JPH01222030A - Fiber reinforced member - Google Patents

Fiber reinforced member

Info

Publication number
JPH01222030A
JPH01222030A JP4801688A JP4801688A JPH01222030A JP H01222030 A JPH01222030 A JP H01222030A JP 4801688 A JP4801688 A JP 4801688A JP 4801688 A JP4801688 A JP 4801688A JP H01222030 A JPH01222030 A JP H01222030A
Authority
JP
Japan
Prior art keywords
wire
fiber
metal
strength
reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4801688A
Other languages
Japanese (ja)
Inventor
Yoshihisa Kitagawa
北川 喜久
Kenji Koide
憲司 小出
Takaaki Yuzutori
柚鳥 登明
Masaaki Katsumata
勝亦 正昭
Yutaka Kanatsuki
金築 裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP4801688A priority Critical patent/JPH01222030A/en
Publication of JPH01222030A publication Critical patent/JPH01222030A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To obtain a fiber reinforced member of high strength by imbedding into a matrix the reinforced fiber consisting of the ultrahigh strength metal fine wire of the fiber like fine metal structure of a specified microcell obtd. by executing the cold wire drawing of a wire rod. CONSTITUTION:The wire rod composed of a Fe-C-Si-Mn ferrous alloy, etc., is strongly worked at about >=4 working distortion by cold wire drawing after the heat treatment cooling it by heating at about 700-1,100 deg.C. The fine wire having the fiber like fine metal structure in which the ultrafine cell of 5-100Angstrom is fiber likely arranged in one direction at fiber intervals 50-1,000Angstrom and <=160mum wire diameter and 300-600kgf/mm<2> is obtd. This ultrahigh strength metal fine wire, the stranded wire twisting it in plural pieces or the yarn doubling subjected to sizing processing is taken as the reinforcing fiber. Either of this monofiber like reinforced fiber, the reinforced cloth weaving it or the reinforced net made in a wire gauze is embedded in a matrix resin or metal. The FRP, FRM drastically improving the strength by using the reinforced fiber improving the tensile strength are thus obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、繊維強化部材、即ち、繊維強化樹脂(F R
P)又は繊維強化金属(FRM)に間し、特に新規な繊
維状微細金属組織を有する金属極細線を補強繊維として
採用することにより、強度を大幅に改善したFRP、F
RMに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a fiber reinforced member, that is, a fiber reinforced resin (F R
P) or fiber reinforced metal (FRM), FRP, FRM, which has significantly improved strength by using ultrafine metal wires with a new fibrous fine metal structure as reinforcing fibers.
Regarding RM.

〔従来の技術〕[Conventional technology]

FRP、FRM用補強繊維としては、従来、ガラス繊維
、炭素繊維、アラミド繊維、アルミナ繊維、ボロン繊維
あるいはピアノ極細線、ステンレス極細線等が用いられ
ており、マトリックス用樹脂にはエポキシ樹脂、フェノ
ール樹脂、ポリイミド樹脂等が、またマトリックス用金
属にはA1゜Mg、Ti 、Cu等が用いられている。
Glass fibers, carbon fibers, aramid fibers, alumina fibers, boron fibers, piano ultra-fine wires, stainless steel ultra-fine wires, etc. have traditionally been used as reinforcing fibers for FRP and FRM, and epoxy resins and phenol resins have been used as matrix resins. , polyimide resin, etc., and A1°Mg, Ti, Cu, etc. are used as the matrix metal.

このようなFRP、FRM用補強繊維は、その用途上、
その引張強度を可能な限り高くする必要があり、従来か
ら引張強度を改善した補強繊維が種々提案されており、
例えば上記アラミド繊維。
Such reinforcing fibers for FRP and FRM have several uses:
It is necessary to make the tensile strength as high as possible, and various reinforcing fibers with improved tensile strength have been proposed.
For example, the aramid fiber mentioned above.

ピアノm線は300 kgf/mm2の引張強度を存し
ている。
Piano m-wire has a tensile strength of 300 kgf/mm2.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで最近では、FRP、FRMの用途は非常に広範
囲にわたっており、場合によっては、上述の各種補強繊
維で補強したものでは強度的に不足する場合があり、よ
り引張強度の高い補強繊維で補強したものが要請されて
いる。
By the way, recently, FRP and FRM have been used in a very wide range of applications, and in some cases, those reinforced with the various reinforcing fibers mentioned above may not be strong enough, so it is recommended to use reinforcing fibers with higher tensile strength. is requested.

本発明は、上記従来の要請に応えるためになされたもの
で、補強繊維の引張強度を向上させることによって、強
度を大幅に向上させたFRP、FRMを提供することを
目的としている。
The present invention was made in response to the above-mentioned conventional demands, and an object of the present invention is to provide FRP and FRM with significantly improved strength by improving the tensile strength of reinforcing fibers.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、上記目的を達成するために、上記補強繊
維の引張強度を大幅に改善できる金属組織について鋭意
研究を続け、以下の点を見出した。
In order to achieve the above object, the present inventors have continued to conduct extensive research on metal structures that can significantly improve the tensile strength of the reinforcing fibers, and have discovered the following points.

即ち、Fe −C−3i−Mn系鉄基合金で、かつ針状
マルテンサイト、ベイナイト又はこれらの混合組織から
なる低温変態生成相がフェライト相中に均一に分散され
てなる複合金属組織を有する線材が強加工性に優れてお
り、このような金属組織を有する線材を用いれば冷間伸
線により線径160μm以下の極細線を容易確実に得る
ことができる。
That is, the wire is made of a Fe-C-3i-Mn iron-based alloy and has a composite metal structure in which a low-temperature transformation phase consisting of acicular martensite, bainite, or a mixed structure thereof is uniformly dispersed in a ferrite phase. has excellent strong workability, and by using a wire having such a metal structure, it is possible to easily and reliably obtain an ultrafine wire with a wire diameter of 160 μm or less by cold wire drawing.

