JPH01135938A - Viscosity variable fluid sealed device - Google Patents

Viscosity variable fluid sealed device

Info

Publication number
JPH01135938A
JPH01135938A JP29124587A JP29124587A JPH01135938A JP H01135938 A JPH01135938 A JP H01135938A JP 29124587 A JP29124587 A JP 29124587A JP 29124587 A JP29124587 A JP 29124587A JP H01135938 A JPH01135938 A JP H01135938A
Authority
JP
Japan
Prior art keywords
viscosity
fluid
voltage
temperature
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29124587A
Other languages
Japanese (ja)
Inventor
Toshiaki Abe
阿部 俊朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP29124587A priority Critical patent/JPH01135938A/en
Publication of JPH01135938A publication Critical patent/JPH01135938A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/26Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper characterised by adjusting or regulating devices responsive to exterior conditions
    • F16F13/30Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper characterised by adjusting or regulating devices responsive to exterior conditions comprising means for varying fluid viscosity, e.g. of magnetic or electrorheological fluids

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Combined Devices Of Dampers And Springs (AREA)

Abstract

PURPOSE:To accurately control a workload to the outside as determined by an object by providing a temperature sensor measuring the temperature of electric rheological fluid in a main fluid chamber and a control unit controlling this fluid to optimum viscosity. CONSTITUTION:Electric rheology fluid, which changes its viscosity in accordance with applied voltage, is sealed in a liquid-tight space part 22. A change of viscosity between the first and second electrode plates 26, 30 changes damping force of vibration input between the first and second frame units 14, 18. The second frame unit 18 provides in its side wall a temperature sensor 52 which measures a temperature of the electric rheology fluid in a main fluid chamber 38. A control signal from a control unit 50 is output to the first and second electrodes 26, 30. Thus tuning the viscosity always to an optimum value, a workload to the outside can be adequately controlled as determined by the initial object.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、印加電圧に応じて粘度変化される電気レオロ
ジー流体を封入して、該電気レオロジー流体の粘度可変
機能をもって外部への仕事量を制御する粘度可変流体封
入装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention controls the amount of work to be applied to the outside by enclosing an electrorheological fluid whose viscosity changes according to an applied voltage and using the viscosity variable function of the electrorheological fluid. The present invention relates to a variable viscosity fluid enclosing device.

従来の技術 この種の粘度可変流体封入装置としては、例えば特開昭
60−104828号公報に開示された粘度可変流体封
入式防振体が知られており、電気レオロジー流体を封入
してオリフィス内の流体粘度を変化させることにより、
該オリフィス内の流れ状態が変化されてル1振周波数領
域の調整、つまり、外部への仕事量の制御が可能となっ
ている。
BACKGROUND ART As a variable viscosity fluid enclosing device of this type, a variable viscosity fluid enclosing type vibration isolator disclosed, for example, in Japanese Patent Application Laid-Open No. 60-104828 is known. By changing the fluid viscosity of
The flow conditions within the orifice are changed to allow adjustment of the percussion frequency range, ie, control of the amount of work to the outside.

従って、かかる粘度可変流体封入式防振体にあっては、
オリフィス内の流体粘度を変化させるにあたって、該オ
リフィス内の電気レオロジー流体に印加される電圧を単
に変化させればよく、その構成を著しく簡単化すること
ができる。
Therefore, in such a variable viscosity fluid-filled vibration isolator,
In order to change the fluid viscosity within the orifice, it is sufficient to simply change the voltage applied to the electrorheological fluid within the orifice, thereby significantly simplifying the configuration.

発明が解決しようとする問題点 しかしながら、従来の粘度可変流体封入式防振体は、制
振しようとする振動の周波数領域に対応した印加電圧を
実験等により予め決定し、この決定された印加電圧に沿
って上記流体の粘度が制御される。
Problems to be Solved by the Invention However, in conventional variable viscosity fluid-filled vibration isolators, the applied voltage corresponding to the frequency range of the vibration to be damped is determined in advance through experiments, etc. The viscosity of the fluid is controlled along.

