JPH01220825A - Aligner - Google Patents
AlignerInfo
- Publication number
- JPH01220825A JPH01220825A JP63047026A JP4702688A JPH01220825A JP H01220825 A JPH01220825 A JP H01220825A JP 63047026 A JP63047026 A JP 63047026A JP 4702688 A JP4702688 A JP 4702688A JP H01220825 A JPH01220825 A JP H01220825A
- Authority
- JP
- Japan
- Prior art keywords
- polarization
- reflected
- mirror
- beam splitter
- beams
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 19
- 230000005855 radiation Effects 0.000 claims 3
- 230000010287 polarization Effects 0.000 abstract description 13
- 230000004907 flux Effects 0.000 abstract description 2
- 238000005286 illumination Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 3
- 230000010355 oscillation Effects 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Substances [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 206010041662 Splinter Diseases 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/7055—Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
- G03F7/70566—Polarisation control
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70058—Mask illumination systems
- G03F7/70208—Multiple illumination paths, e.g. radiation distribution devices, microlens illumination systems, multiplexers or demultiplexers for single or multiple projection systems
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/7055—Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
- G03F7/70583—Speckle reduction, e.g. coherence control or amplitude/wavefront splitting
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Projection-Type Copiers In General (AREA)
- Light Sources And Details Of Projection-Printing Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はパターンを転写する露光装置に関し、特にレー
ザ光源を用いてLS[パターンを対象物上に転写する露
光装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an exposure apparatus that transfers a pattern, and more particularly to an exposure apparatus that transfers an LS pattern onto an object using a laser light source.
エキシマレーザを光源とするディープUVの露光装置は
、0.5μmルール以下の細かいLSIパターンの転写
装置として注目を集めている。特に、レーザの発振波長
幅を狭くした狭帯化レーザを用い、石英のみを光学材料
とした投影レンズによってレチクルやマスク等の原版の
パターンをウェハ等の感光基板へ縮小露光する形式の装
置は早期に実用化が期待されている。A deep UV exposure device using an excimer laser as a light source is attracting attention as a transfer device for fine LSI patterns of the 0.5 μm rule or less. In particular, a device that uses a narrow-band laser with a narrow laser oscillation wavelength width and uses a projection lens made only of quartz as an optical material to reduce and expose the pattern of an original plate such as a reticle or mask onto a photosensitive substrate such as a wafer is in the early stages. It is expected that this technology will be put into practical use.
上記の形式の装置においては、エキシマレーザ光源の空
間的コヒーレンスが高い傾向にあった。In the above types of devices, the excimer laser light source tends to have high spatial coherence.
例えば、マスター、スレイプ方式のインジェクションロ
ッキングレーザを用いると発振モード数が少なく可干渉
性の高い照明光となり、ウェハ上には転写パターンと重
畳スペックルと呼ばれる不要な干渉縞が出現し易くなる
。For example, when a master-slape type injection locking laser is used, the illumination light has a small number of oscillation modes and is highly coherent, which tends to cause transfer patterns and unnecessary interference fringes called superimposed speckles to appear on the wafer.
またレーザ共振器内にエタロン(石英の平行平板の2枚
を一定間隔で設けたもの)を挿入してビーム径を大きく
保ち、発振モード数を減らさないようにした狭帯域レー
ザでも、空間的コヒーレンスは狭帯化する前の状態より
高く、特にビームの発散角の小さい方向に対しては空間
的コヒーレンスが高くて不要な干渉縞が出やすいという
問題があった。In addition, even with narrowband lasers that maintain a large beam diameter by inserting an etalon (two parallel quartz plates spaced apart at a regular interval) into the laser resonator to avoid reducing the number of oscillation modes, spatial coherence is still a problem. is higher than the state before narrowing, and there was a problem that the spatial coherence was high, especially in directions where the beam divergence angle was small, and unnecessary interference fringes were likely to appear.
上記問題点の解決の為に、本発明では露光装置にセット
された原版を照明するためのレーザビームを2つに分割
し、一方のビームをビームの進行方向に対して約90°
回転したあと、2つのビームをほぼ同軸又はほぼ平行に
重ね合わせ、この重ね合わされたビームを原版の照明に
使うように構成した。In order to solve the above problems, in the present invention, a laser beam for illuminating an original set in an exposure device is divided into two, and one beam is set at an angle of approximately 90° with respect to the direction in which the beam travels.
After rotation, the two beams were superimposed substantially coaxially or substantially parallel, and the superimposed beams were configured to be used to illuminate the original.
本発明においては、エキシマ等のレーザビームを2つに
分割したあと一方のビームを他方に対して約90”回転
して重ね合わせるので、ビームの進行方向に垂直な平面
内では直交する2方向に対する空間的コヒーレンスをほ
ぼ等しくすることができる。In the present invention, a laser beam such as an excimer is divided into two, and one beam is rotated with respect to the other by about 90'' and superimposed, so that in a plane perpendicular to the direction of travel of the beam, two orthogonal directions are Spatial coherence can be made approximately equal.
