JPH01220829A - Pattern forming method - Google Patents

Pattern forming method

Info

Publication number
JPH01220829A
JPH01220829A JP63047717A JP4771788A JPH01220829A JP H01220829 A JPH01220829 A JP H01220829A JP 63047717 A JP63047717 A JP 63047717A JP 4771788 A JP4771788 A JP 4771788A JP H01220829 A JPH01220829 A JP H01220829A
Authority
JP
Japan
Prior art keywords
resist
poly
acrylonitrile copolymer
exposure
exposure quantity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63047717A
Other languages
Japanese (ja)
Inventor
Yoshikatsu Kojima
小島 義克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63047717A priority Critical patent/JPH01220829A/en
Publication of JPH01220829A publication Critical patent/JPH01220829A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve dimension controllability in the depth direction by spreading resist having different sensitivity in multilayer, and making exposure quantity arbitrarily change. CONSTITUTION:A positive type resist poly(methylisopropenylketon) 12 as a lower layer, and a positive type resist methacrylic acid-acrylonitrile copolymer 11 as an upper layer are spread on a substrate 13. By using electron beam 14, the positive type resist methacryslic acid-acrylonitrile copolymer 11 of upper layer is exposed with the exposure quantity between the following; one is the exposure quantity wherein the residual film percentage of the metacrylic acid-acrylonitrile copolymer becomes 0%, and the other is the exposure quantity wherein the residual film percentage of the poly(methylisopropenylketon) begins to decrease from 100%. Next, by using the electron beam 14, the methacrylic acid-acrylonitrile copolymer 11 of upper layer and the poly(methylisopropenylketone) 12 of lower layer is exposed with the exposure quantity larger than or equal to the value wherein the residual film percentage of the poly(methylisopropenylketon) becomes 0%. After that, developing is performed in a mixed liquid of methylisobutylketon : isopropylealcohol=1:3. Thereby the shape in the depth direction can be controlled accurately and with excellent treproducibility.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体製造工程におけるパターン形成方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a pattern forming method in a semiconductor manufacturing process.

(従来の技術とその問題点) 深さ方向に任意に変化した形状をもつレジストパターン
は、GaAsMESFETなどにおいて高速性能と低雑
音を両立させるために有効なT型ゲートを形成する際の
リフトオフパターンなどに利用することができる。従来
、深さ方向に任意の形状を有するレジストパターンを形
成する場合、用いるレジストの感度特性が第6図の様で
あるとすると、レジストの現像後の残膜率が100%か
ら低下し始める露光量α1と、残膜率が0%となる露光
量a。の間の所望の残膜率X%が得られる露光量α工に
よって露光(第5図(b))、現像(第5図(d))を
行う方法が知られている(例えばマイクロエレクトロニ
クスエンジニアリング1.P295,1983)。しか
し、一般にレジストはその解像度を良くするため感度特
性の立ち上がりが急峻であること、すなわち第6図にお
けるα、とα。の間の領域が非常に狭いことが要求され
、現在実用に供されているレジストのほぼ全部がこの要
求を満たす特性を有している。したがって第6図のα1
とα。の間の領域では、露光量及び現像条件のごくわず
かな変化により残膜率が大幅に変化することになり、従
来法ではレジストの深さ方向の寸法制御を正確かつ再現
性良く行うことは困難であった。本発明の目的は、従来
よりもレジストの深さ方向の寸法制御が正確かつ再現性
良く行えるパターン形成方法を提供することにある。
(Conventional technology and its problems) A resist pattern with a shape that changes arbitrarily in the depth direction is used as a lift-off pattern when forming a T-shaped gate, which is effective for achieving both high-speed performance and low noise in GaAs MESFETs, etc. It can be used for. Conventionally, when forming a resist pattern having an arbitrary shape in the depth direction, assuming that the sensitivity characteristics of the resist used are as shown in Figure 6, the exposure time is such that the residual film rate after development of the resist starts to decrease from 100%. The amount α1 and the exposure amount a at which the residual film rate is 0%. A method is known in which exposure (Fig. 5 (b)) and development (Fig. 5 (d)) are carried out using an exposure amount α that yields a desired residual film rate of X% (for example, in microelectronic engineering). 1.P295, 1983). However, in general, resists have a steep rise in sensitivity characteristics in order to improve their resolution, that is, α and α in FIG. It is required that the area between the two layers be extremely narrow, and almost all resists currently in practical use have characteristics that satisfy this requirement. Therefore, α1 in Figure 6
and α. In the region between, the residual film rate changes significantly due to very small changes in the exposure dose and development conditions, and it is difficult to control the resist depth dimension accurately and with good reproducibility using conventional methods. Met. SUMMARY OF THE INVENTION An object of the present invention is to provide a pattern forming method that allows dimension control in the depth direction of a resist to be performed more accurately and reproducibly than ever before.

