JPH01221704A - Processing device for end face of plastic optical fiber - Google Patents
Processing device for end face of plastic optical fiberInfo
- Publication number
- JPH01221704A JPH01221704A JP63048147A JP4814788A JPH01221704A JP H01221704 A JPH01221704 A JP H01221704A JP 63048147 A JP63048147 A JP 63048147A JP 4814788 A JP4814788 A JP 4814788A JP H01221704 A JPH01221704 A JP H01221704A
- Authority
- JP
- Japan
- Prior art keywords
- face
- optical fiber
- plastic optical
- plate
- far
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013308 plastic optical fiber Substances 0.000 title claims abstract description 77
- 238000010438 heat treatment Methods 0.000 claims abstract description 54
- 238000002834 transmittance Methods 0.000 claims abstract description 11
- 239000000126 substance Substances 0.000 claims abstract description 8
- 230000005855 radiation Effects 0.000 claims abstract description 7
- 239000000835 fiber Substances 0.000 claims abstract description 4
- 238000000465 moulding Methods 0.000 claims description 21
- 239000000463 material Substances 0.000 claims description 16
- 239000013078 crystal Substances 0.000 claims description 7
- 239000000919 ceramic Substances 0.000 claims description 6
- 239000011358 absorbing material Substances 0.000 claims description 3
- 239000011521 glass Substances 0.000 claims description 3
- 238000007493 shaping process Methods 0.000 claims description 3
- 238000001816 cooling Methods 0.000 claims description 2
- 239000013307 optical fiber Substances 0.000 abstract description 8
- 238000000034 method Methods 0.000 abstract description 3
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 229920000642 polymer Polymers 0.000 description 7
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 239000011162 core material Substances 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- -1 KR3-5 Chemical compound 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229920006125 amorphous polymer Polymers 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/255—Splicing of light guides, e.g. by fusion or bonding
- G02B6/2552—Splicing of light guides, e.g. by fusion or bonding reshaping or reforming of light guides for coupling using thermal heating, e.g. tapering, forming of a lens on light guide ends
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明はプラスチック光ファイバの端面処理装置に関す
る。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an end face treatment device for plastic optical fibers.
[従来の技術]
従来、プラスチック光ファイバの端面を熱変形させて平
滑に仕上げる装置としては、例えば実開昭59−164
003号公報に提案されているような熱容四の大きい発
熱体と、プラスチック光ファイバの端面の加熱処理時に
、光ファイバを押当てて加熱するための鏡面を有し、そ
の鏡面と反対側の表面と発熱体とが、当接、離間するこ
とができる薄い板体とを含み、前記発熱体は板体の前記
鏡面とは反対側の表面と当接、離間し得るように移動可
能となっているプラスチック光ファイバの端面処理装置
などがある。[Prior Art] Conventionally, as a device for thermally deforming the end face of a plastic optical fiber to make it smooth, for example, there is a device disclosed in Utility Model Application Publication No. 59-164.
It has a heating element with a large heat capacity as proposed in Japanese Patent No. 003, a mirror surface for pressing and heating the optical fiber during heat treatment of the end face of the plastic optical fiber, and a heating element on the opposite side to the mirror surface. The heating element includes a thin plate whose surface can come into contact with and separate from the heating element, and the heating element is movable so that it can come into contact with and separate from the surface of the plate opposite to the mirror surface. There are end-face treatment devices for plastic optical fibers.
[発明が解決しようとする課題] しかし、これらの装置には次の問題がある。[Problem to be solved by the invention] However, these devices have the following problems.
つまりプラスチック光ファイバの端面を熱変形させる従
来装置においては、発熱体を加熱板より離間させる装置
などを用いて、加熱板の温度を低下させてプラスチック
光ファイバの端面の温度を低下させることが必須の要件
である。したがって、本質的に加熱板の温度及びプラス
チック光フ1イバの温度の低下に要する時間を必要とし
、更に再び端面を処理するための加熱板を加熱する時間
も必要とするため、端面処理時間に長時間を要するとい
う問題がある。In other words, in conventional equipment that thermally deforms the end face of a plastic optical fiber, it is essential to lower the temperature of the heating plate by using a device that separates the heating element from the heating plate, thereby lowering the temperature of the end face of the plastic optical fiber. This is a requirement. Therefore, it essentially requires time to lower the temperature of the heating plate and the temperature of the plastic optical fiber, and it also requires time to heat the heating plate for processing the end face again, so the end face processing time is reduced. There is a problem that it takes a long time.