そしてこのような線材を冷間伸線により加工歪4以上に
強加工すれば、上記フェライト相と低温変態生成相とが
複合してなる複合組織が一方向に延びる均一な繊維状微
細金属組織が形成され、このような金属組織を有する極
細線は引張強度が300〜600 kg f / m 
”と飛躍的に向上し、かつ靭性は従来のピアノ線、ステ
ンレス線程度であることを見出した。
If such a wire is strongly worked to a working strain of 4 or more by cold wire drawing, a uniform fibrous fine metal structure in which the above-mentioned ferrite phase and low-temperature transformation formed phase are combined and extends in one direction is formed. The ultra-fine wires formed and having such a metal structure have a tensile strength of 300-600 kg f/m
” and found that the toughness was comparable to that of conventional piano wire and stainless steel wire.

このような繊維状微細金属組織は、従来知られていない
全く新規な組織である0本発明者らは、上記繊維状微細
金属Mi織が上記引張強度を向上させる主因になってい
るとの観点から、その強化メカニズムについてさらに研
究を重ねた結果、上述の如き超高強度を有する金属組織
では、上記繊維の間隔が50〜1000人であり、かつ
該繊維状をなす上記複合組織が5〜100人の超微細セ
ルから構成されていることを見出した。
Such a fibrous fine metal structure is a completely new structure that has not been previously known. The present inventors believe that the fibrous fine metal Mi weave is the main reason for improving the tensile strength. As a result of further research on the reinforcing mechanism, it was found that in the metal structure with ultra-high strength as described above, the spacing between the fibers is 50 to 1000, and the fibrous composite structure has a spacing of 5 to 100. It was discovered that it is composed of human ultrafine cells.

そこで本発明は、単繊維状の補強繊維、該補強繊維を織
布化してなる補強織布、又は該補強繊維を網化してなる
補強網の何れかを、マトリックス樹脂、又はマトリック
ス金属内に埋設してなる繊維強化部材において、上記補
強繊維が、線材を冷間伸線により強加工してなり、該強
加工により生じた5〜100人の超微細セルが一方向に
繊維状に配列され、かつ該繊維間隔が50〜tooo人
である繊維状微細金属&11織を有する線径160μ−
以下、引張強度300〜600 kgf/m”の超高強
度金属極細線。
Therefore, the present invention provides a method for embedding either a monofilament reinforcing fiber, a reinforcing woven fabric obtained by woven the reinforcing fiber, or a reinforcing net formed by reticulating the reinforcing fiber into a matrix resin or a matrix metal. In the fiber-reinforced member, the reinforcing fibers are formed by strongly processing a wire rod by cold wire drawing, and 5 to 100 ultrafine cells produced by the strong processing are arranged in a fibrous shape in one direction, And the fiber spacing is 50 to 50 to 100% fibrous fine metal & wire diameter 160μ- with 11 weaves.
The following is an ultra-high strength metal wire with a tensile strength of 300 to 600 kgf/m''.

該極細線を複数本撚り合わせてなる撚り線、又は該金属
極細線を複数本合わせてサイジング処理を施してなる合
糸であることを特徴としている。
It is characterized by being a stranded wire made by twisting a plurality of the ultrafine wires together, or a doubled yarn made by combining a plurality of the ultrafine metal wires and subjecting them to sizing treatment.

本発明における補強繊維のマトリックス樹脂。Matrix resin of reinforcing fibers in the present invention.

金属内への埋設形態には各種あり、例えば単線のまま、
あるいはこれを撚り線化又は合糸化して埋設したり、さ
らに単線、撚り線、合糸を織布化。
There are various ways to bury the wire in the metal, for example, as a single wire,
Alternatively, this can be made into twisted wires or double yarns and buried, or even single wires, twisted wires, and double yarns can be made into woven fabrics.

又は網化した状態で埋設してもよい、また本発明の金属
極細線のみを埋設する場合だけでなく、従来のステンレ
ス線、ピアノ線等と複合化して埋設してもよい。
Alternatively, it may be buried in a netted state, and not only the ultrafine metal wire of the present invention may be buried, but also a combination with conventional stainless steel wire, piano wire, etc. may be buried.

ここで本発明のFRP、FRMにおける補強繊維用超高
強度金属極細線の製造方法について説明する。
Here, a method for manufacturing ultra-high strength metal ultrafine wire for reinforcing fibers in FRP and FRM of the present invention will be explained.

先ず、重量%でC: 0.01〜0.50%、Si:3
.0%以下、Mn:5.0%以下、残部Fe及び不可避
的不純物よりなる線径3.5 w以下の線材を700〜
1100℃の範囲の温度に加熱した後、冷却して(この
か加熱、冷却は複数回にわたって行ってもよい。)、一
部残留オーステナイトを含存してもよいマルテンサイト
、ベイナイト又はこれらの混合組織からなる低温変態生
成相がフェライト相中に体積率で15〜75%の範囲に
て均一に分散されてなる複合組織を有する線材を製造す
る。なお、かかる製造方法は、特開昭62−20824
号公報に記載されている。
First, in weight percent, C: 0.01 to 0.50%, Si: 3
.. 0% or less, Mn: 5.0% or less, the balance is Fe and unavoidable impurities, and the wire diameter is 3.5W or less.
After heating to a temperature in the range of 1100°C, the mixture is cooled (this heating and cooling may be performed multiple times) to produce martensite, bainite, or a mixture thereof, which may contain some residual austenite. A wire rod having a composite structure in which a low-temperature transformation-generated phase consisting of a structure is uniformly dispersed in a ferrite phase at a volume fraction in the range of 15 to 75% is manufactured. This manufacturing method is disclosed in Japanese Patent Application Laid-Open No. 62-20824.
It is stated in the No.