ところが、封入される電気レオロジー流体は、流体温度
によってその粘度が変化されるため、上記決定された印
加電圧でオリフィス内の流体粘度を最適状態にチューニ
ングしようとしても、温度による粘度変化によりチュー
ニングに狂いが生じ、最適な振動減衰を行うことができ
なくなってしまうという問題点があった。
However, the viscosity of the sealed electrorheological fluid changes depending on the fluid temperature, so even if an attempt is made to tune the fluid viscosity in the orifice to the optimal state with the applied voltage determined above, the tuning will be disrupted due to the viscosity change due to temperature. This has caused the problem that optimal vibration damping cannot be achieved.

そこで、本発明は封入された電気レオロジー流体の温度
による粘度変化を考慮して、オリフィス内の流体粘度を
緻密に制御することにより、外部への仕事量の制御を目
的通りに正確に行うことができる粘度可変流体封入装置
を提供することを目的とする。
Therefore, the present invention takes into consideration the viscosity change due to temperature of the enclosed electrorheological fluid and precisely controls the fluid viscosity within the orifice, thereby making it possible to accurately control the amount of work to the outside as desired. The object of the present invention is to provide a variable viscosity fluid enclosing device.

問題点を解決するための手段 かかる目的を達成するために本発明は第1図に示すよう
に、印加電圧に応じて粘度変化される電気レオロジー流
体を封入し、制御電圧が印加される電極板(2)、(b
)間に存在する該電気しオロジー流体の粘度可変機能を
利用して、外部への仕事量を制御する粘度可変流体封入
装置(c)において、 封入された電気レオロジー流体の温度変化される粘度を
検出する粘度検出手段(d)と、上記電極板(a)、(
b)に印加する電圧を出力する電圧出力手段(e)と、 検出された粘度に基づいて、上記l対の電極板(a)、
(b)間の流体を、予め設定された最適粘度に制御する
ための印加電圧を決定する電圧決定手段(f)と、を設
けることにより構成する。
Means for Solving the Problems In order to achieve the above object, the present invention, as shown in FIG. (2), (b
) In the viscosity variable fluid enclosing device (c), which controls the amount of work to the outside by utilizing the viscosity variable function of the electrorheological fluid existing between The viscosity detection means (d) to detect and the electrode plates (a), (
b) a voltage output means (e) for outputting a voltage to be applied to the electrode plate (a), based on the detected viscosity;
(b) Voltage determining means (f) for determining an applied voltage for controlling the fluid between them to a preset optimum viscosity.

作用 以上の構成により本発明の粘度可変流体封入装置(c)
にあっては、粘度検出手段(d)で検出された電気レオ
ロジー流体の温度変化による粘度値は、電圧決定手段(
f)が人力されて該粘度値を考慮した最適な制御電圧が
決定される。
The variable viscosity fluid enclosing device (c) of the present invention has the above-described structure.
In this case, the viscosity value due to temperature change of the electrorheological fluid detected by the viscosity detection means (d) is determined by the voltage determination means (d).
f) is manually determined to determine the optimum control voltage in consideration of the viscosity value.

そして、この決定された電圧を電圧出力手段(e)を介
して電極板(a)、(b)に印加することにより、該電
極板(a)、(b)間の流体粘度を的確にチューニング
することができる。
By applying this determined voltage to the electrode plates (a) and (b) via the voltage output means (e), the fluid viscosity between the electrode plates (a) and (b) is accurately tuned. can do.

実施例 以下、本発明の実施例を図に基づいて詳細に説明する。Example Hereinafter, embodiments of the present invention will be described in detail based on the drawings.

第2図は本発明の一実施例を示す粘度可変流体封入装置
としての粘度可変流体封入式防振体lO(以下防振体と
称す)で、該防振体10はエンジンマウントとして用い
られる場合に例をとって以下述べる。
FIG. 2 shows a vibration isolator lO (hereinafter referred to as vibration isolator) filled with a variable viscosity fluid as a variable viscosity fluid enclosure device showing an embodiment of the present invention, and when the vibration isolator 10 is used as an engine mount. An example is given below.