第1図は本発明の第1の実施例の構成図であり、lはス
ペクトルを狭帯化したレーザ光源、2はシリンドリカル
レンズ系を含むビームエクスパングーであり、−次元方
向のみビームを延ばすようになっている0本実施例では
y方向のみについてビーム幅を拡大している。レーザ光
源1はエタロンを共振器内部に入れた形式のものであり
、偏光はランダムである。3は偏光ビームスプリッタ−
であり、電場が紙面内にある偏光成分(P偏光)は透過
し、紙面と垂直な偏光成分(S偏光)は反射する。6も
同様の偏光ビームスプリッタ−である。4.5.7.8
.9は全反射ミラーである。FIG. 1 is a configuration diagram of the first embodiment of the present invention, where l is a laser light source with a narrowed spectrum, and 2 is a beam expander including a cylindrical lens system, which extends the beam only in the -dimensional direction. In this embodiment, the beam width is expanded only in the y direction. The laser light source 1 is of a type in which an etalon is placed inside a resonator, and the polarization is random. 3 is a polarizing beam splitter
The polarized light component (P polarized light) whose electric field is within the plane of the paper is transmitted, and the polarized light component (S polarized light) perpendicular to the plane of the paper is reflected. 6 is a similar polarizing beam splitter. 4.5.7.8
.. 9 is a total reflection mirror.
偏光ビームスプリンター3で反射したS偏光成分のビー
ムはミラー4.57反射され、偏光ビームスプリッタ−
6で反射された後、照明強度均一化光学系11に入射す
る。偏光ビームスプリッタ−3を透過したP偏光成分の
ビームはミラー7.8.9で反射されるが、ミラー7.
8.9の入射−反射面は紙面に対して45°方向に傾い
ている。すなわちミラー7.8.9が一体となって水平
な光軸C2の回りに450だけ回転している。このため
ミラー9で反射された後のビームはミラー7に入射する
前のビームに対してビーム形状が90゜回転しており、
偏光も90°回転している。従って、石英製等でできた
1/2波長板10をミラー9と偏光ビームスプリッタ−
6の間に設けるとl/2波長板を通ったと一ム15は偏
光ビームスプリッタ−6に対してはP偏光となってミラ
ー5からのS偏光のビーム14と同軸に重ね合わされて
、均一化光学系11に入射する。The S-polarized component beam reflected by the polarizing beam splitter 3 is reflected by the mirror 4.57, and is sent to the polarizing beam splitter.
After being reflected at 6, the light enters the illumination intensity uniformization optical system 11. The P-polarized component beam transmitted through the polarizing beam splitter 3 is reflected by the mirror 7.8.9.
The incident-reflection surface of 8.9 is inclined at 45° with respect to the plane of the paper. That is, the mirrors 7.8.9 are rotated together by 450 degrees around the horizontal optical axis C2. Therefore, the beam shape of the beam after being reflected by mirror 9 is rotated by 90 degrees with respect to the beam before entering mirror 7.
The polarization is also rotated by 90 degrees. Therefore, the 1/2 wavelength plate 10 made of quartz or the like is connected to the mirror 9 and the polarizing beam splitter.
6, the beam 15 passing through the 1/2 wavelength plate becomes P-polarized light for the polarizing beam splitter 6, and is superimposed coaxially with the S-polarized beam 14 from the mirror 5, making it uniform. The light enters the optical system 11.
第2図(A)、(B)、(C)は第1図におけるレーザ
ビームの各々の場所におけるビーム断面形状を示してお
り、第2図(A)は第1図中の位置A、すなわちレーザ
光′f!A1を射出した直後の出力ビームの断面であり
、−次元X方向に幅広くなっている。このビームはy方
向の方がビーム発散角が小さく、y方向の方がX方向よ
り空間的コヒーレンスは高い、第2図(B)は第1図中
の位fiB、すなわちシリンドリカル系のビームエクス
パングー2を通った後のレーザビームの断面形状であり
、x、y方向に対してほぼ同じ幅のビームとなるが、y
方向の空間コヒーレンスはX方向よりもはるかに高い状
態となる。2 (A), (B), and (C) show the beam cross-sectional shape at each location of the laser beam in FIG. 1, and FIG. 2 (A) shows the beam cross-sectional shape at each location in FIG. Laser light'f! This is a cross section of the output beam immediately after ejecting A1, and it becomes wider in the -dimensional X direction. This beam has a smaller beam divergence angle in the y direction, and higher spatial coherence in the y direction than in the This is the cross-sectional shape of the laser beam after passing through Goo 2, and the beam has approximately the same width in the x and y directions, but the y
The spatial coherence in the direction is much higher than in the X direction.
