JPH01220738A - Vibration isolator encapsulating variable viscosity fluid - Google Patents

Vibration isolator encapsulating variable viscosity fluid

Info

Publication number
JPH01220738A
JPH01220738A JP4529288A JP4529288A JPH01220738A JP H01220738 A JPH01220738 A JP H01220738A JP 4529288 A JP4529288 A JP 4529288A JP 4529288 A JP4529288 A JP 4529288A JP H01220738 A JPH01220738 A JP H01220738A
Authority
JP
Japan
Prior art keywords
vibration
control level
fluid
orifice
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4529288A
Other languages
Japanese (ja)
Inventor
Shigeki Sato
茂樹 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP4529288A priority Critical patent/JPH01220738A/en
Publication of JPH01220738A publication Critical patent/JPH01220738A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/26Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper characterised by adjusting or regulating devices responsive to exterior conditions
    • F16F13/30Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper characterised by adjusting or regulating devices responsive to exterior conditions comprising means for varying fluid viscosity, e.g. of magnetic or electrorheological fluids

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Combined Devices Of Dampers And Springs (AREA)

Abstract

PURPOSE:To perform fine control and to reduce vibration transmitting force considerably by setting the control level for switching damping for every peak of vibration acceleration of a supporting member through a control level setting means thereby controlling the voltage to be applied onto an electrode orifice. CONSTITUTION:A control level setting means (h) sets the control level for switching damping randomly for every peak of vibration corresponding to the magnitude of vibration acceleration of a supporting member (b) detected through an acceleration sensor (g). Voltage to be applied onto an electrode orifice (e) constituting a CR system between an exciting body (a) and the supporting body (b) is controlled based on the control level set through the control level setting means (h) thus varying the viscosity of electrical rheology fluid communicating between a main fluid chamber (d) and a sub-fluid chamber (f) having variable volume. By such arrangement, fine control is made for each vibration peak even when the supporting member exhibits a complex vibration mode, resulting in considerable reduction of the entire vibration transmitting force.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、印加電圧に応じて粘度変化される電気レオロ
ジー流体を封入して、主流体室と副流体室間に設!2ら
れるオリフィス内の流体粘度を制御することができる粘
度可変流体封入式防振体に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is characterized in that an electrorheological fluid whose viscosity changes depending on an applied voltage is sealed between a main fluid chamber and a sub-fluid chamber. The present invention relates to a variable viscosity fluid-filled vibration isolator that can control the viscosity of a fluid within an orifice.

従来の技術 この種の粘度可変流体封入式防振体としては、たとえば
特開昭60−104828号公報に開示されたものが知
られており、1対の流体室内に電気レオロジー流体を封
入してオリフィス内の流体粘度を変化させることにより
、該オリフィス内の流れ状態が変化されて制振周波数領
域の調整が可能となっている。
2. Description of the Related Art As this type of variable viscosity fluid-filled vibration isolator, for example, one disclosed in Japanese Patent Laid-Open No. 104828/1982 is known, in which an electrorheological fluid is sealed in a pair of fluid chambers. By changing the viscosity of the fluid within the orifice, the flow conditions within the orifice are changed and the damping frequency range can be adjusted.

従って、かかる粘度可変流体封入式防振体にあっては、
制振周波数領域を調整するにあたってオリフィス内の電
気レオロジー流体に印加される電王を単に変化させれば
よく、この構成を著しく簡単化することができる。
Therefore, in such a variable viscosity fluid-filled vibration isolator,
To adjust the damping frequency range, it is sufficient to simply change the electric power applied to the electrorheological fluid within the orifice, thereby significantly simplifying the configuration.

発明が解決しようとする課題 しかしながら、かかる従来の粘度可変流体封入式防振体
にあっては、該防振体を介して伝達される振動は、支持
弾性体からの人力と、流体空間をオリフィスを介して流
体移動される際の拡張弾性からの入力との位相が、該オ
リフィス内流体を質量とするダイナミックダンパ作用に
より06〜1801まで変化する為、単に防振体を1自
由度系の振動モデルとして制御しても十分な振動伝達力
の低減を行うことはできない。
Problems to be Solved by the Invention However, in such a conventional vibration isolator filled with a variable viscosity fluid, the vibrations transmitted through the vibration isolator are caused by human force from the supporting elastic body and the fluid space through the orifice. Since the phase with the input from the expansion elasticity when the fluid is moved through the orifice changes from 06 to 1801 due to the dynamic damper action using the fluid in the orifice as a mass, the vibration isolator is simply vibrated in a one-degree-of-freedom system. Even if controlled as a model, it is not possible to sufficiently reduce the vibration transmission force.