即ち、上記防振体10は、エンジン、トランスミッショ
ン等の結合体である図外のパワーユニット側にボルト1
2を介して取り付けられる第1枠体14と、図外の車体
側にボルト16を介して取り付けられる有底筒状の第2
枠体18とを備え、第1枠体14の外周と第2枠体18
の上端開口部内周との間に、笠状のゴムインシュレータ
20が液密的に固着される。
That is, the vibration isolator 10 has bolts 1 on the side of a power unit (not shown) that is a combination of an engine, a transmission, etc.
A first frame body 14 is attached to the vehicle body side (not shown) through bolts 16, and a second frame body 14 in the shape of a cylinder with a bottom is attached to the vehicle body side (not shown) through bolts 16.
a frame 18, the outer periphery of the first frame 14 and the second frame 18
A cap-shaped rubber insulator 20 is fixed in a liquid-tight manner between the inner periphery of the upper end opening.

そして、上記ゴムインシュレータ20で閉止された第2
枠体14内は液密空間部22とされ、該液密空間部22
内には印加される電圧に応じて粘度が変化される電気レ
オロジー流体が封入される。
Then, the second
The inside of the frame 14 is a liquid-tight space 22, and the liquid-tight space 22
An electrorheological fluid whose viscosity changes depending on the applied voltage is sealed inside.

一方、上記液密空間部22内には、第1枠体14のボル
ト12の延設部分に電気絶縁体24を介して第1電極板
26が装着されると共に、第2枠体18の底部に電気絶
縁体28を介して第2電極板30が装着される。
On the other hand, in the liquid-tight space 22, a first electrode plate 26 is attached to the extending portion of the bolt 12 of the first frame 14 via an electrical insulator 24, and a first electrode plate 26 is attached to the bottom of the second frame 18. A second electrode plate 30 is attached to the electric insulator 28 via the electric insulator 28 .

上記第1ft!極板26と第2電極板30は、第1゜第
2枠体14.18間の振動入力方向に対向配置され、該
第1.第2電極板26.30からそれぞれ同心状に突設
される環状突起26a、26bおよび30a、30b、
30cが互いに適宜間隔をもって嵌合される。
1st ft above! The electrode plate 26 and the second electrode plate 30 are arranged to face each other in the vibration input direction between the first and second frames 14 and 18, and are arranged opposite to each other in the vibration input direction between the first and second frames 14 and 18. annular projections 26a, 26b and 30a, 30b concentrically protruding from the second electrode plate 26.30, respectively;
30c are fitted with each other at appropriate intervals.

そして、上記第1.第2i1i極板26.30間に電圧
を印加することにより、これら画電極板26゜30間の
電気レオロジー流体はその粘度が変化され、第1.第2
枠体14.18間の相対変位力に対する抵抗力が変化さ
れる。
And the above 1. By applying a voltage between the second and second picture electrode plates 26 and 30, the viscosity of the electrorheological fluid between these picture electrode plates 26 and 30 is changed, and the viscosity of the electrorheological fluid between the two picture electrode plates 26 and 30 is changed. Second
The resistance to relative displacement forces between the frames 14, 18 is varied.

つまり、上記第1.第2電極板26.30間の粘度変化
は、第1.第2枠体14.18間に入力される振動の減
衰力を変化させる作用を行う。
In other words, the above 1. The viscosity change between the second electrode plates 26 and 30 is the same as that between the first and second electrode plates 26 and 30. It acts to change the damping force of vibrations input between the second frames 14 and 18.

尚、上記ボルト12の延設部分の先端部と、上記第2電
極板30の内周との間には、第1.第2枠体14.18
間の過大な振動変位を防止するためのゴム体34が設け
られる。
It should be noted that there is a first. Second frame 14.18
A rubber body 34 is provided to prevent excessive vibrational displacement between the two.