第2図(C)は第1図中の位置C1すなわち偏光ビーム
スプリッタ−6により重ね合わされた後のビームの断面
形状であり、ビーム14と15がほぼ同軸に重なってい
る。この状態ではXとyの2方向に対して空間的コヒー
レンスが等しくなる。FIG. 2(C) shows the cross-sectional shape of the beams after being superimposed at position C1 in FIG. 1, that is, the polarizing beam splitter 6, and the beams 14 and 15 are substantially coaxially superimposed. In this state, spatial coherence is equal in the two directions, X and y.
次に第1図に戻り本実施例の説明を続ける0重ね合わさ
れたビーム14.15を入射する照明強度均一化光学系
11は、フライアイレンズ等を含むとともに、スペック
ル低減の為の走査ミラー等の光学系も含んでいる。この
プライアイレンズと走査ミラーの組み合わせについて、
詳しくは特開昭59−226317号公報に開示されて
いる。Next, returning to FIG. 1 and continuing the explanation of this embodiment, an illumination intensity uniformizing optical system 11 into which the superimposed beams 14 and 15 are incident includes a fly-eye lens, etc., and a scanning mirror for speckle reduction. It also includes optical systems such as Regarding the combination of this ply eye lens and scanning mirror,
Details are disclosed in Japanese Unexamined Patent Publication No. 59-226317.
均一化光学系11を射出した光束は反射ミラー12、コ
ンデンサーレンズ13を介して原版であるレチクルRを
均一な照度で照明し、投影レンズLはレチクル只の下側
にあるパターンの像をウェハW上面の感光層上に形成す
るようになっている。The light flux emitted from the homogenizing optical system 11 passes through a reflection mirror 12 and a condenser lens 13 to illuminate the original reticle R with uniform illuminance, and the projection lens L projects an image of the pattern on the underside of the reticle onto the wafer W. It is designed to be formed on the upper photosensitive layer.
以上、本実施例では、レーザ光源1、ビームエクスパン
ダー2、ビームスプリッタ−3,6、ミラー4.5.7
.8.9及び1/2波長板10によって露光装置用の照
明系が構成される。As described above, in this embodiment, the laser light source 1, beam expander 2, beam splitters 3, 6, mirrors 4.5.7
.. 8.9 and the 1/2 wavelength plate 10 constitute an illumination system for the exposure apparatus.
以上の第1の実施例ではエタロンを用いて偏光のランダ
ムなビームを射出するレーザ光源lを用いたが、次にプ
リズムやグレーティングのような偏光特性の顕著な分散
素子を用いてスペクトルを狭帯化したレーザ光源を用い
た場合に最適な例を第2の実施例として述べる。In the first embodiment described above, a laser light source l that emits a randomly polarized beam using an etalon is used, but next, a dispersive element with remarkable polarization characteristics such as a prism or grating is used to narrow the spectrum. A second embodiment will be described as an optimal example when using a laser light source of this type.
第2の実施例ではレーザ光源1の出力ビームが一方向に
偏光している。この場合、第1の実施例における偏光ビ
ームスプリンタ3を偏光特性を持たずに反射光と透過光
の強度比を1:1にするようなビームスプリッタ−に替
えて、1/2波長板lOは取り除けばよい。In the second embodiment, the output beam of the laser light source 1 is polarized in one direction. In this case, the polarizing beam splitter 3 in the first embodiment is replaced with a beam splitter that does not have polarization characteristics and makes the intensity ratio of reflected light and transmitted light 1:1, and the 1/2 wavelength plate 10 is used. Just remove it.
第1と第2の実施例の説明においては、ビームエクスパ
ンダ−2をビームスプリッタ−3の前に設けたが、特に
なくてもよいし、またビームスプリッタ−6の後に入れ
てもよい。In the description of the first and second embodiments, the beam expander 2 is provided in front of the beam splitter 3, but it may not be provided or may be provided after the beam splitter 6.
また、照明強度均一化光学系11はビームスプリンター
6の後としたが、スペックル低減用の光学系(走査ミラ
ー、フライアイレンズ、ファイバー等)をビームスプリ
ッタ−3の前に入れた方が、空間的コヒーレンスの低減
のためには良い結果を生むことがある。Although the illumination intensity uniformization optical system 11 was placed after the beam splitter 6, it would be better to place an optical system for speckle reduction (scanning mirror, fly-eye lens, fiber, etc.) before the beam splitter 3. It may yield good results for reducing spatial coherence.
ビームを90°回転して重ね合わせる剥取外に、例えば
ビームを3本に分け120°、240’の回転を与えた
ビームを元の回転しないビームと重ね合わせる例等も考
えられるが、この場合は重ね合わせする場合のエネルギ
ー損失が大きくなることは避けられないが空間的コヒー
レンスの方向性をなくすことに対しては効果がある。従
って、このように3つのビームに分割することも、本発
明の一実施例として含まれるものである。In addition to stripping the beam by rotating it by 90 degrees and overlapping it, for example, it is possible to divide the beam into three parts and rotate the beam by 120 degrees and 240' and then overlap it with the original non-rotated beam. Although it is unavoidable that the energy loss increases when superimposing the elements, it is effective in eliminating the directionality of spatial coherence. Therefore, dividing into three beams in this manner is also included as an embodiment of the present invention.