特に、上記粘度可変流体封入式防振体を自動車のエンジ
ンマウントに適用した場合、複数のエンジンマウントで
支持されるパワーユニットが複雑な振動を行うために、
振動伝達力の低減は更に期待できなくなってしまうとい
う問題点があった。
In particular, when the variable viscosity fluid-filled vibration isolator is applied to an automobile engine mount, the power unit supported by multiple engine mounts generates complex vibrations.
There is a problem in that it becomes difficult to expect further reduction in the vibration transmission force.

そこで、本発明は防振体を介して振動が入力される側の
振動を予測して、各振動毎にオリフィス内の減衰率を制
御することにより、振動伝達力の減衰効果を著しく向上
できる粘度可変流体封入式防振体を提供することを目的
とする。
Therefore, the present invention predicts the vibrations on the side where vibrations are input through the vibration isolator and controls the damping rate in the orifice for each vibration. An object of the present invention is to provide a variable fluid-filled vibration isolator.

課題を解決するための手段 かかる目的を達成するために本発明は第1図に示すよう
に、加振体(λ)と支持体(b)との間に配置される弾
性体(e)と、該弾性体(c)と並列配置され、入力振
動により容積変化される主流体室(d)および該主流体
室(d)と電極オリフィス(e)を介して連通され容積
可変な副^体室(f)とを備え、これら主、副流体室(
d)。
Means for Solving the Problems In order to achieve the above objects, the present invention, as shown in FIG. , a main fluid chamber (d) arranged in parallel with the elastic body (c) and whose volume changes due to input vibration, and a sub-body whose volume is variable and communicates with the main fluid chamber (d) via an electrode orifice (e). chamber (f), and these main and auxiliary fluid chambers (
d).

(f)内に印加電圧に応じて粘度変化される電気レオロ
ジー流体を封入して、上記電極オリフィス(e)に印加
される電圧値によってオリフィス内の減衰率が変化され
る粘度可変流体封入式防振体において、 上記支持体(b)に加振される振動加速度を検出する加
速度センサ(g)と、 該加速度センサ(g)で得られた入力信号の大きさに応
じて各ピーク毎に任意に減衰切り換え用制御レベルを設
定する制御レベル設定手段(h)とを設け、 該制御レベル設定手段(h)で得られた減衰切り換え用
制御レベルに応じて上記電極オリフィス(e)に印加す
る電圧を制御することにより構成する。
(f) is filled with an electrorheological fluid whose viscosity changes according to the applied voltage, and whose attenuation rate inside the orifice changes according to the voltage applied to the electrode orifice (e). In the vibrator, an acceleration sensor (g) that detects the vibration acceleration applied to the support (b), and an arbitrary signal for each peak depending on the magnitude of the input signal obtained by the acceleration sensor (g) are provided. and a control level setting means (h) for setting a control level for attenuation switching, and a voltage applied to the electrode orifice (e) according to the attenuation switching control level obtained by the control level setting means (h). It is configured by controlling the

作用 以上の構成により本発明の粘度可変流体封入式防振体に
あっては、加速度センサ(g)で検出された支持体(b
)の振動加速度の大きさに応じて、制御レベル設定手段
(h)が振動の各ピーク毎に任意に減衰切り換え用制御
レベルを設定し、これに基づいて印加電圧が制御される
ため、支持体が複雑な振動モードを呈した場合にも、各
振動ピーク値に沿ったきめ細かい制御が可能となるため
、全体の振動伝達力が著しく低減されることになる。
Effect With the structure described above, in the variable viscosity fluid-filled vibration isolator of the present invention, the support body (b) detected by the acceleration sensor (g)
), the control level setting means (h) arbitrarily sets a damping switching control level for each vibration peak, and the applied voltage is controlled based on this. Even when the vibration mode exhibits a complex vibration mode, fine control along each vibration peak value is possible, so the overall vibration transmission force is significantly reduced.