本発明の目的は従来装置より更に迅速にかつ操作的に平
易にでき、なおかつ光学性能が優れ、装置的にも簡単な
プラスチック光ファイバの端面処理装置を提供するにあ
る。An object of the present invention is to provide a plastic optical fiber end face treatment device that can be operated more quickly and more easily than conventional devices, has excellent optical performance, and is simple in terms of equipment.
[課題を解決するための手段] 本発明は次の構成を有する。[Means to solve the problem] The present invention has the following configuration.
(1)、遠赤外線放射体からなる加熱体と、遠赤外線透
過率の良い物質からなる端面成形板を配設したことを特
徴とするプラスチック光ファイバの端面処理装置。(1) An end face processing device for a plastic optical fiber, characterized in that a heating body made of a far infrared ray emitter and an end face molding plate made of a material with good far infrared transmittance are provided.
(2)、遠赤外線放射体が、セラミックスで構成されて
いる請求項(1)記載のプラスチック光ファイバの端面
処理装置。(2) The end face treatment device for a plastic optical fiber according to claim (1), wherein the far-infrared radiator is made of ceramics.
(3)、遠赤外線放射体から出る放射線の波長が、5μ
以上の電磁波である請求項(1)〜(2)記載のプラス
チック光ファイバの端面処理装置。(3) The wavelength of the radiation emitted from the far-infrared emitter is 5μ
The apparatus for treating the end face of a plastic optical fiber according to claim 1 or 2, wherein the electromagnetic wave is as described above.
(4)、端面成形板が、イオン結晶体、半導性単結晶体
およびガラス体から選ばれた少なくとも1種である請求
項(1)〜(3)記載のプラスチック光ファイバの端面
処理装置。(4) The end face processing apparatus for a plastic optical fiber according to any one of claims (1) to (3), wherein the end face forming plate is at least one selected from an ionic crystal, a semiconducting single crystal, and a glass body.
(5)、プラスチック光ファイバ端面と接する成形板面
が、平滑処理されている請求項(1)〜〈4)記載のプ
ラスチック光ファイバの端面処理装置。(5) The plastic optical fiber end face processing device according to any one of claims (1) to (4), wherein the molding plate surface in contact with the plastic optical fiber end face is smoothed.
(6)、端面成形板のプラスチック光ファイバの端面の
接する面の表面温度が、プラスチック光ファイバの熱変
形温度未満である請求項(1)〜(5)記載のプラスチ
ック光ファイバの端面処理装置。(6) The end face processing apparatus for a plastic optical fiber according to any one of claims (1) to (5), wherein the surface temperature of the surface of the end face molding plate in contact with the end face of the plastic optical fiber is lower than the thermal deformation temperature of the plastic optical fiber.
(7)、加熱体と端面成形板との間に加熱体から端面成
形板への熱伝導を抑制するための遠赤外線透過率の良い
物質を設けられている請求項(1)〜(5)記載のプラ
スチック光ファイバの端面処理装置。(7) Claims (1) to (5) wherein a substance with good far-infrared transmittance is provided between the heating body and the end face forming plate to suppress heat conduction from the heating body to the end face forming plate. The described plastic optical fiber end face processing device.
(8)、加熱体と端面成形板との間に設けた物質が冷却
空気でおる請求項(7)記載のプラスック光ファイバの
端面処理装置。(8) An end face treatment apparatus for a plastic optical fiber according to claim 7, wherein the material provided between the heating body and the end face shaping plate is cooled air.
(9)、加熱体と端面成形板との間に遠赤外線遮蔽のた
めの遠赤外線吸収物質が搬入・引き出し可能な状態で設
置されている請求項(1)〜(7)記載のプラスチック
光ファイバの端面処理装置。(9) The plastic optical fiber according to any one of claims (1) to (7), wherein a far-infrared absorbing material for shielding far-infrared rays is installed between the heating body and the end face molding plate so that it can be carried in and pulled out. edge processing equipment.
以下本発明の詳細な説明する。The present invention will be explained in detail below.
第1図は本発明のプラスチック光ファイバの端面処理装
置を示す断面図である。FIG. 1 is a sectional view showing a plastic optical fiber end face treatment apparatus of the present invention.