以上の第1及び第2の実施例では、2つに分けたビーム
を再び重ね合わせる手法として、偏光ビームスプリッタ
−6を用いたが、その代わりに部分的反射鏡を用いると
安価で偏光の方向に依存しない光学配置が可能となる。In the first and second embodiments described above, the polarizing beam splitter 6 was used as a method of superimposing the two divided beams again, but it is possible to use a partial reflecting mirror instead at a low cost and to change the polarization direction. This makes it possible to create an optical arrangement that does not depend on the
第3図は本発明の第3の実施例による露光装置の構成を
示し、第1図で示したビームスプリンター6の代わりに
、本発明の重ね合わせ手段としての部分鏡20が設けら
れ、この部分鏡20で直角に反射された元の回転しない
ビーム14と、部分鏡20の脇を透過した90”回転の
ビーム15とは互いに同軸ではなく、ほぼ平行に均一化
光学系11に入射する。その他、1/2波長板10が省
略される以外の構成は第1図のものと同じである。FIG. 3 shows the configuration of an exposure apparatus according to a third embodiment of the present invention, in which a partial mirror 20 as a superimposing means of the present invention is provided in place of the beam splinter 6 shown in FIG. The original non-rotated beam 14 reflected at right angles by the mirror 20 and the 90'' rotated beam 15 transmitted through the side of the partial mirror 20 are not coaxial with each other, but enter the homogenizing optical system 11 almost parallel to each other.Others , the configuration is the same as that of FIG. 1 except that the 1/2 wavelength plate 10 is omitted.
本実施例の場合、投影レンズLの光軸とビーム14.1
5の各中心軸とは偏心したものになる。In the case of this embodiment, the optical axis of the projection lens L and the beam 14.1
It is eccentric to each central axis of 5.
第4図(A)、(B)、(C)は第3図中の位置A、B
、Cの各々におけるビームの断面形状を示し、位置A、
Bでの断面形状はともに第2図(A)、(B)と同じで
ある。ところが本実施例では第4図(C)に示すように
、たがいに90@回転したビーム14と15は第3図中
の部分鏡20の直後の位置Cにおいて、互いにy方向に
ほぼビームの幅寸性分だけ同軸から偏心しており、ビー
ム14.15は互いに重畳しないようになっている0本
実施例では第4図(C)に示すように均一化光学系11
に入射するビーム14.15の全体的な断面形状は正方
形とはならないが、ビーム14.15が均一化光学系1
1に入射する手前(位置C)に、−次元方向のビームエ
クスパンダー(シリンドリカルレンズ)を設け、ビーム
14.15の全体形状を再び正方形に近いものにするこ
ともできる。Figure 4 (A), (B), and (C) are positions A and B in Figure 3.
, C shows the cross-sectional shape of the beam at each position A,
The cross-sectional shape at B is the same as in FIGS. 2(A) and 2(B). However, in this embodiment, as shown in FIG. 4(C), the beams 14 and 15 rotated by 90@ are approximately the width of each other in the y direction at position C immediately after the partial mirror 20 in FIG. The beams 14 and 15 are eccentric from the same axis by a certain amount, so that the beams 14 and 15 do not overlap with each other. In this embodiment, as shown in FIG.
Although the overall cross-sectional shape of the beam 14.15 incident on the beam 14.15 is not square, the beam 14.15 enters the homogenizing optical system 1.
It is also possible to provide a beam expander (cylindrical lens) in the -dimensional direction before the beams 14 and 15 enter the beams 14 and 15 (position C), thereby making the overall shape of the beams 14 and 15 nearly square again.
以上、本発明の第1、第2、第3の実施例では、さらに
ビームを分割したあと、分割され複数のビームを相対的
に回転させてから再び同一方向に進むビームに合成する
照明系を、レーザ光源1とレチクル(被照射部)Rとの
間に2重又はそれ以上直列に順次配置して、さらにスペ
ックルの低減を計るようにしてもよい、さらに以上の各
実施例においてはエキシマレーザを用いるものと仮定し
ているが、他の固体レーザや気体レーザを用いた場合で
も同様の効果を得ることができるし、狭帯化レーザでな
く、元来狭帯域発振する種類のアルゴンイオンレーザ等
のレーザ光源を用いた各種装置の場合にも適用できる。As described above, in the first, second, and third embodiments of the present invention, the illumination system further divides the beam, rotates the divided beams relatively, and then combines them into a beam traveling in the same direction again. , the excimer may be arranged in series between the laser light source 1 and the reticle (irradiated area) R to further reduce speckles. Although it is assumed that a laser is used, similar effects can be obtained using other solid-state lasers or gas lasers, and argon ion, which is a type of argon ion that originally oscillates in a narrow band, can be used instead of a narrow band laser. It can also be applied to various devices using laser light sources such as lasers.