実施例 以下、本発明の実施例を図に基づいて詳細に説明する。Example Hereinafter, embodiments of the present invention will be described in detail based on the drawings.

第2図は本発明の粘度可変流体封入式防振体の一実施例
を示し、該粘度可変流体封入式防振体を自動車のエンジ
ンマウントlOとして用いた場合に例をとって以下述べ
る。
FIG. 2 shows an embodiment of the variable viscosity fluid-filled vibration isolator of the present invention, and an example in which the variable viscosity fluid-filled vibration isolator is used as an engine mount 10 of an automobile will be described below.

即ち、上記エンジンマウント10は、エンジン。That is, the engine mount 10 is an engine.

トランスミッション等の結合体である支持体としてのパ
ワーユニットM側にボルト12を介して取り付けられる
第1枠体14と、加振体としての車体B側にボルト16
を介して取り付けられる第2枠体18と、これら第1.
第2枠体14.18間に液密的に固着される弾性体とし
ての中空状のゴムインシュレータ20とを備えている。
A first frame body 14 is attached via bolts 12 to the power unit M side as a support body which is a combination of a transmission, etc., and a bolt 16 is attached to the vehicle body B side as an excitation body.
The second frame body 18 is attached via the first frame body 18, and the second frame body 18 is attached via the first frame body 18.
It includes a hollow rubber insulator 20 as an elastic body fixed liquid-tightly between the second frames 14 and 18.

上記ゴムインシュレータ20の中空部22内は、第1枠
体14側に固定される断面逆台形状の仕切板24によっ
て、第1.第2枠体14.18の対向方向に隔成され、
該仕切板24で隔成された第2枠体18側(図中下方)
の室が主流体室26とされる。
The inside of the hollow part 22 of the rubber insulator 20 is separated by a partition plate 24 having an inverted trapezoidal cross section and fixed to the first frame 14 side. spaced apart in the opposite direction of the second frame 14.18;
The second frame 18 side separated by the partition plate 24 (lower side in the figure)
The chamber is defined as the main fluid chamber 26.

一方、上記仕切板24め第1枠体14側(図中上方)°
端面はダイヤフラム28で閉止され、これら仕切板24
とダイヤフラム28との間の室が副流体室30とされる
On the other hand, the partition plate 24 is on the first frame 14 side (upper part in the figure).
The end face is closed with a diaphragm 28, and these partition plates 24
A chamber between the diaphragm 28 and the diaphragm 28 is a sub-fluid chamber 30.

尚、上記ダイヤフラム28の外側は第1枠体1 ′4に
よって覆われ、これらダイヤフラム28と第1枠体14
間に空気室32が形成されている。
The outside of the diaphragm 28 is covered by the first frame 1'4, and the diaphragm 28 and the first frame 14
An air chamber 32 is formed between them.

上記主流体室26と上記副流体室30内には、印加電圧
に応じて粘度変化される電気レオロジー流体が封入され
、かつ、該主、副流体室26.30は上記仕切!24の
中央部に形成される電極オリフィス34を介して連通さ
れる。
An electrorheological fluid whose viscosity changes depending on the applied voltage is sealed in the main fluid chamber 26 and the sub-fluid chamber 30, and the main and sub-fluid chambers 26 and 30 are separated by the partition! 24 through an electrode orifice 34 formed in the center of the electrode orifice 24.

上記電極オリフィス34は電極板36,36aを設けた
オリフィスのことで、一方の電極板36は円筒状に形成
されると共に、その中心部に他方の電極板36aが電気
絶縁部材で支持されて配置され、これら画電極vi、3
6.36a間にオリフィス通路34aが設けられる。
The electrode orifice 34 is an orifice provided with electrode plates 36, 36a. One electrode plate 36 is formed in a cylindrical shape, and the other electrode plate 36a is disposed in the center thereof supported by an electrically insulating member. and these picture electrodes vi, 3
An orifice passage 34a is provided between 6.36a.