遠赤外加熱体1は、加熱源と遠赤外線放射体2から構成
される。加熱源は通常の電熱線や火炎もしくは熱媒より
構成される。又遠赤外線放射体2は加熱により、波長5
μ〜1000μ程度の電磁波を放射するセラミック層よ
り成る。The far-infrared heating element 1 includes a heating source and a far-infrared radiator 2. The heating source consists of a conventional heating wire, flame, or heating medium. In addition, the far infrared radiator 2 is heated to emit a wavelength of 5.
It consists of a ceramic layer that emits electromagnetic waves of approximately 1000 μm.
この遠赤外加熱体1の上部には、端面成形板3が配置さ
れる。端面成形板3としては、KBr、HaCl、KR
3−5などのイオン結晶体、シリコンなどの半導性単結
晶体、石英などのガラス体から選ばれた少なくとも1種
からなる遠赤外線透過率の良い物質で構成される。An end face molding plate 3 is arranged above the far-infrared heating element 1 . As the end face molded plate 3, KBr, HaCl, KR
The material is made of at least one material selected from ionic crystals such as No. 3-5, semiconducting single crystals such as silicon, and glass materials such as quartz, and has good far-infrared transmittance.
端面成形板3のプラスチック光ファイバの端面の接する
面は、光学研摩などにより表面平滑化がなされている。The surface of the end face molding plate 3 in contact with the end face of the plastic optical fiber is smoothed by optical polishing or the like.
遠赤外線放射体2と端面成形板3の間には、加熱体から
端面成形板3への熱伝導を抑制する空気などから成る物
質を注入・排出するための注入・排出口4が設けられて
いる。An injection/exhaust port 4 is provided between the far-infrared radiator 2 and the end forming plate 3 for injecting and discharging a substance such as air that suppresses heat conduction from the heating element to the end forming plate 3. There is.
更に遠赤外線tli射体2と端面成形板3との間に、遠
赤外加熱体1より発せられる遠赤外線を遮蔽して遠赤外
加熱を遮断する機構を有する遠赤外遮断物質6を必要に
応じて付設させ、スイッチにより0N−OFFすること
もできる。Furthermore, a far-infrared blocking material 6 is required between the far-infrared tli projector 2 and the end face molding plate 3, which has a mechanism for blocking far-infrared rays emitted from the far-infrared heating body 1 and blocking far-infrared heating. It is also possible to attach it according to the situation and turn it ON and OFF with a switch.
プラスチック光ファイバ5は、上記構成からなる装置の
端面成形板3に押しあてられ、加熱源により遠赤外線放
射体2から放射された遠赤外線を吸収し輻射加熱される
。The plastic optical fiber 5 is pressed against the end face molding plate 3 of the apparatus having the above structure, and is radiantly heated by absorbing far infrared rays emitted from the far infrared radiator 2 by a heating source.
その際端面成形板3の温度は、遠赤外線透過率がプラス
チック光ファイバよりも高く、かつ伝導熱遮蔽物質注入
・排出口4より加熱体からの熱伝導を抑制するための物
質が供給されるため、プラスチック光ファイバの温度よ
り低い温度で維持される。At this time, the temperature of the end face molded plate 3 is such that the far-infrared transmittance is higher than that of the plastic optical fiber, and a substance for suppressing heat conduction from the heating body is supplied from the conductive heat shielding substance injection/discharge port 4. , maintained at a temperature lower than that of plastic optical fibers.
かかる状態において、プラスチック光ファイバ5の端面
は熱変形し、端面成形板3の平滑面を転写した端面状態
で成形される。In this state, the end face of the plastic optical fiber 5 is thermally deformed, and is molded into an end face state in which the smooth surface of the end face molding plate 3 is transferred.
端面成形処理された後は、端面成形板3より直接プラス
チック光ファイバ5をひき離す。After the end face molding process has been performed, the plastic optical fiber 5 is directly separated from the end face molding plate 3.
その際プラスチック光ファイバをひき離す前に伝導熱遮
蔽物質注入・排出口4より伝導熱遮蔽物質の供給間を増
大させたり、遠赤外遮断物質6を利用して、遠赤外線を
遮断し、プラスチック光ファイバ5又は端面成形板3の
温度を低下させても良い。At that time, before separating the plastic optical fiber, the supply interval of the conductive heat shielding material is increased through the conductive heat shielding material injection/discharge port 4, and the far infrared rays are blocked using the far infrared shielding material 6. The temperature of the optical fiber 5 or the end face molding plate 3 may be lowered.