ところで、上記第1電極板26および第2電極板30は
ハーネス42,42aを介して電圧出力手段としての電
圧源44に接続され、該電圧源から出力される電圧が第
1.第2電極板26.30に印加される構成となってい
る。
By the way, the first electrode plate 26 and the second electrode plate 30 are connected to a voltage source 44 as voltage output means via harnesses 42 and 42a, and the voltage output from the voltage source is the first. The configuration is such that the voltage is applied to the second electrode plate 26.30.

上記電圧源44から第1.第2電極板26.30に出力
される電圧は、パワーユニット側の第1振動センサ46
および車体側の第2振動センサ48で検出された各上下
加速度信号に基づいてコントロールユニット50によっ
て制御される。
From the voltage source 44, the first. The voltage output to the second electrode plate 26.30 is applied to the first vibration sensor 46 on the power unit side.
It is controlled by the control unit 50 based on each vertical acceleration signal detected by the second vibration sensor 48 on the vehicle body side.

即ち、上記コントロールユニット5oでは、上記第1.
第2振動センサ46,4Bの検出信号をそれぞれ入力し
て、演算により求めた第1.第2枠体14.18間の相
対速度と相対変位との符号が一致した時には低減衰とし
、一致しないときには粘度変化による減衰力がゴムイン
シュレータ20のばね力と同じになる時刻までは高減衰
とし、更に、該時刻より再び符号が一致するまでの時間
においては、高減衰から低減衰へと連続的に減衰力を変
化させる制御信号を上記電圧源44に出力する。
That is, in the control unit 5o, the first.
The detection signals of the second vibration sensors 46 and 4B are respectively input, and the first . When the signs of the relative velocity and relative displacement between the second frame bodies 14 and 18 match, the damping is set to low, and when they do not match, the damping is set to the high damping until the time when the damping force due to the viscosity change becomes the same as the spring force of the rubber insulator 20. Furthermore, during the time from that time until the signs match again, a control signal is output to the voltage source 44 to continuously change the damping force from high attenuation to low attenuation.

従って、上記電圧源44からは上記コントロールユニッ
ト50での制御信号に沿った制御電圧が、第1.第2電
極板26.30に出力される。
Therefore, the control voltage from the voltage source 44 in accordance with the control signal in the control unit 50 is transmitted to the first . It is output to the second electrode plate 26.30.

ここで、本実施例は第2枠体18の側壁に主流体室38
内の電気レオロジー流体の温度(T)を測定する温度セ
ンサ52を設け、該温度センサ52の検出信号を上記コ
ントロールユニット5oに入力する。
Here, in this embodiment, the main fluid chamber 38 is provided on the side wall of the second frame 18.
A temperature sensor 52 for measuring the temperature (T) of the electrorheological fluid inside is provided, and a detection signal from the temperature sensor 52 is input to the control unit 5o.

ところで、上記電気しオロジー流体は温度に対応して粘
度変化されることから、上記温度センサ52が粘度検出
手段として用いられる。
By the way, since the viscosity of the electrical fluid changes in response to temperature, the temperature sensor 52 is used as a viscosity detection means.

上記コントロールユニット50は、第3図に示すように
目標粘度設定回路54.電圧決定手段としての温度−帖
度一電圧マツブ回路56および電圧印加タイミング制御
回路58が設けられる。
As shown in FIG. 3, the control unit 50 includes a target viscosity setting circuit 54. A temperature-to-voltage mating circuit 56 and a voltage application timing control circuit 58 are provided as voltage determining means.

上記目標粘度設定回路54は、上記第1.第2振動セン
サ46,48の検出信号を入力して、第1、第2電極板
26.30間の流体の最適な粘度(目標粘度)(η)を
、予め記憶されたマツプ等により求める。
The target viscosity setting circuit 54 is connected to the first viscosity setting circuit 54. The detection signals from the second vibration sensors 46 and 48 are input, and the optimal viscosity (target viscosity) (η) of the fluid between the first and second electrode plates 26, 30 is determined using a map or the like stored in advance.