次いでこのようにして得られた複合組織線材を冷間伸線
加工により、加工歪4以上、好ましくは5以上に強加工
し、上記フェライト相と低温変態生成相とを複合化し、
金属組織として一方向に連続して延びる微細な繊維状組
織を形成させる。このように加工度を高めることにより
、上記繊維状&ll織はさらに微細化し、繊維間隔は狭
くなり、ついには上述のとおり加工にて生じたセルの大
きさ。
Next, the composite texture wire rod obtained in this way is subjected to strong processing by cold wire drawing to a processing strain of 4 or more, preferably 5 or more, to combine the ferrite phase and the low-temperature transformation generation phase,
Forms a fine fibrous structure that extends continuously in one direction as a metallographic structure. By increasing the degree of processing in this way, the fibrous &ll; weave becomes finer, the fiber spacing becomes narrower, and finally the size of the cells generated during processing as described above.

繊維間隔がそれぞれ5〜100人、50〜1ooo人で
ある繊維状微細金属組織となる。なお、加工歪が4より
も小さい伸線加工によって得られた細線では、繊維状組
織の発達の中途にあってその組織が不完全であり、従っ
て強度も小さい。
A fibrous fine metal structure is obtained in which the fiber spacing is 5 to 100 people and 50 to 100 people, respectively. Note that in a thin wire obtained by wire drawing with a processing strain of less than 4, the fibrous structure is in the middle of development and the structure is incomplete, and therefore the strength is low.

第8図は本発明のFRP、FRMの補強繊維用超高強度
金属極細線の引張強度、靭性を、従来のピアノ線等と比
較したものであり、同図から本発明の金属極細線は、ピ
アノ線等に比較して引張強度が飛躍的に向上しており、
かつ靭性はピアノ線等と同等であることがわかる。また
、第9図は上記方法により、加工歪5以上(断面減少率
99.5%)に強加工した本発明の補強繊維用金属極細
線の走査型電子顕微鏡写真であり、一方向に連続し〜 
   で延びる繊維状微細金属組織が認められる。第1
0図は上記繊維状組織を超高圧電子顕微鏡(3MV)に
より観察した写真であり、内部ミクロ組織に20〜50
人の超微細セルが認められる。
FIG. 8 compares the tensile strength and toughness of the ultra-high-strength metal wire for reinforcing fibers of FRP and FRM of the present invention with conventional piano wire, etc. From the figure, it can be seen that the metal wire of the present invention has the following properties: Its tensile strength has been dramatically improved compared to piano wire, etc.
Moreover, it can be seen that the toughness is equivalent to that of piano wire, etc. Moreover, FIG. 9 is a scanning electron micrograph of the ultrafine metal wire for reinforcing fiber of the present invention that has been strongly processed to a processing strain of 5 or more (area reduction rate of 99.5%) by the above method, and is continuous in one direction. ~
A fibrous fine metal structure extending in the area is observed. 1st
Figure 0 is a photograph of the above fibrous structure observed using an ultra-high voltage electron microscope (3MV).
Ultra-fine human cells can be seen.

次に上記製造方法における各種の条件を設定した理由に
ついて説明する。
Next, the reasons for setting various conditions in the above manufacturing method will be explained.

C:本発明に係る繊維状微細金属組織、及び上記引張強
度を得るためには、Cの添加量を規制する必要があり、
実験の結果、0.01〜0.50%の範囲が適当である
ことが判明した。
C: In order to obtain the fibrous fine metal structure according to the present invention and the above tensile strength, it is necessary to control the amount of C added,
As a result of experiments, it was found that a range of 0.01 to 0.50% is appropriate.

Si:Siはフェライト相の強化元素として有効である
が、3.0%を越えて過多に添加すると変態温度を著し
く高温側にずらせ、また線材表面の脱炭が生じ易くなる
ので、添加量は3.0%を上限とする。
Si: Si is effective as a reinforcing element for the ferrite phase, but if it is added in excess of 3.0%, the transformation temperature will shift to a significantly higher temperature side, and decarburization of the wire surface will likely occur, so the amount added is The upper limit is 3.0%.

Mn : Mnは極細線を強化するとともに、上記両相
の焼き入れ性を高める効果を有するが、5.0%を越え
て過多に添加してもこの効果が飽和するので、添加量の
上限は5.0%とする。
Mn: Mn has the effect of strengthening ultra-fine wires and increasing the hardenability of both of the above phases, but this effect is saturated if added in excess of 5.0%, so the upper limit of the amount added is It shall be 5.0%.

また、含有量を規制するのが好ましい元素、添加しても
よい元素、不可避的不純物等について説明する。
In addition, elements whose content is preferably regulated, elements that may be added, unavoidable impurities, etc. will be explained.

Hは、鋼を脆化させる有害な元素であり、強度が高くな
るほどその影響が大きくなるので、本発明においてはH
量をI PPM以下に、特に好ましくは0.5PPMに
規制するのがよい、かかるH量の低減方法としては、溶
鋼での脱ガス処理、線材への熱間圧延及び熱処理後の冷
却制御、低温脱水素制御等の手段が有効である。
H is a harmful element that embrittles steel, and the higher the strength, the greater the effect, so in the present invention, H
It is best to limit the amount to I PPM or less, particularly preferably 0.5 PPM. Methods for reducing the amount of H include degassing treatment in molten steel, hot rolling into wire rods, cooling control after heat treatment, and low temperature. Measures such as dehydrogenation control are effective.

本発明では、極細線の金属組織を微細化するために、N
b 、V、Tiから選ばれた少なくとも1種の元素を添
加することができる。これらの元素は組織の微細化のた
めには、いずれも0.005%以上の添加を要するが、
過多に添加してもその効果が飽和し、かつ経済的にも不
利であるので、上限は0.5%とする。
In the present invention, in order to refine the metal structure of ultrafine wires, N
At least one element selected from b, V, and Ti can be added. Each of these elements needs to be added in an amount of 0.005% or more in order to refine the structure.
If added in excess, the effect will be saturated and it will be economically disadvantageous, so the upper limit is set at 0.5%.

不可避的不純物としては、S、P、N、AI。Unavoidable impurities include S, P, N, and AI.

等がある。etc.