そして、上記1対のi!楓仮36,36aはそれぞれハ
ーネス38,38aを介して電源40および制御部41
に接続される一方、上記第1枠体14にはパワーユニッ
トMの上下加速度を検出する加速度センサ42が設けら
れ、該加速度センサ42で検出された加速度信号に応じ
た制御信号が制御部44に出力される。
And the above pair of i! The maple tentatives 36 and 36a are connected to a power source 40 and a control unit 41 via harnesses 38 and 38a, respectively.
The first frame body 14 is provided with an acceleration sensor 42 that detects the vertical acceleration of the power unit M, and a control signal corresponding to the acceleration signal detected by the acceleration sensor 42 is output to the control section 44. be done.

従って、上記電極オリフィス34にはパワーユニットM
の上下加速度に応じた制御電圧が印加され、該電極オリ
フィス34内の流体粘度が変化される。
Therefore, the electrode orifice 34 has a power unit M.
A control voltage is applied according to the vertical acceleration of the electrode orifice 34, and the fluid viscosity within the electrode orifice 34 is changed.

ところで、上記構成になるエンジンマウントlOは第3
図のモデル図として表すことができ、車体Bを介した路
面からの入力加振xlは、ゴムインシュレータ20自体
の支持弾性ばねに1と、オリフィス通路34a内の可動
流体質IEkmの振動x3を伴って主、副流体室26.
30間で流体移動されるときの該主流体室26側壁の拡
張弾性ばねK。
By the way, the engine mount lO with the above configuration is the third
The input vibration xl from the road surface via the vehicle body B is accompanied by vibration x1 in the support elastic spring of the rubber insulator 20 itself and vibration x3 of the movable fluid IEkm in the orifice passage 34a. Main and auxiliary fluid chambers 26.
Expansion elastic spring K of the main fluid chamber 26 side wall when the fluid is moved between 30 and 30.

とを介して、パワーユニットMに伝達される。is transmitted to the power unit M via.

従って、パワーユニットMへ入力されるトータル力Fは
、支持弾性ばねに、からの入力F1と拡張弾性ばねに!
からの入力F!との合力(F = F 。
Therefore, the total force F input to the power unit M is applied to the support elastic spring, the input F1 from and the expansion elastic spring!
Input from F! The resultant force (F = F.

千F、)として表される。expressed as 1,000 F,).

入力加振X、に対してパワーユニットMおよびオリフィ
ス通路34a内流体に現れる変位Xt+X、は、たとえ
ば第4図(、)に示される関係となり、かっ、上記人力
F、および入力Ftとトータル力Fとの関係は、第4図
(b)に示される。
The displacement Xt+X appearing in the power unit M and the fluid in the orifice passage 34a with respect to the input excitation The relationship is shown in FIG. 4(b).

上記第4図(a)、(b)に示されるグラフでは、パワ
ーユニットMの変位X、は、所定範囲(−XO〜XO)
内に収まる変1ml少の範囲と、それ以外の変位量大の
範囲とが存在し、時間を方向には変位量中に対応するt
、と変位量大に対応するtlとに分けることができる。
In the graphs shown in FIGS. 4(a) and (b) above, the displacement X of the power unit M is within a predetermined range (-XO to XO)
There is a range where the displacement is less than 1 ml and another range where the displacement is large.
, and tl, which corresponds to a large amount of displacement.

ところで、上記パワーユニットMへの振動伝達力を低減
するためには、トータル力Fの最大値を低下させればよ
い。
Incidentally, in order to reduce the vibration transmission force to the power unit M, the maximum value of the total force F may be reduced.

即ち、上記第4図において期間t1ではパワーユニット
Mの変位の絶対値1x、1が大きいためにトータル力I
P+ も大きくなり、該IFIが大きいときはF、、F
、がそれぞれ同相で絶対値も大きい。
That is, in the period t1 in FIG. 4, since the absolute value 1x,1 of the displacement of the power unit M is large, the total force I
P+ also increases, and when the IFI is large, F,,F
, are each in phase and have large absolute values.

また、上記期間1+ではIF、1はIF lに比べて位
相が進んでいるため、トータル力IFIは減少する方向
にある。
Further, in the above period 1+, since IF, 1 is ahead in phase compared to IF l, the total force IFI is in the direction of decreasing.

従って、かかる期間t1ではトータル力IFIの増大を
避ける( F waxを下げろ)ためには、IP、1を
減少する必要がある。
Therefore, in order to avoid an increase in the total force IFI (lower F wax) during this period t1, it is necessary to decrease IP,1.