上記温度−粘度−電圧マリプ回路56は、第4図に示す
ようなマツプ60が予め記憶されており、上記目標粘度
設定回路54の出力信号および上記温度センサ52の検
出信号を入力して、最適な電圧(E)を決定する。
The temperature-viscosity-voltage mapping circuit 56 has a map 60 as shown in FIG. 4 stored in advance, and inputs the output signal of the target viscosity setting circuit 54 and the detection signal of the temperature sensor 52, Determine the voltage (E).

上記電圧印加タイミング制御回路58は、上記温度−粘
度−電圧マツプ回路56で求められた電圧信号を入力し
て、電圧源44から防振体lOの第1.第2電極板26
.aoiこ出力される電圧のON、OFFタイミング(
デユーティ比)を演算する。
The voltage application timing control circuit 58 inputs the voltage signal determined by the temperature-viscosity-voltage map circuit 56 and outputs the voltage signal from the voltage source 44 to the first voltage application timing control circuit 58 of the vibration isolator lO. Second electrode plate 26
.. ON/OFF timing of the output voltage (
duty ratio).

以上の構成になる本実施例の防振体lOは、第1、第2
枠体14.18間に入力される振動が、第1.第2電極
板26.30間の流体粘度変化を伴って効果的に減衰さ
れるが、上記防振体lOはたとえば第5図の1自由度形
モデルに置き換えてみると、振動入力(F)は、F=F
c+PR・・・■として表わされる。尚、Pcは減衰力
、FRはばね力である。
The vibration isolator lO of this embodiment having the above configuration has the first and second parts.
The vibration input between the frames 14 and 18 is transmitted to the first. Although it is effectively damped with a change in fluid viscosity between the second electrode plates 26 and 30, if the vibration isolator IO is replaced with the one-degree-of-freedom model shown in FIG. 5, the vibration input (F) is F=F
c+PR...represented as ■. In addition, Pc is a damping force, and FR is a spring force.

第6図は上記0式での3つの力(P、FC,PR)の位
相関係を示したもので、同図から理解されるようにFc
とFIIが同相の領域(図中斜線部)と、逆相の領域(
図中斜線部以外)が存在する。
Figure 6 shows the phase relationship of the three forces (P, FC, PR) in the above equation 0, and as can be understood from the figure, Fc
The region where FII and FII are in phase (hatched area in the figure) and the region where FII is out of phase (
(Other than the shaded area in the figure) exists.

そこで、上記入力(F)を小さくする(振動を減衰する
)ためには、FR若しくはF。を制御してやればよい。
Therefore, in order to reduce the input (F) (dampen the vibration), use FR or F. All you have to do is control it.

即ち、FcとPRが同相の場合にはPcを小さくし、か
つ、FRとFcが逆相の場合にはPcを大きくすること
により、第7図に示す変位伝達特性が得られ、たとえば
エンジンシェイクの周波数領域で低減式を大きく取るこ
とができる。
That is, by decreasing Pc when Fc and PR are in phase, and increasing Pc when FR and Fc are in opposite phases, the displacement transmission characteristics shown in FIG. 7 can be obtained, and for example, engine shake The reduction equation can be made large in the frequency region.

ところが、防振体10内に封入された電気レオロジー流
体の粘度は、電圧と温度とにより、第8図に示すような
特性を有している。
However, the viscosity of the electrorheological fluid sealed within the vibration isolator 10 has characteristics as shown in FIG. 8 depending on the voltage and temperature.

特に、温度が低い条件では電圧を加えない状態での初期
粘度は高く、電圧を印加した状態での到達粘度は低くな
る一方、温度が高くなると初期粘度は低く、到達粘度が
高くなる。    ゛このため、印加電圧を一定にした
場合、制御される流体の粘度が温度により異なるので、
第7図の特性(イ)および特性(ロ)に示したように変
位伝達率に差が生じ、従来の技術にも述べたように安定
した特性が得られなくなってしまう。
In particular, when the temperature is low, the initial viscosity is high when no voltage is applied, and the achieved viscosity is low when a voltage is applied, while as the temperature rises, the initial viscosity is low and the achieved viscosity is high.゛For this reason, when the applied voltage is kept constant, the viscosity of the fluid being controlled varies depending on the temperature.
As shown in the characteristics (a) and (b) of FIG. 7, a difference occurs in the displacement transmissibility, and as described in the prior art, stable characteristics cannot be obtained.