また、露光装置のタイプとして投影露光だけでなく、プ
ロキシシティやコンタクトの露光装置にも本発明は適用
可能である。Furthermore, the present invention is applicable not only to projection exposure type exposure apparatuses but also to proxy city and contact type exposure apparatuses.
また、本発明の各実施例では露光装置へ応用することを
前提としたが、同様の問題点を有するレーザ光源を物体
面の観察用の照明系として使って、物体面上の微小構造
をテレビカメラ等で拡大観察するアライメント装置、ウ
ェハ検査装置においても全く同様に応用できる。In addition, although each embodiment of the present invention is premised on application to an exposure device, it is also possible to use a laser light source, which has similar problems, as an illumination system for observing the object surface to visualize microstructures on the object surface on a television. It can be applied in exactly the same way to alignment equipment and wafer inspection equipment that perform magnified observation using a camera or the like.
以上の様に本発明によれば、ビームの進行方向に垂直な
平面内における空間的コヒーレンスが直交する2方向に
対して等しくなり、投影されるパターンの縦と横の方向
に対する像質が等しくなるという効果がある。すなわち
ビームによって証明される領域の2次元的な方向(x、
y)について、良好にスペックルが低減されるといった
効果が得られる。As described above, according to the present invention, the spatial coherence in the plane perpendicular to the beam traveling direction is equal in two orthogonal directions, and the image quality of the projected pattern in the vertical and horizontal directions is equal. There is an effect. That is, the two-dimensional direction (x,
Regarding y), the effect of satisfactorily reducing speckles can be obtained.
また本発明の実施例に述べたように偏光特性の違いを利
用してビームを分割して重ね合わせるとビームのエネル
ギー損失が小さいという特徴もある。Furthermore, as described in the embodiments of the present invention, when the beams are divided and superimposed by utilizing the difference in polarization characteristics, the energy loss of the beams is reduced.
第1図は本発明の第1の実施例による照明系を備えた露
光装置の構成を示す図、第2図は第1図中のレーザビー
ムの各位置におけるビーム形状を示す図、第3図は本発
明の第3の実施例による照明系を備えた露光装置の構成
を示す図、第4図は第3図中のレーザビームの各位置に
おけるビーム形状を示す図である。
(主要部分の符号の説明〕
■・・・レーザ光源、 2・・・ビームエクスパング
ー、3.6・・・偏光ビームスプリッタ−14,5,7
,8,9・・・ミラー、FIG. 1 is a diagram showing the configuration of an exposure apparatus equipped with an illumination system according to a first embodiment of the present invention, FIG. 2 is a diagram showing the beam shape at each position of the laser beam in FIG. 1, and FIG. 4 is a diagram showing the configuration of an exposure apparatus equipped with an illumination system according to a third embodiment of the present invention, and FIG. 4 is a diagram showing the beam shape at each position of the laser beam in FIG. 3. (Explanation of symbols of main parts) ■...Laser light source, 2...Beam expander, 3.6...Polarizing beam splitter-14, 5, 7
,8,9...mirror,
Claims (1)
原版上のパターンを対象物上に転移させる装置において
、 前記光源と前記原版の間に設けられて、前記放射ビーム
を少なくとも2つに分割する分割手段と;該分割された
ビームの少なくとも一方をビームの進行方向を中心に回
転させ、分割された他方のビームに対してほぼ直交する
方向に回転したビームに変換する回転手段と;ほぼ直交
した2つのビームを重ね合わせる重ね合わせ手段とを備
え、該重ね合わされたビームの光軸と垂直な面内におけ
る光学的特性を互いに直交する方向に対して略等しくし
たことを特徴とする露光装置。[Scope of Claims] A light source that emits a radiation beam, and a device that transfers a pattern on an original onto an object using the radiation beam, the device being provided between the light source and the original to emit at least two radiation beams. a rotating means for rotating at least one of the divided beams around the traveling direction of the beam and converting it into a beam rotated in a direction substantially orthogonal to the other divided beam; a superimposing means for superimposing two substantially orthogonal beams, and the optical characteristics of the superimposed beams in a plane perpendicular to the optical axis are made substantially equal to each other in directions orthogonal to each other. Exposure equipment.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63047026A JP2536023B2 (en) | 1988-02-29 | 1988-02-29 | Exposure apparatus and exposure method |
US07/313,472 US5048926A (en) | 1988-02-29 | 1989-02-22 | Illuminating optical system in an exposure apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63047026A JP2536023B2 (en) | 1988-02-29 | 1988-02-29 | Exposure apparatus and exposure method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01220825A true JPH01220825A (en) | 1989-09-04 |
JP2536023B2 JP2536023B2 (en) | 1996-09-18 |
Family
ID=12763664
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63047026A Expired - Fee Related JP2536023B2 (en) | 1988-02-29 | 1988-02-29 | Exposure apparatus and exposure method |