ここで、第3図のモデルから、パワーユニットMが略静
止しているc+i、+が小さい)とき、ばねに、が撓ん
だ状態から敏速に平衡状態に戻りIF、1を小さくさせ
るためには、減衰ファクタCを小さくさせて流体質I1
mの動きを拘束させないことが望ましい。
Here, from the model in Fig. 3, when the power unit M is almost stationary (c+i,+ is small), in order for the spring to quickly return to the equilibrium state from the deflected state and reduce IF,1, , the fluid quality I1 is reduced by decreasing the damping factor C.
It is desirable not to restrict the movement of m.

従って、期間t、では減衰係数Gを下げる方向に制御す
ればよい。
Therefore, during the period t, the damping coefficient G may be controlled to be lowered.

一方、期間ttではパワーユニットMに加わる力IFI
は比較的小さく、F、の値がパワーユニットMの加速度
に与える影響は少ない。
On the other hand, during the period tt, the force IFI applied to the power unit M
is relatively small, and the value of F has little influence on the acceleration of the power unit M.

従って、上記期間jyでは減衰係数Cを下げてやり、全
体の共振系でのエネルギー損失を大きくさせることによ
り、パワーユニットMの運動エネルギーを低下させ、)
(、maxを下げることかできや・ このように、x、の変位の絶対値の値により減衰係数C
を制御する(第5図参照)と、減衰力をより有効に用い
てXta+axを低下させることができ、本実施例では
期間1+で減衰係数Cを低くし、かっ、期間t、で減衰
係数Cを高くする。
Therefore, during the period jy, the damping coefficient C is lowered to increase the energy loss in the entire resonant system, thereby reducing the kinetic energy of the power unit M.
(Is it possible to lower max?) In this way, depending on the absolute value of the displacement of x, the damping coefficient C
(see Fig. 5), the damping force can be used more effectively to lower Xta+ax. In this example, the damping coefficient C is lowered in the period 1+, and the damping coefficient C is lowered in the period t. make it higher.

従って、パワーユニットMの変位(加速度)が比較的大
きい期間t、では減衰力が小さいためF。
Therefore, during the period t when the displacement (acceleration) of the power unit M is relatively large, the damping force is small.

の状態変化速度が大きく 、lF tlの立ち上がりが
速くなってIFIIIlaxが小さくなり、また、期間
t。
The state change rate of is large, the rise of IF tl becomes fast, IFIII lax becomes small, and period t.

では減衰力が大きく、共振系の振動エネルギーが消費さ
れることになる。
In this case, the damping force is large, and the vibration energy of the resonant system is consumed.

ところで、実際には状態変化は一1800位相のずれた
加速度を測定して、その値により同様に制御されるが、
振動加速度レベルは第6図に示すように一定とはならな
い。
By the way, in reality, the state change is controlled in the same way by measuring the acceleration with a phase shift of -1800, but
The vibration acceleration level is not constant as shown in FIG.

そこで、切り換えるべき加速度を一定にしてもある程度
の効果は上がるか、各波形のピーク毎にそれに応じた減
衰切り換え用制御レベルを設定すると更に有効である。
Therefore, it may be possible to improve the effect to some extent even if the acceleration to be switched is kept constant, or it is more effective to set a corresponding control level for attenuation switching for each peak of each waveform.

そのためには、上記第6図に示したように加速度波形の
ピークを各ゼロクロス(図中・で示す)で予想し、その
値により減衰切り換え用制御レベルとして切り換え加速
度g1を設定すればよい。
To do this, as shown in FIG. 6, the peak of the acceleration waveform can be predicted at each zero cross (indicated by * in the figure), and the switching acceleration g1 can be set as the attenuation switching control level based on that value.

上記切り換え加速度gnは、ゼロクロス点における加速
度の微分値 g (tn)  および2階微分値警“(
、、、)から求められ、次の式によって□表すことがで
きる。
The above switching acceleration gn is the differential value g (tn) of the acceleration at the zero-crossing point and the second-order differential value "(
, , ), and can be expressed as □ by the following formula.

g−=AX1g(kn)+B−g(tnl+c  ++
++++■ただし、A、B、Cは正の定数である。
g-=AX1g(kn)+B-g(tnl+c++
++++■ However, A, B, and C are positive constants.