Sは、MnS量を少なくするために、0.005%以下
とするのがよく、これにより延性を一層向上させること
ができる。一方、Ca、Ce等の希土類元素を添加する
ことによりMnS介在物の形状を調整することも好まし
い。
In order to reduce the amount of MnS, S is preferably set to 0.005% or less, thereby further improving ductility. On the other hand, it is also preferable to adjust the shape of the MnS inclusions by adding rare earth elements such as Ca and Ce.

Pは、粒界偏析の著しい元素であるので、その含有量を
0.01%以下とするのが好ましい。
Since P is an element with significant grain boundary segregation, it is preferable that its content be 0.01% or less.

Nは、固溶状態で存在すると最も時効し易い元素であり
、加工中に時効して加工性を阻害したり、加工後に時効
して伸線により得られた極m線の延性を劣化させるので
、0.003%以下とするのが好ましい。
N is the element that is most easily aged when it exists in a solid solution state, and it ages during processing and inhibits workability, and ages after processing and deteriorates the ductility of the ultra-m wire obtained by wire drawing. , preferably 0.003% or less.

AIは、酸化物系介在物を形成し、この介在物は変形し
難いために線材の加工性を阻害するので、通常0.01
%以下とするのが好ましい、また極細線におけるSi/
AJ比が大きくなるとシリケート系介在物が増大し、特
に、611量が少ない場合は急激にシリケート系介在物
が増大して、伸線性を劣化させるだけでなく、伸線して
得られた極細線の特性を劣化させる。従って本発明では
St/A!比を1000以下、特に好ましくは250以
下にするのがよい。
AI forms oxide-based inclusions, and these inclusions are difficult to deform and impede the workability of the wire, so it is usually 0.01
% or less, and the Si/
When the AJ ratio increases, the number of silicate inclusions increases. In particular, when the amount of 611 is small, the number of silicate inclusions increases rapidly, which not only deteriorates the wire drawability but also reduces the quality of the ultrafine wire obtained by wire drawing. Deteriorates the properties of. Therefore, in the present invention, St/A! The ratio is preferably 1000 or less, particularly preferably 250 or less.

上記線材の複合組織において、フェライト相に占める低
温変態生成相の体積分率が15〜75%の範囲にあるこ
とを条件としたのは、以下の理由による。15%より小
さい場合は、かかる複合組織を有する線材の冷間伸線に
より160 μ鋼板下の極細線を得ることができるもの
の、得られた極細線はその金属組織が上述の如き繊維状
微細金属&ll織とならず、繊維状組織が不完全であり
、引張強度も300 k(f/n+”以下となる。一方
、フェライト相に占める低温変態生成相の体積分率が7
5%よりも多い場合は、伸線加工において線材が断線し
易く、また断線に至らず伸線できても、得られた極細線
は、上記15%以下の場合と同様に、微細な繊維状組織
を持たず、繊維状U織が不完全であり、引張強度も30
0 ktf/龍2以下2以下。
The reason why the volume fraction of the low-temperature transformation product phase in the ferrite phase is in the range of 15 to 75% in the composite structure of the wire is as follows. If it is less than 15%, it is possible to obtain an ultra-fine wire under a 160μ steel plate by cold drawing a wire having such a composite structure, but the obtained ultra-fine wire has a metal structure similar to that of the above-mentioned fibrous fine metal. &ll weave, the fibrous structure is incomplete, and the tensile strength is less than 300 k (f/n+"). On the other hand, the volume fraction of the low-temperature transformation formed phase in the ferrite phase is 7.
If the amount is more than 5%, the wire is likely to break during wire drawing, and even if the wire can be drawn without breaking, the resulting ultra-fine wire will have a fine fibrous structure, as in the case of 15% or less. It has no structure, has an incomplete fibrous U weave, and has a tensile strength of 30
0 ktf/Ryu 2 or less 2 or less.

また、上記線材における体積分率については、低温変態
生成相の形態により、つまり該相が主として針状である
か、主として塊状であるかによって、該線材の線径と体
積分率とが規制される。なお、ここで針状(elong
ated又はBcicular)とは粒子が方向性を有
することをいい、塊状(globular)とは粒子が
方向性を存しないことをいう。
Regarding the volume fraction in the above-mentioned wire, the wire diameter and volume fraction of the wire are regulated depending on the form of the phase formed by low-temperature transformation, that is, whether the phase is mainly acicular or mainly lump-like. Ru. Note that here the needle-like (elong)
"Ated" or "Bcicular" means that the particles have directionality, and "globular" means that the particles do not have directionality.

即ち、低温変態生成相の、80%以上が針状である場合
は、低温変態生成相の体積分率は50%以下、線径は3
.5H以下とし、一方80%以上が塊状である場合は、
体積分率は50%以下、線径は2.0 u以下とする必
要がある。また、低温変態生成相が針状と塊状の混合組
織である場合は、体積分率は75%以下、線径は3.5
 wm以下にする必要がある。なお、線材が有するべき
線径の下限は、特に限定されるものではないが、現状の
加工技術からみて、通常0.3鶴である。
That is, when 80% or more of the low-temperature transformation product phase is acicular, the volume fraction of the low-temperature transformation product phase is 50% or less, and the wire diameter is 3.
.. 5H or less, and if 80% or more is lumpy,
The volume fraction needs to be 50% or less, and the wire diameter needs to be 2.0 u or less. In addition, when the low-temperature transformation product phase has a mixed structure of needle-like and lump-like structures, the volume fraction is 75% or less, and the wire diameter is 3.5%.
It needs to be less than wm. Note that the lower limit of the wire diameter that the wire rod should have is not particularly limited, but considering the current processing technology, it is usually 0.3 mm.