Country Status (2)
Country | Link |
---|---|
US (1) | US5048926A (en) |
JP (1) | JP2536023B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1172905A (en) * | 1997-06-27 | 1999-03-16 | Toshiba Corp | Photomask repair method, inspection method, inspection apparatus and photomask production |
JP2001274081A (en) * | 1999-11-17 | 2001-10-05 | Applied Materials Inc | Method and apparatus for article inspection including speckle reduction |
KR20030017835A (en) * | 2001-08-23 | 2003-03-04 | 주식회사 덕인 | A SLS process and apparatus using rotational mask pattern |
US6597430B1 (en) | 1998-05-18 | 2003-07-22 | Nikon Corporation | Exposure method, illuminating device, and exposure system |
US6849363B2 (en) | 1997-06-27 | 2005-02-01 | Kabushiki Kaisha Toshiba | Method for repairing a photomask, method for inspecting a photomask, method for manufacturing a photomask, and method for manufacturing a semiconductor device |
WO2012070651A1 (en) * | 2010-11-26 | 2012-05-31 | 大日本印刷株式会社 | Exposure equipment |
KR20220004214A (en) * | 2019-06-20 | 2022-01-11 | 사이머 엘엘씨 | output light beam forming device |
Families Citing this family (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5307207A (en) * | 1988-03-16 | 1994-04-26 | Nikon Corporation | Illuminating optical apparatus |
US5153773A (en) * | 1989-06-08 | 1992-10-06 | Canon Kabushiki Kaisha | Illumination device including amplitude-division and beam movements |
JPH04218015A (en) * | 1990-07-27 | 1992-08-07 | Victor Co Of Japan Ltd | Polarization conversion element and dislay device |
US5638211A (en) | 1990-08-21 | 1997-06-10 | Nikon Corporation | Method and apparatus for increasing the resolution power of projection lithography exposure system |
US7656504B1 (en) | 1990-08-21 | 2010-02-02 | Nikon Corporation | Projection exposure apparatus with luminous flux distribution |
US6710855B2 (en) | 1990-11-15 | 2004-03-23 | Nikon Corporation | Projection exposure apparatus and method |
US6967710B2 (en) | 1990-11-15 | 2005-11-22 | Nikon Corporation | Projection exposure apparatus and method |
US5719704A (en) * | 1991-09-11 | 1998-02-17 | Nikon Corporation | Projection exposure apparatus |
US6252647B1 (en) | 1990-11-15 | 2001-06-26 | Nikon Corporation | Projection exposure apparatus |
US6897942B2 (en) * | 1990-11-15 | 2005-05-24 | Nikon Corporation | Projection exposure apparatus and method |
US6885433B2 (en) * | 1990-11-15 | 2005-04-26 | Nikon Corporation | Projection exposure apparatus and method |
US6411377B1 (en) * | 1991-04-02 | 2002-06-25 | Hitachi, Ltd. | Optical apparatus for defect and particle size inspection |
JP2796005B2 (en) * | 1992-02-10 | 1998-09-10 | 三菱電機株式会社 | Projection exposure apparatus and polarizer |
JP2946950B2 (en) * | 1992-06-25 | 1999-09-13 | キヤノン株式会社 | Illumination apparatus and exposure apparatus using the same |
KR0148695B1 (en) * | 1992-08-08 | 1998-09-15 | 강진구 | Picture quality improving apparatus for video camera |
US6404482B1 (en) | 1992-10-01 | 2002-06-11 | Nikon Corporation | Projection exposure method and apparatus |
US5459000A (en) * | 1992-10-14 | 1995-10-17 | Canon Kabushiki Kaisha | Image projection method and device manufacturing method using the image projection method |
US5534970A (en) * | 1993-06-11 | 1996-07-09 | Nikon Corporation | Scanning exposure apparatus |
US5581348A (en) * | 1993-07-29 | 1996-12-03 | Canon Kabushiki Kaisha | Surface inspecting device using bisected multi-mode laser beam and system having the same |
US5453814A (en) * | 1994-04-13 | 1995-09-26 | Nikon Precision Inc. | Illumination source and method for microlithography |
US5621529A (en) * | 1995-04-05 | 1997-04-15 | Intelligent Automation Systems, Inc. | Apparatus and method for projecting laser pattern with reduced speckle noise |
FR2771186B1 (en) * | 1997-11-18 | 2001-11-02 | Thomson Multimedia Sa | MIRROR DEVICE TO ROTATE THE POLARIZATION OF AN ELECTROMAGNETIC SIGNAL |
US6930754B1 (en) * | 1998-06-30 | 2005-08-16 | Canon Kabushiki Kaisha | Multiple exposure method |
US6529333B1 (en) * | 2001-09-24 | 2003-03-04 | Kulicke & Soffa Investments, Inc. | Multi-color machine vision system |
US6870684B2 (en) * | 2001-09-24 | 2005-03-22 | Kulicke & Soffa Investments, Inc. | Multi-wavelength aperture and vision system and method using same |