即ち、上記0式は第7図に示すように、ゼロクロスにお
ける傾きy (tn)と、傾きの変化率”y”(tn)
の正、負が同じであれば直後のピークレベルは大きくな
り、正、負が逆であればピークレベルは小さくなること
に着目して導かれたものである。
In other words, as shown in Figure 7, the above equation 0 has the slope y (tn) at the zero cross and the rate of change in slope "y" (tn).
This was derived by noting that if the positive and negative values of , are the same, the immediately following peak level will be high, and if the positive and negative values are opposite, the peak level will be low.

第8図は上記切り換え加速度g1に基づいて、電極オリ
フィス34へ印加する電圧を制御するためのアナゴリズ
ムを示し、先ずステップlでは加速度センサ42により
パワーユニットMに加振された上下加速度g (tn)
を検出し、ステップ■では絶対値Ig(tnlを換算す
ると共に、ステップ■ではg(tn、。)を確実にする
ための幅Δgを考慮して(g(tn)=<6g)を判断
する。
FIG. 8 shows an anagorhythm for controlling the voltage applied to the electrode orifice 34 based on the switching acceleration g1. First, in step l, the vertical acceleration g (tn) applied to the power unit M by the acceleration sensor 42 is
is detected, and in step 2, the absolute value Ig (tnl) is converted, and in step 2, the width Δg is considered to ensure g(tn,.) and (g(tn)=<6g) is determined. .

ステップ■でYESの場合は微分器■を通してg (t
n)を求める一方で、該g (tn)を更に微分器■に
通して”g”(tn)を求め、これら g (tn)お
よびg (tn)から制御レベル設定手段としてのステ
ップ■では上記0式に基づいて切り換え加速度g+=A
 x l g (tn)+ B−”g”(tn) l 
+ Cを求める。
If YES in step ■, g (t
While determining n), the g (tn) is further passed through the differentiator ■ to determine "g" (tn), and from these g (tn) and g (tn), in step ■ as a control level setting means, the above Switching acceleration g+=A based on formula 0
x l g (tn) + B-"g" (tn) l
Find +C.

そして、上記ステップ■で得られたg+および上記ステ
ップ■で得られたIg(tnlをステップ■で比較(I
g (tn)l> g +)L、YESの場合はx−y
−ツブ■により電極オリフィス34へ印加される電圧を
OFFする一方、NOの場合はステップ■により電圧を
ONする。
Then, compare g+ obtained in the above step (■) and Ig(tnl obtained in the above step
g (tn)l> g +)L, if YES, x-y
- The voltage applied to the electrode orifice 34 is turned off by the knob (2), while if NO, the voltage is turned on by the step (2).

尚、上記ステップ■でNOと判断された場合は、ステッ
プXにより(g r= g t)として上記ステップ■
に進む。
In addition, if it is determined NO in the above step ■, step X sets (g r = g t) and the above step
Proceed to.

従って、上記ステップ■で電圧OFFされることにより
、電極オリフィス34内の電気レオロジー流体は粘度が
低下された状態となり、減衰係数C°が小となってばね
に、を敏速に平衡状態に戻し、lF、lを低減してトー
タル力Fを小さくすることがモきる。
Therefore, by turning off the voltage in step (3) above, the electrorheological fluid in the electrode orifice 34 becomes in a state where the viscosity is reduced, the damping coefficient C° becomes small, and the spring quickly returns to an equilibrium state. It is possible to reduce the total force F by reducing lF and l.

一方、上記ステップ■で電圧ONされることにより、上
記電極オリフィス34内の流体粘度は増大されて減衰係
数Cは大となり、振動エネルギーを吸収することができ
る。
On the other hand, by turning on the voltage in step (2), the viscosity of the fluid in the electrode orifice 34 is increased, the damping coefficient C becomes large, and vibration energy can be absorbed.

このように、加速度により減衰を変化させる制御にあっ
て、加速度波形がゼロクロスする時刻において直後の加
速度ピークレベルを予想して切り換える加速度g7を計
算し、この切り換え加速度g7に基づいて電圧制御する
ことにより、効果的な振動伝達力の低減を行うことb(
できる。
In this way, in the control of changing damping according to acceleration, the switching acceleration g7 is calculated by anticipating the next acceleration peak level at the time when the acceleration waveform zero-crosses, and voltage control is performed based on this switching acceleration g7. , to effectively reduce the vibration transmission forceb(
can.

即ち、第9図中特性りに示すように、X 、max/x
l量AXで表される振動伝達力は、減衰係数を一定とし
た場合の2定点P、Qを通る他の特性A。
That is, as shown in the characteristic in FIG. 9, X, max/x
The vibration transmission force expressed by the amount AX has another characteristic A that passes through two fixed points P and Q when the damping coefficient is constant.

B、Cに比べて大幅に低減できる。It can be significantly reduced compared to B and C.

尚、本実施例では本発明の粘度可変流体封入式防振体を
自動車のエンジンマウントlOに用いた場合を示したが
、これに限るこなく一般の振動防振体に本発明を適用で
きることはいうまでもない。
In this example, a case where the variable viscosity fluid-filled vibration isolator of the present invention is used in an automobile engine mount lO is shown, but the present invention is not limited to this and can be applied to general vibration isolators. Needless to say.

発明の詳細 な説明したように本発明の粘度可変流体封入式防振体に
あっては、制御レベル設定手段を用いて支持体の振動加
速度の各ピーク毎に減衰切り換え用制御レベルを設定し
、該制御レベルに基づいて電極オリフィスへの印加電圧
が制御されるため、曳雑なモードの入力振動に対しても
各ピーク毎のきめ細かい制御が可能となり、振動伝達力
の著しい低減を行うことができるという優れた効果を奏
する。
As described in detail of the invention, in the variable viscosity fluid-filled vibration isolator of the present invention, the control level for damping switching is set for each peak of the vibration acceleration of the support using the control level setting means, Since the voltage applied to the electrode orifice is controlled based on the control level, fine control of each peak is possible even for input vibrations in complex modes, and vibration transmission force can be significantly reduced. It has this excellent effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の概念を示す概略図、第2図は本発明の
一実施例を示す断面図、第3図は本発明の力学モデル図
、第4図は振動伝達系の谷振動波形を示し、同図(2L
)は変位特性図、同図(’b )は伝達力特性図、第5
図は支持体の変位と減衰率との関係を示す説明図、第6
図は支持体に加振される振動加速度レベルの特性図、第
7図は切り換え加速度を設定する際のゼロクロス点にお
ける傾きと傾きの変化率との関係を示す説明図、第8図
は本発明を制御するアナゴリズムの一実施例を示す説明
図、第9図は本発明の効果領域を示す振動伝達率の特性
図である。 lO・・・エンジンマウ、ント(粘度可変流体封入式防
振体)、20・・・ゴムインシュレータ(弾性体)、2
4・・・支切板、26・・・主流体室、28・・・ダイ
ヤフラム、30・・・副流体室、34・・・電極オリフ
ィス、36.36a・・・電極板、40・・・電源、4
1・・・制御部、42・・・加速度センサ、B・・・車
体(加振体)、M・・・パワーユニット(支持体)。 外2名 第3図 第4図 第5図 第6図 第7図 @9図
Fig. 1 is a schematic diagram showing the concept of the present invention, Fig. 2 is a sectional view showing an embodiment of the invention, Fig. 3 is a mechanical model diagram of the invention, and Fig. 4 is a valley vibration waveform of the vibration transmission system. , and the same figure (2L
) is the displacement characteristic diagram, the same figure ('b) is the transmission force characteristic diagram, and the fifth
The figure is an explanatory diagram showing the relationship between the displacement of the support and the damping rate.
The figure is a characteristic diagram of the level of vibration acceleration applied to the support, Figure 7 is an explanatory diagram showing the relationship between the slope at the zero cross point and the rate of change of the slope when setting the switching acceleration, and Figure 8 is the invention of the present invention. FIG. 9 is an explanatory diagram showing one embodiment of an anagolithm for controlling the vibration transmission rate. FIG. lO...Engine mount (viscosity variable fluid-filled vibration isolator), 20...Rubber insulator (elastic body), 2
4... Split plate, 26... Main fluid chamber, 28... Diaphragm, 30... Sub-fluid chamber, 34... Electrode orifice, 36.36a... Electrode plate, 40... power supply, 4
DESCRIPTION OF SYMBOLS 1... Control part, 42... Acceleration sensor, B... Vehicle body (vibration body), M... Power unit (support body). 2 people Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 @ Figure 9