なお第1図において、プラスチック光ファイバ5の把持
および端面成形板3へ押し当てるための作動法について
は、手動による操作の他、例えば機械的クランプやラッ
クドピニオンなどを使用した作動を持って、自動的に把
持又は押し当てすることもできる。In FIG. 1, the operation method for gripping the plastic optical fiber 5 and pressing it against the end face forming plate 3 includes manual operation as well as operation using a mechanical clamp, racked pinion, etc. It can also be automatically gripped or pressed.
本発明で使用するプラスチック光ファイバは芯材、鞘材
とも高分子からなる芯鞘複合繊維を示し、芯材としては
、ポリメチルメタクリレート、ポリカーボネート、ポリ
スチレンなどの透明性の良い非晶質高分子が用いられる
。The plastic optical fiber used in the present invention is a core-sheath composite fiber made of polymers for both the core and sheath materials, and the core material is an amorphous polymer with good transparency such as polymethyl methacrylate, polycarbonate, or polystyrene. used.
鞘材としては含フツ素ポリマなとの該芯材より屈折率の
低い高分子を例示することができる。しかし、特にこれ
らに限定されるものではない。Examples of the sheath material include polymers having a lower refractive index than the core material, such as fluorine-containing polymers. However, it is not particularly limited to these.
本発明の遠赤外線放射体は、プラスチック光ファイバに
使用される高分子に吸収され、該高分子の熱運動を励起
させ輻射により温度を上昇させる熱線を放射するもので
ある。The far-infrared radiator of the present invention emits heat rays that are absorbed by polymers used in plastic optical fibers, excite the thermal motion of the polymers, and raise the temperature by radiation.
プラスチック光ファイバに用いられる高分子は、遠赤外
領域に強い吸収帯を有しているため、かかる遠赤外線に
よって充分加熱されるが、更に好ましくは波長域として
は5μ〜1000μ程度の比較的長い電磁波を放射する
ものが良く、かかる条件に合致するものとして、遠赤外
セラミックヒータなどが好適であるが、特にこれに限定
されるものではない。The polymer used in plastic optical fibers has a strong absorption band in the far infrared region, so it is sufficiently heated by such far infrared rays, but more preferably the wavelength range is relatively long, from about 5μ to 1000μ. A device that emits electromagnetic waves is preferable, and a far-infrared ceramic heater or the like is suitable as a device that meets this condition, but is not particularly limited thereto.
又端面成形板は、上記プラスチック光ファイバに使用さ
れる高分子よりも遠赤外線透過率が良い物質である前記
の1(Br、 NaCl、KR3−5、シリコン単結晶
体、石英ガラスなどが特に好ましいが、特にこれに限定
されることはない。In addition, the end face molded plate is particularly preferably made of a material having a better far-infrared transmittance than the polymer used in the plastic optical fiber, such as the above-mentioned 1 (Br, NaCl, KR3-5, silicon single crystal, quartz glass, etc.). However, it is not particularly limited to this.
以上の構成よりなる本発明の装置においては、加熱体よ
り放射される遠赤外線は、プラスチック光ファイバに主
として吸収されるため、プラスチック光ファイバの端面
ば遠赤外線により直接加熱され、熱変形することができ
る。In the device of the present invention having the above configuration, the far infrared rays emitted from the heating body are mainly absorbed by the plastic optical fiber, so that the end face of the plastic optical fiber is directly heated by the far infrared rays and thermally deformed. can.
一方端面成形板は、遠赤外線の透過率が良いためさほど
加熱されず、プラスチック光ファイバの熱変形温度未満
に抑制される。かかる点が従来装置と全く異なり、プラ
スチック光ファイバの端面が端面成形板からの熱伝導に
よらずに直接加熱され、いわゆる低温加熱の状態を作り
得ることができるのである。On the other hand, the end face molded plate has a good transmittance of far infrared rays, so it is not heated much, and is kept below the heat deformation temperature of the plastic optical fiber. This point is completely different from conventional apparatuses, and the end face of the plastic optical fiber is directly heated without heat conduction from the end face molding plate, making it possible to create a so-called low-temperature heating state.
