなる強磁性粉末。
(1) A ferromagnetic powder obtained by forming a magnetic metal layer containing at least one metal selected from iron, cobalt, and nickel as a main component on the surface of nonmagnetic semiconductor particles having a Mohs hardness of 3 or more.
(2)磁性金属層が非磁性半導体粒子100重量部に対
して50〜1,000重量部である特許請求の範囲第(
1)項記載の強磁性粉末。
(2) The amount of the magnetic metal layer is 50 to 1,000 parts by weight based on 100 parts by weight of the non-magnetic semiconductor particles.
1) Ferromagnetic powder described in section 1).
(3)還元剤と鉄、コバルト、ニッケルのうちの少なく
とも一種の金属を主成分とする磁性金属イオンとを含ま
せた液媒体中に、非磁性半導体粒子を分散させ、この分
散液に上記半導体粒子のバンドギャップより大きなエネ
ルギーを有する光を照射することにより、上記半導体粒
子の表面に上記金属イオンを還元させて磁性金属層を形
成させることを特徴とする強磁性粉末の製造方法。
(3) Non-magnetic semiconductor particles are dispersed in a liquid medium containing a reducing agent and magnetic metal ions whose main component is at least one of iron, cobalt, and nickel, and the above-mentioned semiconductor particles are added to the dispersion. A method for producing a ferromagnetic powder, comprising reducing the metal ions on the surface of the semiconductor particle to form a magnetic metal layer by irradiating the semiconductor particle with light having an energy greater than the band gap of the particle.
JP60007967A 1985-01-18 1985-01-18 Ferromagnetic powder and manufacture thereof Pending JPS61166110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60007967A JPS61166110A (en) 1985-01-18 1985-01-18 Ferromagnetic powder and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60007967A JPS61166110A (en) 1985-01-18 1985-01-18 Ferromagnetic powder and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS61166110A true JPS61166110A (en) 1986-07-26

Family

ID=11680232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60007967A Pending JPS61166110A (en) 1985-01-18 1985-01-18 Ferromagnetic powder and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS61166110A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4944985A (en) * 1988-04-11 1990-07-31 Leach & Garner Method for electroless plating of ultrafine or colloidal particles and products produced thereby
JP2004299011A (en) * 2003-03-31 2004-10-28 Japan Science & Technology Agency Core shell structure having nanoparticle composite as core, structure having that as component, and processing method for structure processed from these

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4944985A (en) * 1988-04-11 1990-07-31 Leach & Garner Method for electroless plating of ultrafine or colloidal particles and products produced thereby
JP2004299011A (en) * 2003-03-31 2004-10-28 Japan Science & Technology Agency Core shell structure having nanoparticle composite as core, structure having that as component, and processing method for structure processed from these

Similar Documents

Publication Publication Date Title
JPS5814729B2 (en) Kiyoji Seifun Matsuno Seizou Hohou
US3494760A (en) Production of metal and alloy particles by chemical reduction
JPS61166110A (en) Ferromagnetic powder and manufacture thereof
JPH0352500B2 (en)
JPS5923505A (en) Magnetic powder
JPS5850005B2 (en) Jikikirokuyouji Seifun Matsuno Seizouhou
JPS6120302A (en) Ferromagnetic powder and manufacture thereof
JPS62264431A (en) Magnetic recording medium
JP2767056B2 (en) Needle crystal iron alloy magnetic particles for magnetic recording
JPS59169937A (en) Production of magnetic powder
JPS59226102A (en) Production of magnetic metallic powder
JPS62162314A (en) Magnetic recording medium
JPS6161407A (en) Ferromagnetic powder and manufacture thereof
JPH01235211A (en) Ferromagnetic powder and magnetic recording medium using it
JP4929473B2 (en) Magnetic powder for magnetic recording medium, method for producing the same, and magnetic recording medium using the same
KR960003298B1 (en) Megnetic recording medium
JPS61140109A (en) Magnetic powder of iron oxide containing cobalt and manufacture thereof
JPH01223703A (en) Ferromagnetic powder and magnetic recording medium using the same
JPH0532421A (en) Production of needlelike magnetic iron oxide grain powder
JPS63157405A (en) Ferromagnetic powder and magnetic recording medium using the same
JPS6364920A (en) Production of magnetic powder for magnetic recording
JPH01298106A (en) Manufacture of ferromagnetic iron powder
JPS62210601A (en) Ferromagnetic powder
JPH0147522B2 (en)
JPS6250892B2 (en)