〔作用〕[Effect]

本発明に係るFRP、FRMによれば、補強繊維に採用
した金属極細線は、冷間伸線の強加工により生じた5〜
100人の加工セルが一方向に繊維状に配列され、かつ
該繊維間隔が50〜1000人の繊維状微細金属組織を
形成しており、上述の強化メカニズムで説明したように
、300〜600 ktf/fl”の超高強度を存する
。従って、FRM等の強度を飛躍的に向上できる。
According to the FRP and FRM according to the present invention, the ultra-fine metal wires used for the reinforcing fibers are
The processing cells of 100 people are arranged in a fibrous manner in one direction, and the fiber spacing forms a fibrous fine metal structure of 50 to 1000 people, and as explained in the reinforcement mechanism above, 300 to 600 ktf. /fl''. Therefore, the strength of FRM etc. can be dramatically improved.

また、本発明の補強繊維用金属極細線は、冷間加工性に
すぐれており、線材の線径及び加工度を適宜選択するこ
とにより、160μ国以下のものを容易確実に得ること
ができる。従って、例えば線径10〜100μ端のもの
を採用し、これを撚り線化したり、合糸化するのも容易
であり、さらにこれらを用いて織布化したり、網化した
りするのも容易であり、このようにした場合は、繊維方
向が縦。
Furthermore, the ultrafine metal wire for reinforcing fibers of the present invention has excellent cold workability, and by appropriately selecting the wire diameter and processing degree of the wire, wires of 160 μm or less can be easily and reliably obtained. Therefore, for example, it is easy to use wires with a diameter of 10 to 100 μm and twist or double them, and it is also easy to use them to make woven fabrics or nets. Yes, if you do it like this, the fiber direction is vertical.

横になることから、−軸方向だけでなく二輪方向の強度
を向上できる。
Since it lies on its side, the strength not only in the -axial direction but also in the two-wheel direction can be improved.

〔実施例〕〔Example〕

以下、本発明の実施例を図について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図及び第2図は本発明の一実施例によるFRPを説
明するための図である。
FIGS. 1 and 2 are diagrams for explaining an FRP according to an embodiment of the present invention.

第1図において、1はFRPであり、これはエポキシ樹
脂からなるマトリックス樹脂2内に金網状の補強w43
を埋設してなる。この補強w43は縦。
In Fig. 1, 1 is FRP, which is a matrix resin 2 made of epoxy resin with wire mesh reinforcement w43.
It becomes buried. This reinforcement w43 is vertical.

横撚り線4.5を金網用織り機で平織りしてなるもので
、該各撚り線4.5は、それぞれ10〜100μ■の金
属極細線6を2〜100本撚り合わせたものであり、い
ずれの撚り線も波形状に曲げ形成されて、かつ所定の網
目間隔になるように編まれている。また、図示していな
いが、この横撚り綿5は、該補強網3の左、右端におい
て内方に反転されており、該反転部分は切断されること
なく連続している。
It is made by plain weaving horizontally twisted wires 4.5 on a wire mesh loom, and each twisted wire 4.5 is made by twisting 2 to 100 ultra-fine metal wires 6 of 10 to 100 μm each, Each of the strands is bent into a wave shape and knitted at a predetermined mesh interval. Although not shown, the horizontally twisted cotton 5 is inverted inward at the left and right ends of the reinforcing net 3, and the inverted portions are continuous without being cut.

なお、第1図において、マトリック樹脂2をAlからな
るマトリックス金属に変更することによりFRMが構成
される。
In FIG. 1, the FRM is constructed by changing the matrix resin 2 to a matrix metal made of Al.

上記補強網3用各金属極細vA6は、重量%でC: 0
.01〜0.50%、Si:3.0%以下、M n :
 5 、0%以下″、残部Fe及び不可避的不純物より
なる線径2.5fl以下の線材を冷間伸線により線径1
60μm以下に強加工して製造したものであり、該強加
工により生じた加工セルが一方向に繊維状に配列された
繊維状微細金属組織を形成しており、かつ上記加工セル
の大きさ、繊維間隔がそれぞれ5〜100人、50〜1
000人であり、さらに強度が300〜60Q klr
4/ws”である超高強度金属極細線である。
Each metal extra-fine vA6 for the reinforcing net 3 has a weight percentage of C: 0.
.. 01-0.50%, Si: 3.0% or less, Mn:
5. A wire rod with a wire diameter of 2.5 fl or less consisting of 0% or less, the balance Fe and unavoidable impurities is cold drawn to a wire diameter of 1.
It is produced by strong processing to a size of 60 μm or less, and the processed cells formed by the strong processing form a fibrous fine metal structure in which the processed cells are arranged in a unidirectional fibrous shape, and the size of the processed cells is Fiber spacing is 5-100 and 50-1, respectively.
000 people, and the strength is 300~60Q klr
4/ws" ultra-high strength metal ultrafine wire.

このように本実施例の金属極細線6は非常に小径のもの
が可能であるから、これの単線でも従来のピアノ線等に
比べて延性が優れており、さらに小径のものを複数本撚
り線化することにより、さらに延性が向上し、金網用編
み機によって網化することができ、この場合に横線の反
転部分にクラックが生じたり、断線したりすることはな
い。
As described above, since the ultra-fine metal wire 6 of this embodiment can be made with a very small diameter, even a single wire of this wire has superior ductility compared to conventional piano wire, etc., and furthermore, multiple wires of small diameter can be stranded. This further improves the ductility and allows the wire mesh to be formed into a wire mesh using a wire mesh knitting machine, without causing cracks or wire breakage at the reversed portions of the horizontal wires.

そして本実施例のFRPI、FRMの補強網3に使用さ
れている上記金属極細線6の強度が、300〜600 
kgf/1m2 と従来のステンレス線、ピアノ線に比
較して飛躍的に向上しているので、それだけFRP、F
RMの強度を向上できる。
The strength of the metal ultrafine wire 6 used in the reinforcing net 3 of FRPI and FRM in this embodiment is 300 to 600.
kgf/1m2, which is a dramatic improvement compared to conventional stainless steel wire and piano wire.
The strength of RM can be improved.

次に大発明の線径160μm以下で、引張強度300〜
600 kgf/m”の金属極細線を製造した実験例に
ついて説明する。
Next, the wire diameter of 160μm or less and the tensile strength of 300~
An experimental example in which an ultrafine metal wire of 600 kgf/m'' was manufactured will be described.