かかる状況はプラスチック光ファイバの端面温度と端面
成形板の表面温度を測定することにより容易に証明する
ことができる。Such a situation can be easily verified by measuring the end face temperature of the plastic optical fiber and the surface temperature of the end face molded plate.
つまり従来装置においては、端面成形板が直接の加熱板
であるため、その表面温度は常にプラスチック光ファイ
バの端面温度と同等以上であるの 。In other words, in conventional equipment, the end face forming plate is a direct heating plate, so its surface temperature is always equal to or higher than the end face temperature of the plastic optical fiber.
に対し、本発明の装置では常にプラスチック光ファイバ
の端面温度が端面成形板の表面温度より高いことが簡単
に観測され得る。On the other hand, it can be easily observed that in the apparatus of the present invention, the end face temperature of the plastic optical fiber is always higher than the surface temperature of the end face molding plate.
これより本発明の装置においては、プラスチック光ファ
イバの端面温度未満にある端面成形板に押し当てて該プ
ラスチック光ファイバの端面を熱変形させるため、処理
後、従来装置に必須であった端面成形板の温度を低下さ
せることなく、もしくは極く微か低下させるだけで次工
程に進むことができるので、処理時間を大きく短縮させ
ることが可能となる利点がある。Therefore, in the apparatus of the present invention, the end face of the plastic optical fiber is thermally deformed by pressing it against the end face forming plate whose temperature is lower than the end face temperature of the plastic optical fiber. Since it is possible to proceed to the next step without lowering the temperature or only by lowering it slightly, there is an advantage that the processing time can be significantly shortened.
本発明における端面成形板は、プラスチック光ファイバ
の端面をより鏡面化させ仕上りをきれいなものとするた
め、その端面と接する面をできるだけ平滑に処理するこ
とが好ましい。In order to make the end face of the plastic optical fiber more mirror-like and have a nicer finish, the end face molded plate in the present invention is preferably treated to make the surface in contact with the end face as smooth as possible.
又、端面成形板のプラスチック光ファイバの端面の接す
る面の表面温度をプラスチック光ファイバの熱変形温度
未満にすることにより、端面成形板の温度を全く低下さ
せることなく、処理されたプラスチック光ファイバの端
面を該端面成形板より離すことができる。In addition, by making the surface temperature of the surface of the end face forming plate in contact with the end face of the plastic optical fiber lower than the thermal deformation temperature of the plastic optical fiber, the temperature of the treated plastic optical fiber can be increased without reducing the temperature of the end face forming plate at all. The end face can be separated from the end face forming plate.
かかる状況を作るには、加熱体の電力量を調整すること
によって極く簡単に実施することができるが、更には加
熱体と端面成形板との間に冷却空気などの遠赤外透過率
の良い物質を送り込み加熱板から端面成形板への熱伝導
を抑制することによっても実施できる。Creating such a situation can be done very easily by adjusting the electric power of the heating element, but it is also possible to create a far-infrared transmittance such as cooling air between the heating element and the end face forming plate. This can also be done by introducing a good substance to suppress heat conduction from the heating plate to the end forming plate.
なお、プラスチック光ファイバの端面処理後に端面成形
板の表面温度を低下させてもかまわない。Note that the surface temperature of the end face molding plate may be lowered after the end face treatment of the plastic optical fiber.
その際は加熱体の電力量を消勢して加熱体の温度を低下
するよりも、加熱体と端面成形板との間に遠赤外線遮蔽
のための遠赤外線吸収物質を搬入引き出し可能な状態で
設置することが、端面処理時間短縮の点から好ましいが
、特にこれに限定されることはない。In this case, rather than reducing the temperature of the heating element by deenergizing the power of the heating element, a far-infrared absorbing material for shielding far-infrared rays may be introduced between the heating element and the end face forming plate in a state where it can be pulled out. Although it is preferable to install it from the viewpoint of shortening the end face processing time, the present invention is not particularly limited thereto.
以下本発明を実施例によって更に詳細に説明する。The present invention will be explained in more detail below with reference to Examples.
[実施例]
実施例1
第1図において加熱体として遠赤外セラミックヒータ1
(ノリタケ製:PLR−610型)を用い、セラミック
ヒータの表面2の温度を220’Cになるよう電力調整
した。プラスチック光ファイバの端面の接する面を光学
研摩した厚ざ2#のKR3−5板を端面成形板3として
加熱体との間隙を3Mにして加熱体の上方に設置した。[Example] Example 1 In FIG. 1, a far-infrared ceramic heater 1 is used as a heating element.