(問題を解決するための手段) 本発明によれば、深さ方向に任意の形状をもつレジスト
パターン形成方法において、感度の異なるレジストを多
層に塗布し、露光量を任意に変化させることを特徴とす
るパターン形成方法が提供できる。
(Means for Solving the Problem) According to the present invention, in a method for forming a resist pattern having an arbitrary shape in the depth direction, resists having different sensitivities are applied in multiple layers and the exposure amount is arbitrarily changed. A method for forming a pattern can be provided.

(作用) 次に本発明の原理について第3図及び第4図を用いて説
明する。ある露光方式及び現像条件において、第4図に
示すように大幅に異なる感度を示すレジストAとレジス
トBがあるとする。この2種類のレジストを第3図(a
)のように塗布し、レジストAに対する露光量を第4図
において、レジストAの残膜率が0%となる露光量α。
(Operation) Next, the principle of the present invention will be explained using FIGS. 3 and 4. Assume that there are resists A and B that exhibit significantly different sensitivities as shown in FIG. 4 under certain exposure methods and development conditions. These two types of resists are shown in Figure 3 (a).
), and the exposure amount for resist A is set to the exposure amount α at which the remaining film rate of resist A is 0% in FIG.

以上でかつ1、レジス)Bの残膜率が100%からに低
下し始める露光量I3を以下である露光量αとすると、
第3図(b)において上層のレジストAのみが露光され
下層のレジストBは露光量不足で露光されない。また、
レジストBに対する露光量を第4図においてレジストB
の残膜率が0%となる露光量13o以上である露光量p
とすると、それはすなわちレジストAにおいても残膜率
が0%となる露光量であるので、第3図(C)のように
上層のレジストA1下層のレジストB共に露光される。
Above and 1. If the exposure amount I3 at which the residual film rate of Regis B starts to decrease from 100% is the following exposure amount α,
In FIG. 3(b), only the upper resist A is exposed, and the lower resist B is not exposed due to insufficient exposure. Also,
The exposure amount for resist B is shown in FIG.
The exposure amount p is 13 o or more at which the residual film rate of
In other words, since this is the exposure amount at which the remaining film rate is 0% even in resist A, both the upper resist A and the lower resist B are exposed as shown in FIG. 3(C).

したがってその後現像処理を行うことにより第3図(d
)に示したような深さ方向に任意の形状をもつレジスト
パターンを形成することができる。このとき第3図(b
)における上層レジストAを露光させる露光量αは第4
図においてα。以上131以下の範囲であればよく、ま
た第3図(C)における上層レジストA及び下層レジス
トBを露光させる露光量βは第4図において13o以上
であればよいので、従来技術のように厳密な露光量及び
現像条件の制御を行う必要がなく、また深さ方向の寸法
制御は各層の塗布膜厚によって正確に行うことができる
ので、パターンの深午方向の形状制御を正確かつ再現性
良く行うことができる。
Therefore, by performing a development process after that, as shown in Fig. 3 (d).
) A resist pattern having an arbitrary shape in the depth direction can be formed. At this time, Figure 3 (b
), the exposure amount α for exposing the upper resist A is the fourth
α in the figure. As long as the above range is 131 or less, and the exposure amount β for exposing the upper resist A and the lower resist B in FIG. 3(C) only needs to be 13o or more in FIG. There is no need to control the exposure amount and development conditions, and the dimensions in the depth direction can be accurately controlled by the coating thickness of each layer, so the shape of the pattern in the meridian direction can be controlled accurately and with good reproducibility. It can be carried out.