そこで、本実施例では温度センサ52によって防振体l
Oに封入された電気レオロジー流体の温度(T)をリア
ルタイムに測定し、温度−帖度一電圧マツブ回路56に
よって、温度変化される流体粘度を考慮して印加電圧(
EQT)を求め、電圧印加タイミング制御部58で・該
電圧に対応して時間制御された制御電圧を、電圧源44
から第1゜第2電極板26.30に出力することにより
、最適な第1.第2電極板26.30間の流体粘度を得
ることができる。
Therefore, in this embodiment, the vibration isolator l is controlled by the temperature sensor 52.
The temperature (T) of the electrorheological fluid sealed in O is measured in real time, and the applied voltage (
EQT), and the voltage application timing control unit 58 applies a control voltage that is time-controlled in accordance with the voltage to the voltage source 44.
By outputting from the 1st degree to the second electrode plate 26.30, the optimum 1st degree. The fluid viscosity between the second electrode plates 26,30 can be obtained.

従って、防振体10の振動減衰領域を、制振しようとす
る振動の周波数領域に高い精度をもってチューニングす
ることができ、防振効果が著しく向上されることになる
Therefore, the vibration damping region of the vibration isolator 10 can be tuned with high precision to the frequency region of the vibration to be damped, and the vibration damping effect is significantly improved.

第9図は上記防振体lOのオリフィス36内流体の粘度
を制御するためのプログラムを実行するフローチャート
を示し、先ず、ステップIで防振体IOに入力される振
動の上下加速度を求めると共に、ステップ■で電気レオ
ロジー流体の温度(T)を検出する。
FIG. 9 shows a flowchart for executing a program for controlling the viscosity of the fluid in the orifice 36 of the vibration isolator IO. First, in step I, the vertical acceleration of the vibration input to the vibration isolator IO is determined, and In step (2), the temperature (T) of the electrorheological fluid is detected.

そして、次のステップ■で上記入力振動に基づいて目標
粘度(ηn)を求めると共に、ステップ■では上記温度
(Tn)および目標粘度(η。)から電圧(E 、T)
を求める。
Then, in the next step ■, the target viscosity (ηn) is determined based on the input vibration, and in step ■, the voltage (E, T) is determined from the temperature (Tn) and the target viscosity (η.).
seek.

次のステップ■では上記電圧(E、、T)に基づいて電
圧印加タイミング(デユーティ比)を求め、このタイミ
ングに沿ってステップ■は第1.第2電極板26.30
に制御電圧を出力する。
In the next step (2), voltage application timing (duty ratio) is determined based on the voltages (E, , T), and step (2) follows the first step. Second electrode plate 26.30
Outputs control voltage to.

尚、本実施例にあっては封入された電気レオロジー流体
の温度検出により、該電気レオロジー流体の粘度を検知
する手段を開示したが、これに限ることなく封入された
電気レオロジー流体の粘度を直接に測定し、目標粘度と
の差から電圧制御を行うようにしてもよい。
Although this embodiment discloses a means for detecting the viscosity of the encapsulated electrorheological fluid by detecting the temperature of the encapsulated electrorheological fluid, the present invention is not limited to this. Alternatively, the voltage may be controlled based on the difference between the target viscosity and the target viscosity.

また、本実施例では粘度可変流体封入装置として、エン
ジンマウントに用いられる粘度可変流体封入式防振体1
0に例をとって述べたが、これに限ることなく電気しオ
ロジー流体の印加電圧による粘度可変機能を利用する装
置、たとえば電気レオロジー流体を減衰媒体として用い
るショックアブソーバ等にあっても本発明を適用するこ
とができることはいうまでもない。
In addition, in this embodiment, a variable viscosity fluid filled vibration isolator 1 used for an engine mount is used as a variable viscosity fluid filled device.
Although the present invention is not limited to this, the present invention can also be applied to a device that utilizes the viscosity variable function of an electrorheological fluid by applying a voltage, such as a shock absorber using an electrorheological fluid as a damping medium. Needless to say, it can be applied.