(manufactured by Noritake: Model PLR-610), and power was adjusted so that the temperature of the surface 2 of the ceramic heater was 220'C. A KR3-5 plate having a thickness of 2# and whose surface in contact with the end face of the plastic optical fiber was optically polished was used as the end face molding plate 3 and was placed above the heating element with a gap of 3M.
この際の端面成形板のプラスチック光ファイバの端面の
接する面の表面温度を測定したところ、120’Cであ
った。上記装置にて芯材がポリメチルメタクリレートか
らなる繊維径1#Ill+のプラスチック光ファイバ1
(東し製: PF−LJ−FBlooo)の端面を端面
成形板3に押しあて、7秒後に該端面成形板3よりひき
離した。端面処理されたプラスチック光ファイバ5を5
0倍の顕微鏡で観察したところ、きわめて仕上り精度の
良い鏡面をなし、接続損失も1dB以下ときわめて低損
失なものであった。 なお上記装置にてプラスチック光
ファイバの端面を端面成形板より上方0.4InInの
位置に設置させた際の該プラスチック光ファイバの端面
温度を測定したところ137℃であった。At this time, the surface temperature of the surface of the end face molded plate in contact with the end face of the plastic optical fiber was measured and found to be 120'C. In the above device, a plastic optical fiber 1 whose core material is made of polymethyl methacrylate and whose fiber diameter is 1#Ill+ is used.
(manufactured by Toshi: PF-LJ-FBlooo) was pressed against the end face molded plate 3 and separated from the end face molded plate 3 after 7 seconds. 5 plastic optical fibers with end face treatment
When observed under a 0x microscope, it was found to have a mirror surface with extremely high finishing accuracy, and the connection loss was extremely low, less than 1 dB. Note that when the end face of the plastic optical fiber was placed at a position 0.4 InIn above the end face molding plate using the above device, the end face temperature of the plastic optical fiber was measured and found to be 137°C.
実施例2
加熱体1の表面温度を280’Cに電力調整し、加熱体
と端面成形板との間の伝導熱遮蔽物質注入口4より、2
0’Cの空気を風速0.1m/秒で送る以外は実施例1
と同様の装置にてプラスチック光ファイバの端面処理を
実施した。Example 2 The surface temperature of the heating element 1 was adjusted to 280'C, and the conductive heat shielding material injection port 4 between the heating element and the end face forming plate was heated to 2.
Example 1 except that air at 0'C is sent at a wind speed of 0.1 m/sec.
The end face treatment of plastic optical fiber was carried out using the same equipment.
端面処理時間は3秒ときわめて短時間で終了し、端面の
仕上りもきわめてきれいなものであった。The end face processing time was completed in an extremely short time of 3 seconds, and the finish of the end face was extremely clean.
なお端面成形板の表面温度は108℃であり、該端面成
形板の上方0.4#の位置に設置されたプラスチック光
ファイバの端面温度は140℃であった。Note that the surface temperature of the end face molded plate was 108°C, and the end face temperature of the plastic optical fiber installed at a position 0.4# above the end face molded plate was 140°C.
比較例1
端面成形板がプラスチック光ファイバの端面の加熱板で
おるホットプレート型のプラスチック光ファイバの端面
処理装置を用いて、実施例1と同種のプラスチック光フ
ァイバの端面処理を行なった。端面成形板の表面温度を
140℃として端面処理を行なったが、端面の熱変形時
間は2秒と短かいものの、その状態で端面をひき離すと
端面が糸をひき、仕上りの劣ったものしか得、られない
ため、その後該端面成形板の温度を125℃まで低下さ
せた。その際端面成形板の表面温度を125°Cまで低
下させるのに17秒を要し、全処理時間としては19秒
と長い時間を必要とした。更に連続してプラスチック光
ファイバの端面を処理する際には一旦低下させた端面成
形板の温度を上昇させる必要があり、その時間も含めた
プラスチック光ファイバの端面の全処理時間は30秒以
上ときわめて長大なものとなった。Comparative Example 1 The end face of a plastic optical fiber of the same type as in Example 1 was treated using a hot plate type plastic optical fiber end face processing apparatus in which the end face shaping plate was a heating plate for the end face of the plastic optical fiber. The end surface was treated at a surface temperature of 140°C, but although the heat deformation time of the end surface was as short as 2 seconds, when the end surface was separated in that state, the end surface became stringy and the finish was poor. After that, the temperature of the end face molded plate was lowered to 125°C. At that time, it took 17 seconds to lower the surface temperature of the end-face molded plate to 125°C, and the total processing time was as long as 19 seconds. Furthermore, when processing the end face of a plastic optical fiber continuously, it is necessary to raise the temperature of the end face forming plate, which has been lowered once, and the total processing time for the end face of the plastic optical fiber, including that time, is 30 seconds or more. It became extremely long.