(実施例) 以下、本発明の実施例としてT型ゲートリフトオフ用パ
ターン形成について第1図及び第2図を用いて説明する
(Example) Hereinafter, as an example of the present invention, formation of a T-type gate lift-off pattern will be described with reference to FIGS. 1 and 2.

第1図は本発明の詳細な説明するための基板の部分断面
図である。また第2図は本実施例で用いたポジ型レジス
トであるメタクリル酸メチル−アクリロニトリル共重合
体及び、ポリ(メチルイソプロペニルケトン)の加速電
圧20kV電子ビームに対する感度特性を示したもので
ある。まず、基板13上にポジ型レジストポリ(メチル
イソプロペニルケトン)12を下層に0.3pm、同じ
くポジ型レジストメタクリル酸メチル−アクリロニトリ
ル共重合体11を上層に1.011mそれぞれスピン塗
布する(第1図(a))。次に加速電圧20kVの電子
ビーム14を用いて上層のボ′ジ型レジストメタクリル
酸メチル−アクリロニトリル共重合体11を、第2図に
おいてメタクリル酸メチル−アクリロニトリル共重合体
の残膜率が0%となる露光it4.OX 10−60/
cm2からポリ(メチルイソプロペニルケトン)の残膜
率が100%から低下し始める露光量1.5 X 1O
−6C/cm2の間の露光量で露光する。ここでは8、
OX 10−’C/cm2の露光量にて露光を行った(
第1図(b))。次に同じく電子ビーム14により上層
のメタクリ、ル酸メチルーアクリロニトリル共重合体1
1と下層のポリ(メチルイソプロペニルケトン)12を
、第2図においてポリ(メチルイソプロペニルケトン)
の残膜率が0%となるn光量6X10−’C/cm2以
上の露光量で露光する。ここでは1.0X10−’C/
am2の露光量にて露光を行った(第1図(C))。そ
の後、メチルイソブチルケトン:イソプロビルアルコー
ル=1:3の混液中で5分間現像を行うことにより深さ
方向に形状制御されたT型レジストパターンが形成され
た(第1図(d))。
FIG. 1 is a partial sectional view of a substrate for explaining the present invention in detail. Furthermore, FIG. 2 shows the sensitivity characteristics of the positive resist used in this example, methyl methacrylate-acrylonitrile copolymer and poly(methyl isopropenyl ketone), to an electron beam at an accelerating voltage of 20 kV. First, on the substrate 13, a positive resist poly(methyl isopropenyl ketone) 12 is spin-coated as a lower layer to a thickness of 0.3 pm, and a positive resist methyl methacrylate-acrylonitrile copolymer 11 is spin-coated as an upper layer to a thickness of 1.011 pm. Figure (a)). Next, using an electron beam 14 with an accelerating voltage of 20 kV, the upper body type resist methyl methacrylate-acrylonitrile copolymer 11 is removed so that the remaining film rate of the methyl methacrylate-acrylonitrile copolymer is 0% in FIG. Exposure it4. OX 10-60/
Exposure amount: 1.5 x 1O, at which the residual film rate of poly(methyl isopropenyl ketone) starts to decrease from 100% from cm2
Exposure with an exposure dose between -6 C/cm2. Here 8,
Exposure was performed at an exposure amount of OX 10-'C/cm2 (
Figure 1(b)). Next, the upper layer of methacrylate, methyl chloride-acrylonitrile copolymer 1 was removed using the same electron beam 14.
1 and the lower layer poly(methyl isopropenyl ketone) 12, in Figure 2, poly(methyl isopropenyl ketone)
Exposure is performed at an exposure amount of n light amount of 6×10 −'C/cm 2 or more so that the remaining film rate is 0%. Here 1.0X10-'C/
Exposure was performed at an exposure amount of am2 (FIG. 1(C)). Thereafter, development was carried out for 5 minutes in a mixture of methyl isobutyl ketone and isopropyl alcohol (1:3) to form a T-shaped resist pattern whose shape was controlled in the depth direction (FIG. 1(d)).