2並史上 先ず、第1表に示す化学組成を有し、第、2表に示す線
径0.9〜2.5 vsの線材を、890℃の温度にて
連続加熱、焼き入れし、ついで810℃連続加熱。
2. First, a wire having the chemical composition shown in Table 1 and a wire diameter of 0.9 to 2.5 vs. shown in Table 2 was continuously heated and quenched at a temperature of 890°C, and then Continuous heating at 810℃.

冷却して、いずれもフェライト相と、一部に残留オース
テナイトを含むマルテンサイト相との2相MHIjを有
する複合組織線材を得た。そしてこの複合組織線材を冷
間伸線加工により、第2表に示す線径の極細線に線引き
した。この第2表において、詞番号1〜9が本発明の補
強網3用金属極細線として採用できるものである。なお
、比較のため、第1表の鋼番号10に示す化学組成の線
材を、鉛パテンテイングと伸線を4回繰り返して高炭素
鋼ピアノ極細線を得た。これらの極細線の引張強度を測
定するとともに、超高圧電子顕微R(3M V)により
金属組織を観察した。
After cooling, a composite wire rod having a two-phase MHIj consisting of a ferrite phase and a martensitic phase partially containing residual austenite was obtained. Then, this composite textured wire rod was drawn into ultra-fine wires having the wire diameters shown in Table 2 by cold wire drawing. In this Table 2, numbers 1 to 9 can be employed as the ultrafine metal wires for the reinforcing net 3 of the present invention. For comparison, a high carbon steel piano ultrafine wire was obtained by repeating lead patenting and wire drawing four times for a wire having the chemical composition shown in Steel No. 10 in Table 1. The tensile strength of these ultrafine wires was measured, and the metal structure was observed using an ultra-high voltage electron microscope R (3MV).

結果を第2表に示す、この表でも明らかなように、繊維
間隔は90〜650人、セルサイズは20〜90人、引
張強度は330〜538 kg4/鶴2であり、引張強
度が従来方法による比較例の318 kgf/mm2よ
り大幅に向上しているのがわかる。また、この場合、加
工度が高くなるほど、繊維間隔が狭く、かつセルサイズ
が小さくなっており、これに伴って引張強度が向上して
いる。
The results are shown in Table 2. As is clear from this table, the fiber spacing is 90 to 650 people, the cell size is 20 to 90 people, the tensile strength is 330 to 538 kg4/Tsuru2, and the tensile strength is higher than that of the conventional method. It can be seen that this is a significant improvement over the comparative example of 318 kgf/mm2. Furthermore, in this case, as the degree of processing increases, the fiber spacing becomes narrower and the cell size becomes smaller, and the tensile strength improves accordingly.

去肱五1 重量%で、C:0.18%、  S i:0.9%、 
Mn:1.5%、  S:0.002%、  N:0.
002%、  A ti :0.003%なる化学組成
を有する線径2.5fiの線材を900℃で再加熱焼き
入れし、続いて800℃に加熱、調整冷却してフェライ
ト相と低温変態生成相とを複合組織化させ、かつ低温変
態生成相の形態を主として針状とし、その体積分率を3
5%とした。この線材を湿式連続伸線により、線径10
0.50.25 μ伯の極細線を得た。この極m線の特
性を測定するとともに、超高圧電子顕微鏡(3MV)に
より金属組織を観察した。また、比較のためにピアノ線
(0,82%C)、ステンレス線(5US304)、ア
モルファス線(Fe −3i−B系)、タンゲス線及び
アラミド線についても同様の測定を行った。
5% by weight, C: 0.18%, Si: 0.9%,
Mn: 1.5%, S: 0.002%, N: 0.
A wire with a wire diameter of 2.5fi having a chemical composition of 0.002% and A ti :0.003% is reheated and quenched at 900°C, then heated to 800°C, adjusted and cooled to form a ferrite phase and a low-temperature transformation phase. and a composite structure, and the form of the phase produced by low-temperature transformation is mainly acicular, and its volume fraction is 3.
It was set at 5%. This wire was drawn by wet continuous wire drawing to a wire diameter of 10.
An ultrafine wire of 0.50.25 μm was obtained. The characteristics of this polar m-ray were measured, and the metal structure was observed using an ultra-high voltage electron microscope (3MV). For comparison, similar measurements were also performed on piano wire (0.82% C), stainless steel wire (5US304), amorphous wire (Fe-3i-B series), Tanges wire, and aramid wire.

結果を第3表に示す。同表からも明らかなように、本発
明における補強網用金属極細線は、300kgf/la
”以上の引張強度を有し、また、靭性に富んでいる。ま
た本発明の極1ilvAは、伸線方向に延びる均一繊維
状組織を有し、その繊維間隔は100〜200人であり
、セルサイズは30〜90人であった。
The results are shown in Table 3. As is clear from the same table, the ultrafine metal wire for reinforcing net in the present invention is 300 kgf/la
It has a tensile strength of more than 100% and is rich in toughness. Furthermore, the pole 1ilvA of the present invention has a uniform fibrous structure extending in the drawing direction, the fiber spacing is 100 to 200, and the cell The size ranged from 30 to 90 people.

さらに、本発明の補強網用金属極細線について、高温環
境下保持後の強度変化、引張破断部、及び曲げ加工部の
性状、疲労特性、応カリクラセージぢン特性についても
測定した。
Furthermore, regarding the ultrafine metal wire for reinforcing net of the present invention, changes in strength after being held in a high-temperature environment, properties of tensile rupture parts and bent parts, fatigue properties, and flexural sage characteristics were also measured.

第3図は、上記第3表に示した50μmの極細線を、大
気中で室温〜450℃の温度に30分加熱後、引張強度
を測定した結果を示す(曲線A)、なお、ピアノ線(1
00μmLアモルファス線(50μl11)についても
同条件下で測定した結果を示している(曲線B、C)、
この図からも明らかなように、本発明の極細線は400
℃まで強度低下は全く認められない。
Figure 3 shows the results of measuring the tensile strength of the 50 μm ultrafine wire shown in Table 3 above after heating it in the air to a temperature between room temperature and 450°C for 30 minutes (curve A). (1
00μmL amorphous wire (50μl11) also shows the results measured under the same conditions (curves B and C),
As is clear from this figure, the ultrafine wire of the present invention has a diameter of 400 mm.
No decrease in strength was observed up to ℃.