[発明の効果コ 本発明は以下の効果を有する。[Effects of invention The present invention has the following effects.
■ 遠赤外線による輻射加熱のため、目的物であるプラ
スチック光ファイバだけが主として加熱され、端面成形
板の温度を低下させる必要がほとんどなく、端面処理時
間が大幅に短縮される。- Because of the radiant heating using far infrared rays, only the target plastic optical fiber is mainly heated, there is almost no need to lower the temperature of the end face forming plate, and the end face processing time is significantly shortened.
■ 遠赤外線輻射による直接加熱のため、エネルギー効
率が良い。■ High energy efficiency due to direct heating using far-infrared radiation.
■ 遠赤外線輻射による直接加熱のため、目的物である
プラスチック光ファイバの端面が均一に加熱され端面処
理時の仕上りがきれいになる。■ Direct heating using far-infrared radiation heats the end face of the target plastic optical fiber uniformly, resulting in a clean finish during end face treatment.
■ 遠赤外線輻射による直接加熱のため、端面成形板の
温度調整をほとんどする必要がなく、装置的に簡便で、
耐久性の良いものとなる。■ Because it is directly heated by far infrared radiation, there is almost no need to adjust the temperature of the end face forming plate, and the equipment is simple.
It has good durability.
第1図は本発明のプラスチック光ファイバの端面処理装
置の断面図である。
1:遠赤外加熱体
2:遠赤外線放射体
3:端面成形板
4:伝導熱遮蔽物質注入・排出口
5ニブラスチツク光ファイバ
6:遠赤外線遮断物質FIG. 1 is a cross-sectional view of the plastic optical fiber end face treatment apparatus of the present invention. 1: Far-infrared heating element 2: Far-infrared radiator 3: End face molding plate 4: Conductive heat shielding material injection/exhaust port 5 Niblast optical fiber 6: Far-infrared shielding material
Claims (1)
過率の良い物質からなる端面成形板を配設したことを特
徴とするプラスチック光ファイバの端面処理装置。 (2)、遠赤外線放射体が、セラミックスで構成されて
いる請求項(1)記載のプラスチック光ファイバの端面
処理装置。 (3)、遠赤外線放射体から出る放射線の波長が、5μ
以上の電磁波である請求項(1)〜(2)記載のプラス
チック光ファイバの端面処理装置。 (4)、端面成形板が、イオン結晶体、半導性単結晶体
およびガラス体から選ばれた少なくとも1種である請求
項(1)〜(3)記載のプラスチック光ファイバの端面
処理装置。(5)、プラスチック光ファイバ端面と接す
る成形板面が、平滑処理されている請求項(1)〜(4
)記載のプラスチック光ファイバの端面処理装置。 (6)、端面成形板のプラスチック光ファイバの端面の
接する面の表面温度が、プラスチック光ファイバの熱変
形温度未満である請求項(1)〜(5)記載のプラスチ
ック光ファイバの端面処理装置。 (7)、加熱体と端面成形板との間に、加熱体から端面
成形板への熱伝導を抑制するための遠赤外線透過率の良
い物質が設けられている請求項(1)〜(5)記載のプ
ラスチック光ファイバの端面処理装置。 (8)、加熱体と端面成形板との間に設けた物質が冷却
空気である請求項(7)記載のプラスック光ファイバの
端面処理装置。 (9)、加熱体と端面成形板との間に遠赤外線遮蔽のた
めの遠赤外線吸収物質が、搬入・引き出し可能な状態で
設置されている請求項(1)〜(7)記載のプラスチッ
ク光ファイバの端面処理装置。[Scope of Claims] (1) An end face processing device for a plastic optical fiber, characterized in that a heating body made of a far infrared ray emitter and an end face molding plate made of a material with good far infrared transmittance are provided. (2) The end face treatment device for a plastic optical fiber according to claim (1), wherein the far-infrared radiator is made of ceramics. (3) The wavelength of the radiation emitted from the far-infrared emitter is 5μ
The apparatus for treating the end face of a plastic optical fiber according to claim 1 or 2, wherein the electromagnetic wave is as described above. (4) The end face processing apparatus for a plastic optical fiber according to any one of claims (1) to (3), wherein the end face forming plate is at least one selected from an ionic crystal, a semiconducting single crystal, and a glass body. (5) Claims (1) to (4) wherein the molded plate surface in contact with the plastic optical fiber end surface is smoothed.