この場合、レジストの深さ方向に階段状に形成された各
段差の厚みは上層部1.0pm 、下層部0.3pmと
、最初に塗布した各レジストの膜厚と正確に一妓してお
り、従来法に比べ寸法の制御性及びその再現性が大幅に
改善された。
In this case, the thickness of each step formed in a step-like manner in the depth direction of the resist is 1.0 pm in the upper layer and 0.3 pm in the lower layer, which is exactly the same as the thickness of each resist applied initially. , the controllability of dimensions and its reproducibility were significantly improved compared to the conventional method.

本実施例では感度の異なる2種類のポジ型レジストを用
いたが、そのような組合せに限らず、ネガ型レジストの
組合せ、又はポジ型レジストとネガ型レジストの組合せ
を用いても良い。また、2種類のレジストの2店塗布に
限定されるものではなく、2種類のレジストによる3層
以上の多層塗布、又は3種類以上のレジストによる多層
塗布を用いても良い。また、本実施例では露光方式とし
て電子ビーム露光を用いたが、紫外光露光、X線露光、
イオンビーム露光等信の露光方式を用いても良い。
In this embodiment, two types of positive resists with different sensitivities were used, but the combination is not limited to such a combination, and a combination of negative resists or a combination of a positive resist and a negative resist may also be used. Furthermore, the method is not limited to two-store coating using two types of resists, and multilayer coating using three or more layers of two types of resists, or multilayer coating using three or more types of resists may be used. In addition, although electron beam exposure was used as the exposure method in this example, ultraviolet light exposure, X-ray exposure,
An exposure method such as ion beam exposure may also be used.

(発明の効果) 以上説明したように、本発明によれば深さ方向に任意の
形状をもつレジストパターン形成方法において、感度の
異なるレジストを多層に塗布し、露光量を任意に変化さ
せることによって従来よりも深さ方向の寸法制御性及び
再現性が大幅に改善された。
(Effects of the Invention) As explained above, according to the present invention, in the method of forming a resist pattern having an arbitrary shape in the depth direction, resists with different sensitivities are applied in multiple layers and the exposure amount is arbitrarily changed. Dimensional controllability and reproducibility in the depth direction have been significantly improved compared to conventional methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を説明するための基板の部分
断面図、第2図は本発明の一実施例を説明するためのレ
ジストの感度特性を示す図、第3図は本発明の詳細な説
明するための基板の部分断面図、第4図は本発明の詳細
な説明するためのレジストの感度特性の一例、第5図は
従来技術を説明するための基板の部分断面図、第6図は
従来技術を説明するためのレジストの感度特性の一例で
ある。 11・・・メタクリル酸メチル−アクリロニトリル共重
合体、12・・・ポリ(メチルイソプロペニルケトン)
、13.33.52・・・基板、14・・・電子ビーム
、31・・・ポジ型レジストA132・・・ポジ型レジ
ストB、51・・・ポジ型レジスト。
FIG. 1 is a partial cross-sectional view of a substrate for explaining an embodiment of the present invention, FIG. 2 is a diagram showing sensitivity characteristics of a resist for explaining an embodiment of the present invention, and FIG. 3 is a diagram showing the sensitivity characteristics of a resist according to an embodiment of the present invention. FIG. 4 is an example of the sensitivity characteristics of a resist for explaining the present invention in detail; FIG. 5 is a partial cross-sectional view of the substrate for explaining the prior art; FIG. 6 is an example of sensitivity characteristics of a resist for explaining the prior art. 11... Methyl methacrylate-acrylonitrile copolymer, 12... Poly(methyl isopropenyl ketone)
, 13.33.52...Substrate, 14...Electron beam, 31...Positive resist A132...Positive resist B, 51...Positive resist.