第4図、第5図はそれぞれ上記第3表に示した50μm
の極細線の引張破断部の拡大図1曲げ加工部の拡大図で
ある。第4図から明らかなように、大きく絞られた後破
断しており(この場合の破断絞り率は50%以上)、ま
た第5図から明らかなように、曲げ(キング)変形後に
おいてもクランクは生じておらず、これらの点から靭性
に冨んでいることが理解できる。
Figures 4 and 5 are each 50 μm shown in Table 3 above.
1 is an enlarged view of the bending part. As is clear from Figure 4, the crank fractures after being greatly squeezed (in this case, the fracture contraction ratio is over 50%), and as is clear from Figure 5, the crankshaft remains even after bending (king) deformation. No cracking occurred, and from these points it can be understood that the steel has good toughness.

第6図は上記第1表に示した100μ霧の極細線につい
てハンター疲労試験による疲労特性をを示す、疲労限界
強度(107回評価)の引張強度に対する比率(強度比
)は0.38と優れた耐疲労性を示している。また、第
7図は同様の条件で製造した線径60μmの極細線の、
引張強度の85%の初期応力を負荷した場合の応力リラ
クセーシぢン特性を示しており、応力ロスは2%以下で
ある。この第6図、第7図から、本発明の補強網用金属
極細線は、動的、静的(繰り返し、変動)応力負荷での
高い信頼性を有することが明らかである。
Figure 6 shows the fatigue properties of the 100μ mist ultra-fine wire shown in Table 1 above in the Hunter fatigue test.The ratio of fatigue limit strength (107 evaluations) to tensile strength (strength ratio) is excellent at 0.38. It shows excellent fatigue resistance. In addition, Fig. 7 shows the ultrafine wire with a wire diameter of 60 μm manufactured under the same conditions.
It shows stress relaxation characteristics when an initial stress of 85% of the tensile strength is applied, and the stress loss is 2% or less. From FIG. 6 and FIG. 7, it is clear that the ultrafine metal wire for reinforcing net of the present invention has high reliability under dynamic and static (repetitive and fluctuating) stress loads.

なお、上記実施例では、マトリックス樹脂2゜マトリッ
クス金属を、撚り線で構成した補強@3で強化したが、
本発明では、金属極細線を単独で網化した補強網により
、又は補強繊維を複数本合わせでサイジング処理を施し
た合糸を織布化した     −補惣織布により、ある
いは補強繊維を単独で用いることにより強化してもよい
、また、網化、!IN布化する場合は、縦線、横線の何
れか一方のみ金属極if線で構成し、他方は従来の金属
細線、例えばピアノ線、ステンレスam、高マンガンa
m、 チタン線等を使用することも可能であり、また本
発明の金属極細線とピアノ線等とを撚り綿化、織布化し
てもよく、このようにした複合金網、複合繊布の場合は
、それぞれの有する長所を合わせ持つことができる。
In addition, in the above example, the matrix resin 2° matrix metal was reinforced with reinforcement @3 composed of stranded wires.
In the present invention, by using a reinforcing net made of ultra-fine metal wires alone, or by combining a plurality of reinforcing fibers and performing sizing treatment, the yarn is made into a woven fabric. May be strengthened by using also netting,! When making IN cloth, only one of the vertical and horizontal lines is made of metal polar IF wire, and the other is made of conventional thin metal wire, such as piano wire, stainless steel am, high manganese a
It is also possible to use titanium wire, etc., and the ultrafine metal wire of the present invention and piano wire, etc. may be twisted to form cotton or woven fabric. , it is possible to combine the advantages of each.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明に係るFRP、FRMによれば、補
強繊維として、5〜100人の加工セルが繊維状に配列
され、かつ該繊維間隔が50〜1000人の超微細粒金
属組織を形成する線径160μm以下、引張強度300
〜600 kgf/m”の超高強度金属極細線を採用し
たので、補強繊維の強度を従来よりはるかに高くでき、
その結果FRP、FRMの強度を大幅に向上できる効果
がある。
As described above, according to the FRP and FRM of the present invention, as reinforcing fibers, processing cells of 5 to 100 people are arranged in a fibrous shape, and the fiber interval forms an ultrafine grained metal structure of 50 to 1000 people. wire diameter 160 μm or less, tensile strength 300
By using ultra-high strength metal wire with a strength of ~600 kgf/m, the strength of the reinforcing fibers can be much higher than before.
As a result, the strength of FRP and FRM can be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例によるFRPを示す斜視図、
第2図は補強網の拡大断面図、第3図ないし第1O図は
本発明の補強網用金属極細線の特性を説明するための図
であり、第3図は高温環境下保持後の強度変化を示す特
性図、第4図は引張破断部の拡大図、第5図は曲げ加工
部の拡大図、第6図は疲労特性を示す図、第7図は応力
リラクセーシロン特性を示す図、第8図は引張強度、靭
性の特性図、第9図、第10図は本発明の補強繊維用金
属極細線の金属m織を示す顕微鏡写真であ図において、
1はFRP、2はマトリックス樹脂、3は補強網、4.
5は撚り線、6は金属極細線である。 特許出願人  株式会社 神戸製鋼所 代理人    弁理士 下 市  努 第1図 第2図 第3図 第4図        第5図 1ti7””’                  
               tw)y”’第6図 第7図 応力負荷時間 (hour) 第8図
FIG. 1 is a perspective view showing an FRP according to an embodiment of the present invention;
Fig. 2 is an enlarged sectional view of the reinforcing net, Figs. 3 to 1O are diagrams for explaining the characteristics of the ultrafine metal wire for the reinforcing net of the present invention, and Fig. 3 shows the strength after being held in a high temperature environment. Figure 4 is an enlarged view of the tensile fracture area, Figure 5 is an enlarged view of the bending part, Figure 6 is a diagram showing fatigue characteristics, Figure 7 is a diagram showing stress relaxation characteristics, Figure 7 is a diagram showing stress relaxation properties, Figure 8 is a characteristic diagram of tensile strength and toughness, and Figures 9 and 10 are micrographs showing the metal m weave of the ultrafine metal wire for reinforcing fibers of the present invention.
1 is FRP, 2 is matrix resin, 3 is reinforcing net, 4.
5 is a twisted wire, and 6 is a metal ultrafine wire. Patent Applicant Kobe Steel Co., Ltd. Representative Patent Attorney Tsutomu Shimoichi Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 1ti7""'
tw)y"'Figure 6Figure 7Stress loading time (hour)Figure 8

Claims (1)

【特許請求の範囲】[Claims] (1)単繊維状の補強繊維、該補強繊維を織布化してな
る補強織布、又は該補強繊維を金網化してなる補強網の
何れかを、マトリックス樹脂、又はマトリックス金属内
に埋設してなる繊維強化部材において、上記補強繊維が
、線材を冷間伸線により強加工してなり、該強加工によ
り生じた5〜100Åの超微細セルが一方向に繊維状に
配列され、かつ該繊維間隔が50〜1000Åである繊
維状微細金属組織を有する線径160μm以下、引張強
度300〜600kgf/mm^2の超高強度金属極細
線、該極細線を複数本撚り合わせてなる撚り線、又は該
金属極細線を複数本合わせてサイジング処理を施してな
る合糸であることを特徴とする繊維強化部材。
(1) Either a monofilament reinforcing fiber, a reinforcing woven fabric made of the reinforcing fibers, or a reinforcing net made of the reinforcing fibers is embedded in the matrix resin or matrix metal. In the fiber-reinforced member, the reinforcing fibers are formed by strongly processing a wire rod by cold wire drawing, and ultrafine cells of 5 to 100 Å produced by the strong processing are arranged in a fibrous shape in one direction, and Ultra-high-strength metal ultrafine wires with a wire diameter of 160 μm or less and a tensile strength of 300 to 600 kgf/mm^2 having a fibrous fine metal structure with an interval of 50 to 1000 Å, a stranded wire made by twisting a plurality of the ultrafine wires, or A fiber-reinforced member characterized in that it is a doubled yarn made by combining a plurality of the ultrafine metal wires and subjecting them to a sizing treatment.
JP4801688A 1988-02-29 1988-02-29 Fiber reinforced member Pending JPH01222030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4801688A JPH01222030A (en) 1988-02-29 1988-02-29 Fiber reinforced member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4801688A JPH01222030A (en) 1988-02-29 1988-02-29 Fiber reinforced member

Publications (1)

Publication Number Publication Date
JPH01222030A true JPH01222030A (en) 1989-09-05

Family

ID=12791509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4801688A Pending JPH01222030A (en) 1988-02-29 1988-02-29 Fiber reinforced member

Country Status (1)

Country Link
JP (1) JPH01222030A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104099539A (en) * 2014-06-18 2014-10-15 华南理工大学 Manufacturing method of macrofiber porous metal material
WO2015005320A1 (en) * 2013-07-09 2015-01-15 黒崎播磨株式会社 Metal fiber composite

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6164833A (en) * 1984-09-04 1986-04-03 Toshiba Corp Manufacture of metallic fiber reinforced type metal base composite material
JPS6220824A (en) * 1985-07-20 1987-01-29 Kobe Steel Ltd Production of extra fine wire

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6164833A (en) * 1984-09-04 1986-04-03 Toshiba Corp Manufacture of metallic fiber reinforced type metal base composite material
JPS6220824A (en) * 1985-07-20 1987-01-29 Kobe Steel Ltd Production of extra fine wire

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015005320A1 (en) * 2013-07-09 2015-01-15 黒崎播磨株式会社 Metal fiber composite
JP2015017001A (en) * 2013-07-09 2015-01-29 黒崎播磨株式会社 Metal fiber composite
CN104099539A (en) * 2014-06-18 2014-10-15 华南理工大学 Manufacturing method of macrofiber porous metal material

Similar Documents

Publication Publication Date Title
JP2735647B2 (en) High strength and high ductility steel wire and method for producing high strength and high ductility extra fine steel wire
JPH02210078A (en) Fishing line
JPH01222030A (en) Fiber reinforced member
JPS6324046A (en) Wire rod for high toughness and high ductility ultrafine wire
JP3283332B2 (en) High-strength ultrafine steel wire with excellent stranded wire workability and method for producing the same
JPH01221550A (en) Woven fabric
JPH0430462B2 (en)
JPH01221229A (en) Wire netting
JP3814070B2 (en) High-strength ultrafine steel wire and method for producing the same
JPH01220791A (en) Extra-high pressure hose
JP3457498B2 (en) High-strength PC steel bar and method of manufacturing the same
JPH0742666B2 (en) Reinforcement material
JPS63317626A (en) Production of ultra-high strength extremely fine wire
JP3061918B2 (en) Method of manufacturing steel cord with excellent fatigue properties
JPH062039A (en) Production of extra fine wire of medium carbon steel
JPH0352754A (en) Fiber reinforcing member
JPH01221544A (en) Tire
JPH0211165A (en) Medical very thin tube
JP2767620B2 (en) Manufacturing method of ultra-fine high-tensile steel wire with excellent toughness
JPH01224540A (en) Fine spring
JPH0790495A (en) High strength steel wire and its production
JP2000063987A (en) High carbon steel wire rod excellent in wire drawability
CN117845137B (en) Mn-Si-V-Ti-Nb-Cr multi-element alloyed hot rolled wire rod and preparation method thereof
JPS60152635A (en) Manufacture of high-strength low-carbon steel material having superior heavy workability
JPH0359138A (en) Woven fabric