) The plastic optical fiber end face treatment device described in ). (6) The end face processing apparatus for a plastic optical fiber according to any one of claims (1) to (5), wherein the surface temperature of the surface of the end face molding plate in contact with the end face of the plastic optical fiber is lower than the thermal deformation temperature of the plastic optical fiber. (7) Claims (1) to (5), wherein a substance with good far-infrared transmittance is provided between the heating body and the end face forming plate to suppress heat conduction from the heating body to the end face forming plate. ) The plastic optical fiber end face treatment device described in ). (8) The apparatus for treating the end face of a plastic optical fiber according to claim 7, wherein the substance provided between the heating body and the end face shaping plate is cooling air. (9) The plastic light according to any one of claims (1) to (7), wherein a far-infrared absorbing material for shielding far-infrared rays is installed between the heating body and the end face molding plate so that it can be carried in and pulled out. Fiber end treatment equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63048147A JPH01221704A (en) | 1988-02-29 | 1988-02-29 | Processing device for end face of plastic optical fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63048147A JPH01221704A (en) | 1988-02-29 | 1988-02-29 | Processing device for end face of plastic optical fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01221704A true JPH01221704A (en) | 1989-09-05 |
Family
ID=12795252
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63048147A Pending JPH01221704A (en) | 1988-02-29 | 1988-02-29 | Processing device for end face of plastic optical fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01221704A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0689070A1 (en) * | 1994-06-24 | 1995-12-27 | Sumitomo Wiring Systems, Ltd. | Terminal treatment device for a plastic fibre |
-
1988
- 1988-02-29 JP JP63048147A patent/JPH01221704A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0689070A1 (en) * | 1994-06-24 | 1995-12-27 | Sumitomo Wiring Systems, Ltd. | Terminal treatment device for a plastic fibre |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5450331B2 (en) | Method and apparatus for uniformly heating glass and / or glass ceramic using infrared radiation | |
US4678268A (en) | Method and apparatus for constructing microlens ends for optical fibers | |
JP4312365B2 (en) | Method for producing transparent plastic linear body | |
RU2245851C2 (en) | Method and a device for even heating of glass and\or glass ceramics with the help of infrared radiation | |
JPH01221704A (en) | Processing device for end face of plastic optical fiber | |
JP4855988B2 (en) | Manufacturing method of glass optical element and glass optical element | |
US4339256A (en) | Method of making polarized ophthalmic glass | |
JP2720950B2 (en) | Method of manufacturing tapered waveguide | |
JPH04274202A (en) | Terminating end of optical fiber | |
JP2628671B2 (en) | Plastic optical fiber end face treatment method | |
RU2627017C1 (en) | Method for manufacturing waveguide in volume of plate made of porous optical material | |
JPS62105419A (en) | Temperature controlling method for diffusing device | |
JPS60145629A (en) | Heat treating method | |
JPH025295B2 (en) | ||
Yoshida et al. | Sol-gel derived polyvinylpyrrolidone/silicon oxide composite materials and novel fabrication technique for channel waveguide | |
Al-Chalabi | Transient annealing of planar waveguides formed by 4He+ ion implantation into LiNbO3 | |
JPH02122618A (en) | Apparatus for diffusing impurities | |
JPS59189301A (en) | Polishing method of plastic fiber | |
JPS62119135A (en) | Method and apparatus for drawing optical fiber | |
JPS63287910A (en) | Production of plastic multi optical fiber | |
JPS63287907A (en) | Production of plastic optical fiber | |
JPS63264940A (en) | Stretching machine | |
KR970003175Y1 (en) | Rapid thermal process apparatus of wafer | |
SU762364A1 (en) | Method for making optical waveguides | |
JPH1192156A (en) | Method for heating glass optical element forming mold and device for forming glass optical element |