発明の詳細 な説明したように本発明の粘度可変流体封入式装置にあ
っては、封入された電気レオロジー流体の温度変化され
る粘度を考慮して、オリフィス内の電気レオロジー流体
に印加する電圧を制御するので、結果的に電極板間の流
体粘度は温度による影響を受けることなく、常に最適な
値にチューニングされることになり、外部への仕事量を
当初の目的通り的確に制御することができるという優れ
た効果を奏する。
As described in the detailed description of the invention, in the variable viscosity fluid sealed device of the present invention, the voltage applied to the electrorheological fluid in the orifice is adjusted in consideration of the viscosity of the sealed electrorheological fluid that changes with temperature. As a result, the fluid viscosity between the electrode plates is always tuned to the optimal value without being affected by temperature, making it possible to accurately control the amount of work to the outside as originally intended. It has excellent effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の概念を示す概略構成図、第2図は本発
明の一実施例を示す断面図、第3図は本発明の粘度制御
部の一実施例を示す概略構成図、第4図は本発明の一実
施例に用いられる温度−帖度一電圧マツブ図、第5図は
本発明の防振体構造を1自由度形で示したモデル図、第
6図は防振体のばね力、減衰力および振動入力の位相関
係を示す特性図、第7図は防振体の変位伝達特性図、第
8図は電気レオロジー流体の粘度特性図、第9図は本発
明で行われる制御のプログラムの一処理例を示すフロー
チャートである。 lO・・・粘度可変流体封入式防振体(粘度可変流体封
入装置)、20・・・ゴムインシュレータ、26・・・
第2電極板、30・・・第1電極板、34・・・ゴム体
、36・・・オリフィス、38・・・主流体室、40・
・・副流体室、44・・・電圧源(電圧出力手段)、5
0・・・コントロールユニット、52・・・温度センサ
(粘度検出手段)、56・・・温変−粘度−電圧マツブ
回路(電圧決定手段)。 第9図
FIG. 1 is a schematic configuration diagram showing the concept of the present invention, FIG. 2 is a sectional view showing an embodiment of the present invention, and FIG. 3 is a schematic configuration diagram showing an embodiment of the viscosity control section of the present invention. Figure 4 is a temperature-voltage diagram used in an embodiment of the present invention, Figure 5 is a model diagram showing the vibration isolator structure of the present invention in one degree of freedom, and Figure 6 is a vibration isolator diagram. Figure 7 is a characteristic diagram showing the phase relationship of spring force, damping force, and vibration input; Figure 7 is a displacement transmission characteristic diagram of a vibration isolator; Figure 8 is a viscosity characteristic diagram of an electrorheological fluid; 3 is a flowchart illustrating an example of processing of a control program performed by the user. lO...Viscosity variable fluid filled vibration isolator (viscosity variable fluid filled device), 20...Rubber insulator, 26...
Second electrode plate, 30... First electrode plate, 34... Rubber body, 36... Orifice, 38... Main fluid chamber, 40...
...Auxiliary fluid chamber, 44...Voltage source (voltage output means), 5
0... Control unit, 52... Temperature sensor (viscosity detection means), 56... Temperature change-viscosity-voltage circuit (voltage determining means). Figure 9

Claims (1)