JP2003234527A (en) * | 2002-02-06 | 2003-08-22 | Acterna R & D Kk | Wavelength variable light source device |
DE10245229A1 (en) * | 2002-09-27 | 2004-04-01 | Carl Zeiss Microelectronic Systems Gmbh | Arrangement for reducing the coherence of a light beam |
DE10245231A1 (en) * | 2002-09-27 | 2004-04-01 | Carl Zeiss Microelectronic Systems Gmbh | Arrangement for reducing coherence |
DE10245102A1 (en) * | 2002-09-27 | 2004-04-08 | Carl Zeiss Jena Gmbh | lighting device |
KR100542735B1 (en) * | 2003-04-22 | 2006-01-11 | 삼성전자주식회사 | Beam delivery system and wafer edge exposure apparatus having the same |
DE10335670A1 (en) * | 2003-08-04 | 2005-03-03 | Carl Zeiss Sms Gmbh | coherence-reducing |
US7405808B2 (en) * | 2003-12-19 | 2008-07-29 | Carl Zeiss Smt Ag | Optical system, in particular illumination system, of a microlithographic projection exposure apparatus |
US20050207711A1 (en) * | 2004-03-19 | 2005-09-22 | Vo Chanh C | Optical termination pedestal |
EP1828845A2 (en) * | 2004-12-01 | 2007-09-05 | Carl Zeiss SMT AG | Projection exposure system, beam delivery system and method of generating a beam of light |
US20090034071A1 (en) * | 2007-07-31 | 2009-02-05 | Dean Jennings | Method for partitioning and incoherently summing a coherent beam |
US8798427B2 (en) * | 2007-09-05 | 2014-08-05 | Corning Cable Systems Llc | Fiber optic terminal assembly |
US20090211171A1 (en) * | 2008-02-25 | 2009-08-27 | Timothy Frederick Summers | Multi-dwelling unit multipurpose signal distribution apparatus |
DE102008024697B4 (en) * | 2008-05-21 | 2014-02-27 | Limo Patentverwaltung Gmbh & Co. Kg | Device for homogenizing at least partially coherent laser light |
JP5319766B2 (en) * | 2008-06-20 | 2013-10-16 | カール・ツァイス・エスエムティー・ゲーエムベーハー | Optical system of microlithography projection exposure apparatus and microlithography exposure method |
EP2344915A4 (en) * | 2008-10-09 | 2015-01-21 | Corning Cable Sys Llc | Fiber optic terminal having adapter panel supporting both input and output fibers from an optical splitter |
US8879882B2 (en) * | 2008-10-27 | 2014-11-04 | Corning Cable Systems Llc | Variably configurable and modular local convergence point |
EP2237091A1 (en) * | 2009-03-31 | 2010-10-06 | Corning Cable Systems LLC | Removably mountable fiber optic terminal |
US8467651B2 (en) | 2009-09-30 | 2013-06-18 | Ccs Technology Inc. | Fiber optic terminals configured to dispose a fiber optic connection panel(s) within an optical fiber perimeter and related methods |
US9547144B2 (en) | 2010-03-16 | 2017-01-17 | Corning Optical Communications LLC | Fiber optic distribution network for multiple dwelling units |
US8792767B2 (en) | 2010-04-16 | 2014-07-29 | Ccs Technology, Inc. | Distribution device |
US9164397B2 (en) * | 2010-08-03 | 2015-10-20 | Kla-Tencor Corporation | Optics symmetrization for metrology |
AU2011317244A1 (en) | 2010-10-19 | 2013-05-23 | Corning Cable Systems Llc | Transition box for multiple dwelling unit fiber optic distribution network |
US9219546B2 (en) | 2011-12-12 | 2015-12-22 | Corning Optical Communications LLC | Extremely high frequency (EHF) distributed antenna systems, and related components and methods |
US10110307B2 (en) | 2012-03-02 | 2018-10-23 | Corning Optical Communications LLC | Optical network units (ONUs) for high bandwidth connectivity, and related components and methods |
US9004778B2 (en) | 2012-06-29 | 2015-04-14 | Corning Cable Systems Llc | Indexable optical fiber connectors and optical fiber connector arrays |
US9049500B2 (en) | 2012-08-31 | 2015-06-02 | Corning Cable Systems Llc | Fiber optic terminals, systems, and methods for network service management |
US8909019B2 (en) | 2012-10-11 | 2014-12-09 | Ccs Technology, Inc. | System comprising a plurality of distribution devices and distribution device |
CN104656380B (en) * | 2015-03-13 | 2017-11-24 | 京东方科技集团股份有限公司 | A kind of exposure device and light path control device |
WO2018219639A1 (en) * | 2017-06-02 | 2018-12-06 | Asml Netherlands B.V. | Metrology apparatus |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4053898A (en) * | 1974-09-13 | 1977-10-11 | Canon Kabushiki Kaisha | Laser recording process |
US4355871A (en) * | 1980-07-14 | 1982-10-26 | Diversitronics, Inc. | Keratometer |
US4601575A (en) * | 1981-03-03 | 1986-07-22 | Tokyo Kogaku Kikai Kabushiki Kaisha | Apparatus for measuring the characteristics of an optical system |