Claims (1)

【特許請求の範囲】[Claims] (1)加振体と支持体との間に配置される弾性体と、該
弾性体と並列配置され、入力振動により容積変化される
主流体室および該主流体室と電極オリフィスを介して連
通され容積可変な副流体室とを備え、これら主、副流体
室内に印加電圧に応じて粘度変化される電気レオロジー
流体を封入して、上記電極オリフィスに印加される電圧
値によってオリフィス内の減衰率が変化される粘度可変
流体封入式防振体において、 上記支持体に加振される振動加速度を検出する加速度セ
ンサと、 該加速度センサで得られた入力信号の大きさに応じて各
ピーク毎に任意に減衰切り換え用制御レベルを設定する
制御レベル設定手段とを設け、該制御レベル設定手段で
得られた減衰切り換え用制御レベルに応じて上記電極オ
リフィスに印加する電圧を制御することを特徴とする粘
度可変流体封入式防振体。
(1) An elastic body disposed between the vibrating body and the support body, a main fluid chamber disposed in parallel with the elastic body whose volume changes due to input vibration, and communicating with the main fluid chamber via an electrode orifice. The main and sub-fluid chambers are filled with an electrorheological fluid whose viscosity changes according to the applied voltage, and the attenuation rate in the orifice is controlled by the voltage applied to the electrode orifice. In a variable viscosity fluid-filled vibration isolator in which the A control level setting means for arbitrarily setting a control level for attenuation switching is provided, and the voltage applied to the electrode orifice is controlled in accordance with the attenuation switching control level obtained by the control level setting means. Vibration isolator filled with variable viscosity fluid.
JP4529288A 1988-02-26 1988-02-26 Vibration isolator encapsulating variable viscosity fluid Pending JPH01220738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4529288A JPH01220738A (en) 1988-02-26 1988-02-26 Vibration isolator encapsulating variable viscosity fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4529288A JPH01220738A (en) 1988-02-26 1988-02-26 Vibration isolator encapsulating variable viscosity fluid

Publications (1)

Publication Number Publication Date
JPH01220738A true JPH01220738A (en) 1989-09-04

Family

ID=12715238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4529288A Pending JPH01220738A (en) 1988-02-26 1988-02-26 Vibration isolator encapsulating variable viscosity fluid

Country Status (1)

Country Link
JP (1) JPH01220738A (en)

Similar Documents

Publication Publication Date Title
Flower Understanding hydraulic mounts for improved vehicle noise, vibration and ride qualities
US4913409A (en) Electronically controllable vibration damper for use with automotive engine or the like
EP0300445B1 (en) Method for controlling a vibration damping device
JPH01250637A (en) Viscosity variable fluid sealing control type vibrationproofing body
JPH034047A (en) Suspension device for vehicle
US5028039A (en) Vibration damping device
JPH01312242A (en) Vibration preventing body of variable viscosity fluid sealing control type
US4673156A (en) Liquid-filled type vibration damping structure
JPH01220738A (en) Vibration isolator encapsulating variable viscosity fluid
JPS591828A (en) Liquid-enclosing vibration-proof device
JPH02159437A (en) Control type engine mount
JPH0366945A (en) Control type engine mount
JPH01135938A (en) Viscosity variable fluid sealed device
JPH02240427A (en) Control type engine mount
JPH0756315B2 (en) Controlled engine mount
JPH06117485A (en) Frequency coping type vibration damper
JPH04258547A (en) Vibration preventing device
JPH01295045A (en) Variable viscosity fluid sealed control type vibrationproof body
JPH01193427A (en) Variable viscosity fluid containing type vibration isolating body
JPH04113044A (en) Leaf spring device in one body with damper
JP3564594B2 (en) Anti-vibration device
JPH07259911A (en) Vibration control method and its device for structure
JPH01266334A (en) Control type vibration proof body containing sealed viscosity variable fluid
JPH0925989A (en) Vibration absorbing device and vibration absorbing structure
JPH0348035A (en) Liquid-filled type vibration isolator