【特許請求の範囲】[Claims] (1)印加電圧に応じて粘度変化される電気レオロジー
流体を封入し、制御電圧が印加される電極板間に存在す
る該電気レオロジー流体の粘度可変機能を利用して、外
部への仕事量を制御する粘度可変流体封入装置において
、 封入された電気レオロジー流体の温度変化される粘度を
検出する粘度検出手段と、 上記電極板に印加する電圧を出力する電圧出力手段と、 検出された粘度に基づいて、上記1対の電極板間の流体
を、予め設定された最適粘度に制御するための印加電圧
を決定する電圧決定手段と、を設けたことを特徴とする
粘度可変流体封入装置。
(1) Enclose an electrorheological fluid whose viscosity changes according to the applied voltage, and use the viscosity variable function of the electrorheological fluid that exists between the electrode plates to which the control voltage is applied to reduce the amount of work to the outside. A variable viscosity fluid encapsulation device to be controlled, comprising: viscosity detection means for detecting temperature-changed viscosity of the encapsulated electrorheological fluid; voltage output means for outputting a voltage to be applied to the electrode plate; and voltage determining means for determining an applied voltage for controlling the fluid between the pair of electrode plates to a preset optimum viscosity.
JP29124587A 1987-11-18 1987-11-18 Viscosity variable fluid sealed device Pending JPH01135938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29124587A JPH01135938A (en) 1987-11-18 1987-11-18 Viscosity variable fluid sealed device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29124587A JPH01135938A (en) 1987-11-18 1987-11-18 Viscosity variable fluid sealed device

Publications (1)

Publication Number Publication Date
JPH01135938A true JPH01135938A (en) 1989-05-29

Family

ID=17766361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29124587A Pending JPH01135938A (en) 1987-11-18 1987-11-18 Viscosity variable fluid sealed device

Country Status (1)

Country Link
JP (1) JPH01135938A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5316112A (en) * 1991-04-20 1994-05-31 Bridgestone Corporation Restricted passage system in vibration damping device
EP0866232A3 (en) * 1997-03-21 2000-01-12 Trw Inc. Center bearing assembly with rheological fluid for damping vibrations
KR100503891B1 (en) * 2002-04-20 2005-07-26 국방과학연구소 Mounting apparatus using electro-rheological fluid's squeeze flow
CN100346087C (en) * 2005-08-04 2007-10-31 上海交通大学 Positive electrode system of electrorheological vibration isolator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5316112A (en) * 1991-04-20 1994-05-31 Bridgestone Corporation Restricted passage system in vibration damping device
EP0866232A3 (en) * 1997-03-21 2000-01-12 Trw Inc. Center bearing assembly with rheological fluid for damping vibrations
KR100503891B1 (en) * 2002-04-20 2005-07-26 국방과학연구소 Mounting apparatus using electro-rheological fluid's squeeze flow
CN100346087C (en) * 2005-08-04 2007-10-31 上海交通大学 Positive electrode system of electrorheological vibration isolator

Similar Documents

Publication Publication Date Title
US5060919A (en) Damping coefficient control device for vibration damper
JPH01250637A (en) Viscosity variable fluid sealing control type vibrationproofing body
EP0300445B1 (en) Method for controlling a vibration damping device
US4673156A (en) Liquid-filled type vibration damping structure
JPH06675Y2 (en) Controlled vibration control device
JPH01135938A (en) Viscosity variable fluid sealed device
JPH0527721Y2 (en)
JPH02159437A (en) Control type engine mount
JPS6339457Y2 (en)
JPH01199031A (en) Actuation control device for vibration isolating device
JPH0366945A (en) Control type engine mount
JPS5857536A (en) Vibration proof supporter
JPH07259911A (en) Vibration control method and its device for structure
JPS62155347A (en) Active vibrationproof supporting device
Shul'Man et al. Characteristics of an electrorheological damper in a vibration insulator
JPS62196433A (en) Liquid-sealed vibration isolator
KR100222088B1 (en) Dynamic damper
SU970008A2 (en) Automatically controlled shock-absorber
JPH09100866A (en) Liquid filled mount
JPH0289831A (en) Control type engine mount
RU2573615C1 (en) Micromechanical damper
JPH05126203A (en) Control type power-unit mount device
SU1040247A1 (en) Method and apparatus for active vibration isolation
SU1619080A1 (en) Device for material pressure
JPH01182106A (en) Vibration damping equipment