Claims (1)

【特許請求の範囲】[Claims] (1)深さ方向に任意の形状を持つレジストパターン形
成方法において、被加工物上に感度の異なるレジストを
多層に塗布する工程と、異なる露光量で次いでレジスト
を現象してパターン化する工程を含むとするパターン形
成方法。
(1) A method for forming a resist pattern having an arbitrary shape in the depth direction includes a process of applying multiple layers of resist with different sensitivities onto a workpiece, and a process of patterning the resist by developing it with different exposure doses. A pattern forming method including:
JP63047717A 1988-02-29 1988-02-29 Pattern forming method Pending JPH01220829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63047717A JPH01220829A (en) 1988-02-29 1988-02-29 Pattern forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63047717A JPH01220829A (en) 1988-02-29 1988-02-29 Pattern forming method

Publications (1)

Publication Number Publication Date
JPH01220829A true JPH01220829A (en) 1989-09-04

Family

ID=12783064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63047717A Pending JPH01220829A (en) 1988-02-29 1988-02-29 Pattern forming method

Country Status (1)

Country Link
JP (1) JPH01220829A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03283434A (en) * 1990-03-29 1991-12-13 Sharp Corp Formation of electrode
JPH08186128A (en) * 1994-12-19 1996-07-16 Korea Electron Telecommun Gate formation of field-effect transistor
JPH0955429A (en) * 1995-08-10 1997-02-25 Nec Corp Semiconductor device and its manufacturing method
JP2006030971A (en) * 2004-06-15 2006-02-02 Techno Network Shikoku Co Ltd Photolithographic method
JP2020197693A (en) * 2019-05-14 2020-12-10 富士フイルム株式会社 Pattern formation method, circuit board manufacturing method, electronic device, transfer material, and laminate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03283434A (en) * 1990-03-29 1991-12-13 Sharp Corp Formation of electrode
JPH08186128A (en) * 1994-12-19 1996-07-16 Korea Electron Telecommun Gate formation of field-effect transistor
JPH0955429A (en) * 1995-08-10 1997-02-25 Nec Corp Semiconductor device and its manufacturing method
JP2006030971A (en) * 2004-06-15 2006-02-02 Techno Network Shikoku Co Ltd Photolithographic method
JP2020197693A (en) * 2019-05-14 2020-12-10 富士フイルム株式会社 Pattern formation method, circuit board manufacturing method, electronic device, transfer material, and laminate

Similar Documents

Publication Publication Date Title
US4035522A (en) X-ray lithography mask
JP2004134553A (en) Process for forming resist pattern and process for fabricating semiconductor device
JPS6323657B2 (en)
TW505976B (en) Method for forming micro-pattern of semiconductor device
KR100348902B1 (en) Method of manufacturing a gamma gate of hemt
JPH0210362A (en) Fine pattern forming method
JPH01220829A (en) Pattern forming method
JPH02252233A (en) Fine pattern forming method
JPS6147641A (en) Formation of resist pattern
US5064748A (en) Method for anisotropically hardening a protective coating for integrated circuit manufacture
JPS6239817B2 (en)
US5186788A (en) Fine pattern forming method
JPS6222463B2 (en)
JP2610402B2 (en) Method of manufacturing T-shaped gate by double exposure
JP2827992B2 (en) Method of forming fine pattern
WO1983003485A1 (en) Electron beam-optical hybrid lithographic resist process
JPH0360113A (en) Formation of resist pattern for lift-off
JPS63254729A (en) Forming method for resist pattern
JPS5892223A (en) Resist pattern formation
JPH06326018A (en) Resist structure for pattern form and pattern forming method
JP2666420B2 (en) Method for manufacturing semiconductor device
JPH01185632A (en) Mask for transfer and exposing transfer method using said mask for transfer
JPH0313949A (en) Resist pattern forming method
JPH0513325A (en) Pattern formation method
JPS6351637A (en) Mask forming method