US4619508A (en) * | 1984-04-28 | 1986-10-28 | Nippon Kogaku K. K. | Illumination optical arrangement |
US4669088A (en) * | 1984-10-15 | 1987-05-26 | Rockwell International Corporation | Off-axis unstable ring resonator with 90 degree beam rotator |
US4769750A (en) * | 1985-10-18 | 1988-09-06 | Nippon Kogaku K. K. | Illumination optical system |
-
1988
- 1988-02-29 JP JP63047026A patent/JP2536023B2/en not_active Expired - Fee Related
-
1989
- 1989-02-22 US US07/313,472 patent/US5048926A/en not_active Expired - Lifetime
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1172905A (en) * | 1997-06-27 | 1999-03-16 | Toshiba Corp | Photomask repair method, inspection method, inspection apparatus and photomask production |
US6849363B2 (en) | 1997-06-27 | 2005-02-01 | Kabushiki Kaisha Toshiba | Method for repairing a photomask, method for inspecting a photomask, method for manufacturing a photomask, and method for manufacturing a semiconductor device |
US6597430B1 (en) | 1998-05-18 | 2003-07-22 | Nikon Corporation | Exposure method, illuminating device, and exposure system |
JP2001274081A (en) * | 1999-11-17 | 2001-10-05 | Applied Materials Inc | Method and apparatus for article inspection including speckle reduction |
KR20030017835A (en) * | 2001-08-23 | 2003-03-04 | 주식회사 덕인 | A SLS process and apparatus using rotational mask pattern |
WO2012070651A1 (en) * | 2010-11-26 | 2012-05-31 | 大日本印刷株式会社 | Exposure equipment |
JP2012114358A (en) * | 2010-11-26 | 2012-06-14 | Dainippon Printing Co Ltd | Exposure device |
KR20220004214A (en) * | 2019-06-20 | 2022-01-11 | 사이머 엘엘씨 | output light beam forming device |
CN114008873A (en) * | 2019-06-20 | 2022-02-01 | 西默有限公司 | Output beam forming apparatus |
JP2022537886A (en) * | 2019-06-20 | 2022-08-31 | サイマー リミテッド ライアビリティ カンパニー | output light beam former |
CN114008873B (en) * | 2019-06-20 | 2024-05-24 | 西默有限公司 | Output beam forming apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP2536023B2 (en) | 1996-09-18 |
US5048926A (en) | 1991-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH01220825A (en) | Aligner | |
JP3627762B2 (en) | Irradiation light source and irradiation method for microlithography | |
JPS63159837A (en) | Illuminator | |
JPH02142111A (en) | Lighting method and device therefor and projection type exposure method and device therefor | |
JP2590510B2 (en) | Lighting equipment | |
JP4178098B2 (en) | Optical system for projecting a pattern formed on a reticle onto a wafer, method for forming an image on a wafer, and method for optically transferring an image of a pattern onto a wafer | |
JPH11312631A (en) | Illuminating optical device and aligner | |
JP2619473B2 (en) | Reduction projection exposure method | |
KR101109354B1 (en) | System for reducing the coherence of laser radiation | |
JP2969718B2 (en) | Illumination device and circuit manufacturing method using the same | |
JPH03208387A (en) | Higher harmonic generator for laser beam and aligner | |
JP2565134B2 (en) | Lighting optics | |
JPH01292821A (en) | Optical apparatus | |
JPH11174365A (en) | Illumination optical device, exposure device provided therewith and exposure method | |
JP3452057B2 (en) | Laser beam harmonic generation apparatus, exposure apparatus using the same, laser beam harmonic generation method, exposure method using the same, and device manufacturing method using the same | |
JPH0666246B2 (en) | Illumination optics | |
JP2007227973A (en) | Optical delay element, illumination optical device, exposure device and method, and method for manufacturing semiconductor device | |
JPH1062710A (en) | Illumination optical system | |
JP2679337B2 (en) | Illumination optical device, exposure apparatus including the same, and exposure method | |
JP2679319B2 (en) | Illumination device, exposure apparatus including the same, and exposure method | |
JP2770984B2 (en) | Illumination apparatus, projection exposure apparatus, and element manufacturing method | |
JPH01235289A (en) | Lighting equipment | |
JPS60168133A (en) | Illuminating optical device | |
JPS6225483A (en) | Illuminating device | |
JP2000223405A (en) | Illuminating optical device and projection aligner provided therewith |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |