JPH07259911A - Vibration control method and its device for structure - Google Patents

Vibration control method and its device for structure

Info

Publication number
JPH07259911A
JPH07259911A JP4953694A JP4953694A JPH07259911A JP H07259911 A JPH07259911 A JP H07259911A JP 4953694 A JP4953694 A JP 4953694A JP 4953694 A JP4953694 A JP 4953694A JP H07259911 A JPH07259911 A JP H07259911A
Authority
JP
Japan
Prior art keywords
damping
vibration
damping mechanism
constant
vibration mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4953694A
Other languages
Japanese (ja)
Inventor
Kazuo Tamura
和夫 田村
Teru Fukukita
輝 福喜多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP4953694A priority Critical patent/JPH07259911A/en
Publication of JPH07259911A publication Critical patent/JPH07259911A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a vibration control method and its device for a structure to be installed at a low cost and in a small space, and capable of highly reliable vibration control. CONSTITUTION:Weights 12 are provided in the upper side of a structure 1 to be a vibration-control object, elastic bodies 11 are provided between the structure and the weights, and also a damping mechanism 13 capable of varying a damping coefficient is provided to control vibration of the structure while varying the damping coefficient of the damping mechanism in accordance with the vibration mode of the structure changing at all times. In setting the damping coefficient of the damping mechanism, when the structure is vibrated, a dominant vibration mode and a vibration level are determined from the vibration response data of the structure to determine the damping coefficient of the damping mechanism suitable for the vibration mode from a determined value to set the damping coefficient of the damping mechanism. This controls vibration of the structure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種建築・土木建造物
等の振動を抑制する構造物の制振方法および個の制御方
法を実施するのに好適な構造物の制振装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure vibration damping apparatus for suppressing vibration of various buildings, civil engineering structures, and the like, and a structure vibration damping apparatus suitable for carrying out an individual control method.

【0002】[0002]

【従来の技術】従来、高層構造物あるいは搭状構造物な
どの、主に風に対する一次振動を低減するために用いら
れる制振装置としてTMD(Tuned Mass D
anper)が知られている。TMDは、構造物の固有
周期と等しい固有周期を持つ錘(付加質量)に適切な減
衰をもたせたものであって、構造物が一次固有周期で揺
れると、その上部の錘が共振することにより、構造物の
揺れと逆方向の力を作用させて、構造物の揺れを低減す
るものである。
2. Description of the Related Art Conventionally, a TMD (Tuned Mass D) has been used as a vibration damping device such as a high-rise structure or a columnar structure mainly used for reducing primary vibrations to the wind.
anper) is known. TMD is a weight (additional mass) having a natural period equal to the natural period of the structure with appropriate damping. When the structure shakes with the first natural period, the weight above it resonates. By applying a force in the direction opposite to the sway of the structure, the sway of the structure is reduced.

【0003】また、上記したTMDはエネルギーを使わ
ない、いわば受動型の制振装置であるが、制振効果の高
い能動型の制振装置としてHMD(Hybrid Ma
ssDamper)等がある。HMDは、構造物に多段
積層ゴム等の弾性体を固定し、この弾性体に錘を載せ、
構造物が振動して、錘がその制御作用をなすときに、駆
動装置によって錘を強制的に移動させることによって、
錘の制振効果をより高めるものである。
Further, the TMD described above is a passive type vibration damping device that does not use energy, but as an active type vibration damping device having a high damping effect, an HMD (Hybrid Ma) is used.
ssDamper) and the like. In HMD, an elastic body such as multi-stage laminated rubber is fixed to a structure, and a weight is placed on the elastic body.
When the structure vibrates and the weight exerts its control action, by forcibly moving the weight by the drive device,
It further enhances the damping effect of the weight.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記し
た従来の構造物の制御方法にあっては、次の問題点があ
った。すなわち、前者のTMDでは、制御したい振動モ
ードにその周期を同調させないと効果が得難いため、振
動モードが複数ある場合には、各振動モードに対応した
周期を有する多数のTMDをそれぞれ用意しなければな
らず、コスト高を招いたり、広い配置スペースが必要に
なるといった問題点があった。
However, the conventional structure control method described above has the following problems. That is, in the former TMD, it is difficult to obtain the effect unless the cycle is synchronized with the vibration mode to be controlled. Therefore, when there are a plurality of vibration modes, a large number of TMDs each having a cycle corresponding to each vibration mode must be prepared. In addition, there are problems that the cost is increased and a large arrangement space is required.

【0005】また、後者のHMDにあっては、比較的広
い範囲の振動モードに対応できる反面、振動の状況をい
ち速く把握し、その状況に適合するように錘を強制的に
移動させなればならず、錘に力を加える駆動装置と高精
度の制御が必要になるため前者と同様にコスト高を招
く、あるいは高い信頼性が得難い等の問題点があった。
Further, in the latter HMD, although it is possible to cope with a vibration mode in a relatively wide range, if the situation of vibration is grasped quickly and the weight is forcibly moved to adapt to the situation. Of course, since a driving device for applying a force to the weight and high-precision control are required, there is a problem that the cost is increased as in the former case, or it is difficult to obtain high reliability.

【0006】さらに、上記したTMDの変形したものと
して、構造物と錘との間に介在させた減衰機構を減衰定
数可変できるものとし、振動に合わせて減衰機構の減衰
定数をリアルタイムで変化させることにより、構造物の
制振効果を高めるものも提案されているが、このように
リアルタイムで減衰定数を変えるものの場合、制御が非
常に難しいという問題点があった。
Further, as a modification of the above TMD, the damping mechanism interposed between the structure and the weight can be made variable in damping constant, and the damping constant of the damping mechanism can be changed in real time according to vibration. According to the above, a method for enhancing the vibration damping effect of a structure has been proposed, but in the case of such a method in which the damping constant is changed in real time, there is a problem that control is extremely difficult.

【0007】本発明は、上記事情に鑑みてなされたもの
で、低コストかつ小スペースで設置でき、かつ、信頼性
の高い制振が行なえる構造物の制振方法および制振装置
を提供することを目的とするものである。
The present invention has been made in view of the above circumstances, and provides a vibration damping method and a vibration damping device for a structure, which can be installed at a low cost in a small space and can perform highly reliable vibration damping. That is the purpose.

【0008】[0008]

【課題を解決するための手段】請求項1記載の発明で
は、制振対象となる構造物の上方に錘を設け、前記構造
物と錘との間に弾性体を設けるとともに減衰定数を可変
できる減衰機構を設け、随時変化する構造物の振動モー
ドに対応して減衰機構の減衰定数を可変させながら構造
物の制振を行なう構造物の制振方法であって、前記減衰
機構の減衰定数を設定するにあたり、構造物が振動して
いるときに、構造物の振動応答データから卓越振動モー
ドと振動レベルを求め、この求めた値から該振動モード
に適する前記減衰機構の減衰定数を求め、この値に前記
減衰機構の減衰定数を設定して前記構造物の制振を行な
うことを特徴とする。
According to the first aspect of the invention, a weight is provided above the structure to be damped, an elastic body is provided between the structure and the weight, and the damping constant can be varied. A damping method for a structure, wherein a damping mechanism is provided and the damping coefficient of the damping mechanism is varied while varying the damping constant of the damping mechanism in response to the vibration mode of the structure that changes at any time. In setting, when the structure is vibrating, the predominant vibration mode and the vibration level are obtained from the vibration response data of the structure, and the damping constant of the damping mechanism suitable for the vibration mode is obtained from the obtained value. The damping constant of the damping mechanism is set to a value to suppress the structure.

【0009】請求項2記載の発明では、減衰機構の減衰
定数の設定間隔を、少なくとも構造物の振動の1周期以
上とすることを特徴とする。
According to a second aspect of the present invention, the setting interval of the damping constant of the damping mechanism is at least one cycle of vibration of the structure or more.

【0010】請求項3記載の発明では、制振対象となる
構造物の上方に錘を設け、前記構造物と錘との間に弾性
体を設けるとともに減衰定数を可変可能な減衰機構を設
け、構造物が振動しているときに構造物の振動状況を検
出する振動センサを設け、該振動センサの出力値を基に
構造物の卓越振動モードと振動レベルを求め、これらの
求めた値から該振動モードに適する前記減衰機構の減衰
定数を求めて前記減衰機構の減衰定数を調整する制御手
段を設けてなることを特徴とする。
According to a third aspect of the present invention, a weight is provided above the structure to be damped, an elastic body is provided between the structure and the weight, and a damping mechanism capable of varying the damping constant is provided. A vibration sensor that detects the vibration state of the structure when the structure is vibrating is provided, the predominant vibration mode and the vibration level of the structure are obtained based on the output value of the vibration sensor, and the It is characterized in that control means is provided for determining a damping constant of the damping mechanism suitable for the vibration mode and adjusting the damping constant of the damping mechanism.

【0011】請求項4記載の発明では、制振対象となる
構造物の上方に錘を複数個設け、前記構造物と各錘との
間にそれぞれ弾性体と減衰機構を設け、前記錘同士の間
に弾性体と減衰定数を可変できる減衰機構を介在させ、
構造物が振動しているときに構造物の振動状況を検出す
る振動センサを設け、該振動センサの出力値を基に構造
物の卓越振動モードと振動レベルを求め、これらの求め
た値から該振動モードに適する前記減衰機構の減衰定数
を求めて前記減衰機構の減衰定数を調整する制御手段を
設けたことを特徴とする。
According to a fourth aspect of the present invention, a plurality of weights are provided above the structure to be damped, an elastic body and a damping mechanism are provided between the structure and each weight, and the weights are separated from each other. An elastic body and a damping mechanism that can change the damping constant are interposed between
A vibration sensor that detects the vibration state of the structure when the structure is vibrating is provided, the predominant vibration mode and the vibration level of the structure are obtained based on the output value of the vibration sensor, and the It is characterized in that control means for determining the damping constant of the damping mechanism suitable for the vibration mode and adjusting the damping constant of the damping mechanism is provided.

【0012】[0012]

【作用】本発明では、減衰機構の減衰定数を設定するに
あたり、構造物が振動しているときに、構造物の振動応
答データから卓越振動モードと振動レベルを求め、この
求めた値から該振動モードに適する減衰機構の減衰定数
を求め、この値に前記減衰機構の減衰定数を設定して構
造物の制振を行なうものであり、このように減衰機構の
減衰定数を設定するのにリアルタイムで制御するもので
はなく、ある程度の時間的な幅をもって制御するもので
あるため、制御が容易になる。
In the present invention, when setting the damping constant of the damping mechanism, when the structure is vibrating, the predominant vibration mode and the vibration level are obtained from the vibration response data of the structure, and the vibration is calculated from the obtained values. The damping constant of the damping mechanism suitable for the mode is obtained, and the damping constant of the damping mechanism is set to this value to control the structure. In this way, the damping constant of the damping mechanism is set in real time. The control is facilitated because it is not controlled but controlled with a certain time width.

【0013】[0013]

【実施例】以下、本発明の実施例を図面を参照して説明
する。図1〜図3は本発明にかかる構造物の制振装置の
第1実施例を示すものである。この実施例では、制振対
象となる構造物1の上部に減衰定数を可変可能な一対の
TMD2a,2bが設けられるとともに、構造物1が振
動しているときに該構造物1の振動状況を検出する振動
センサ3が設けられ、さらに、振動センサ3の出力値を
基にTMD2a,2bの減衰定数を調整する制御手段4
が設けられている。
Embodiments of the present invention will be described below with reference to the drawings. 1 to 3 show a first embodiment of a structure vibration damping device according to the present invention. In this embodiment, a pair of TMDs 2a and 2b whose damping constants can be changed are provided above the structure 1 to be damped, and the vibration state of the structure 1 is measured while the structure 1 is vibrating. A vibration sensor 3 for detecting is provided, and further, control means 4 for adjusting the damping constants of the TMDs 2a and 2b based on the output value of the vibration sensor 3.
Is provided.

【0014】TMD2a,2bは、図2に示すように、
構造物1の最上階に固定状態に設置された多段積層ゴム
からなる弾性体11と、この弾性体11上に載荷状態に
支持される鋼製の錘12と、この錘12と構造物1とに
連結された減衰機構13とから構成される。
The TMDs 2a and 2b are, as shown in FIG.
An elastic body 11 made of multi-stage laminated rubber fixedly installed on the top floor of the structure 1, a steel weight 12 supported on the elastic body 11 in a loaded state, the weight 12 and the structure 1. And a damping mechanism 13 connected to the.

【0015】減衰機構13は、減衰定数を変えられるも
のであって、錘12と構造物1との間に配設された封止
体16と、この封止体16に囲まれた電極17に電圧を
印加させる電源(図示略)と、前記封止体16に充填さ
れた電気粘性流体18とから構成される。封止体16は
錘12に固定された上部ブロック19と、構造物1に固
定された下部ブロック20と、この下部ブロック20に
下端部が固定されるとともに前記電極17を囲む筒状体
21と、筒状体21の上端部を閉塞するとともに上部ブ
ロック19に添装された変形自在なシール部22とから
構成される。なお、電極17は、上部ブロック19を介
して錘12に固定された第1電極17aと下部ブロック
20を介して構造物1に固定された第2電極17bとか
らなる。
The damping mechanism 13 can change the damping constant, and includes a sealing body 16 disposed between the weight 12 and the structure 1 and an electrode 17 surrounded by the sealing body 16. It is composed of a power source (not shown) for applying a voltage and an electrorheological fluid 18 filled in the sealing body 16. The sealing body 16 includes an upper block 19 fixed to the weight 12, a lower block 20 fixed to the structure 1, and a cylindrical body 21 having a lower end fixed to the lower block 20 and surrounding the electrode 17. , And a deformable seal portion 22 attached to the upper block 19 while closing the upper end portion of the tubular body 21. The electrode 17 includes a first electrode 17 a fixed to the weight 12 via the upper block 19 and a second electrode 17 b fixed to the structure 1 via the lower block 20.

【0016】前記封止体16の筒状体21には、電極1
7を浸漬するとともに、誘電体粒子を含有する前記電気
粘性流体18が充填される。電気粘性流体18は、鉄等
の誘電体粒子を含有しており、電極17に電圧を印加さ
せないときには誘電体粒子が自由に移動可能になり、電
極17に電圧を印加させたときには、誘電体粒子が分極
して電極17間にブリッジを形成し、両電極間17との
間の粘度が変化するものである。したがって、このTM
D2a,2bでは、電極17に印加する電圧の大きさに
応じて減衰機構13の減衰定数を変えることができる。
The cylindrical body 21 of the sealing body 16 has an electrode 1
7 is immersed, and the electrorheological fluid 18 containing dielectric particles is filled. The electrorheological fluid 18 contains dielectric particles such as iron, and when the voltage is not applied to the electrode 17, the dielectric particles can move freely, and when the voltage is applied to the electrode 17, the dielectric particles are Is polarized to form a bridge between the electrodes 17, and the viscosity between the electrodes 17 changes. Therefore, this TM
In D2a and 2b, the damping constant of the damping mechanism 13 can be changed according to the magnitude of the voltage applied to the electrode 17.

【0017】前記制御手段4は、構造物1が振動してい
るときに、構造物1の振動を検出する前記振動センサ3
から送られてくる検出信号を基に、このときの構造物1
の卓越振動モードと振動レベルを求め、これらの求めた
値からこのときの振動モードに適する減衰機構13の減
衰定数を求め、該減衰機構13に信号を送って減衰定数
をそれに合致するように調整するものである。
The control means 4 detects the vibration of the structure 1 while the structure 1 is vibrating.
Structure 1 at this time based on the detection signal sent from
The predominant vibration mode and the vibration level are calculated, the damping constant of the damping mechanism 13 suitable for the vibration mode at this time is calculated from these calculated values, and a signal is sent to the damping mechanism 13 to adjust the damping constant to match it. To do.

【0018】次に、上記構成の構造物の制振装置を用い
た制振方法について説明する。ここで、前提条件とし
て、構造物1が振動する際の並進周期は4.0秒、ねじ
れ周期は3.6秒と仮定するとき、TMD2a,2bの
周期は構造物1の並進周期に同調させてその周期を4.
0秒に設定する。また、TMD2a,2bの構造物1に
対する付加質量は0.01とする。
Next, a vibration damping method using the vibration damping device for the structure having the above structure will be described. Here, as a precondition, assuming that the translation period when the structure 1 vibrates is 4.0 seconds and the twist period is 3.6 seconds, the periods of the TMDs 2a and 2b are tuned to the translation period of the structure 1. The period is 4.
Set to 0 seconds. The added mass of the TMDs 2a and 2b to the structure 1 is 0.01.

【0019】そして、構造物1の振動が並進振動モード
だけであれば、TMD2a,2bの減衰定数は0.05
〜0.06程度のときに構造物1の応答は最小になり、
また、構造物1の振動がねじれ振動モードのみであれ
ば、減衰定数が略0.12で構造物1の応答が最小にな
るものとする。
If the vibration of the structure 1 is only the translational vibration mode, the damping constants of the TMDs 2a and 2b are 0.05.
The response of the structure 1 becomes the minimum at about 0.06,
If the vibration of the structure 1 is only the torsional vibration mode, the damping constant is about 0.12 and the response of the structure 1 is minimized.

【0020】例えば、風による外力が加わる際の振動モ
ードは、風の向く方向や大きさ等により刻々変化し、並
進振動モードとねじれ振動モードとの組み合わさったも
のとなる。このような、振動モードの変化に対応して制
御手段4からの信号に基づき前記TMDの減衰定数を変
えて、全体として構造物1の応答を最小にする。
For example, the vibration mode when an external force is applied by the wind changes momentarily depending on the direction and size of the wind, and is a combination of the translational vibration mode and the torsional vibration mode. The damping constant of the TMD is changed based on the signal from the control means 4 in response to such a change in the vibration mode to minimize the response of the structure 1 as a whole.

【0021】すなわち、風による外力が加わって構造物
1が振動するとき、構造物1の振動は振動センサ3によ
って検出され、振動センサ3の出力信号は制御手段4へ
送られる。この制御手段4では、振動センサ3から得ら
れる構造物1の振動応答データから卓越振動モードと振
動レベルを求める。そして、これら求めた値から、この
ときの振動モードに適する減衰機構13の減衰定数を求
め、TMD2a,2bに所定の電気信号が送って、減衰
機構13の減衰定数を該振動モードに適した値に設定す
る。具体的には、本例の場合、減衰定数を0.05〜
0.12の範囲内の適宜値に設定する。
That is, when the structure 1 vibrates due to an external force applied by wind, the vibration of the structure 1 is detected by the vibration sensor 3, and the output signal of the vibration sensor 3 is sent to the control means 4. The control means 4 obtains the predominant vibration mode and vibration level from the vibration response data of the structure 1 obtained from the vibration sensor 3. Then, from these calculated values, the damping constant of the damping mechanism 13 suitable for the vibration mode at this time is calculated, and a predetermined electric signal is sent to the TMDs 2a and 2b to set the damping constant of the damping mechanism 13 to a value suitable for the vibration mode. Set to. Specifically, in the case of this example, the damping constant is 0.05 to
It is set to an appropriate value within the range of 0.12.

【0022】ここときの制御サイクルは、リアルタイム
で行なうものではなく、構造物1の振動の1周期分以上
にする。時間的に言えば、数秒から数十分の間隔をもっ
て制御する。
The control cycle at this time is not performed in real time, but is set to one cycle or more of the vibration of the structure 1. In terms of time, control is performed at intervals of several seconds to several tens of minutes.

【0023】なお、前記した実施例では、TMD2a,
2bの減衰定数を可変にする方法として電気粘性流体1
8を利用するものを例に挙げて説明したが、これに限ら
れることなく、減衰機構としてオイルダンパを用いる場
合には、オリフィス径やバイパス管路の経路等を変化さ
せることにより減衰定数を変えるようにしてもよい。
In the above embodiment, the TMD 2a,
As a method for making the damping constant of 2b variable, an electrorheological fluid 1
Although description has been made by taking the case of using 8 as an example, the present invention is not limited to this, and when an oil damper is used as the damping mechanism, the damping constant is changed by changing the orifice diameter or the bypass pipe path. You may do it.

【0024】図4は本発明にかかる構造物の制振装置の
第2実施例を示すものである。この実施例では、制振対
象となる構造物1の上方に一対のTMD30a,30b
が設けられている。一対のTMD30a,30bは、そ
れぞれ錘31と、弾性体32と、減衰機構33を備え
る。左右のTMD30a,30bの錘31,31の間に
は弾性体35と減衰定数を可変できる減衰機構36が介
在されている。減衰定数を変えるものとしては、前記し
た電気粘性流体を利用したものでも、あるいはオイルダ
ンパを用いる場合にはオリフィス径を変えるもの等であ
ってもよい。なお、構造物1が振動しているときに該構
造物1の振動状況を検出する振動センサ3が設けられる
とともに、振動センサ3の出力値を基にTMD2a,2
bの減衰定数を調整する制御手段4が設けられているの
は前記した第1実施例と同様である。
FIG. 4 shows a second embodiment of the vibration damping device for structures according to the present invention. In this embodiment, a pair of TMDs 30a and 30b is provided above the structure 1 to be damped.
Is provided. Each of the pair of TMDs 30a and 30b includes a weight 31, an elastic body 32, and a damping mechanism 33. An elastic body 35 and a damping mechanism 36 capable of varying a damping constant are interposed between the weights 31, 31 of the left and right TMDs 30a, 30b. The damping constant may be changed by using the above-described electrorheological fluid, or by changing the orifice diameter when an oil damper is used. A vibration sensor 3 that detects the vibration state of the structure 1 when the structure 1 is vibrating is provided, and based on the output value of the vibration sensor 3, the TMDs 2a, 2
As in the first embodiment, the control means 4 for adjusting the damping constant b is provided.

【0025】前記した制振装置によれば、風による外力
が加わって構造物1が振動するとき、構造物1の振動は
振動センサ3によって検出され、振動センサ3の出力信
号は制御手段4へ送られる。この制御手段4では、振動
センサ3から得られる構造物1の振動応答データから卓
越振動モードと振動レベルを求める。そして、これら求
めた値から、このときの振動モードに適する減衰機構3
6の減衰定数を求め、該減衰機構36に所定の電気信号
が送って、減衰機構36の減衰定数を該振動モードに適
した値に設定する。
According to the vibration damping device described above, when the structure 1 vibrates due to an external force applied by wind, the vibration of the structure 1 is detected by the vibration sensor 3, and the output signal of the vibration sensor 3 is sent to the control means 4. Sent. The control means 4 obtains the predominant vibration mode and vibration level from the vibration response data of the structure 1 obtained from the vibration sensor 3. Then, based on these obtained values, the damping mechanism 3 suitable for the vibration mode at this time
The damping constant of 6 is obtained, and a predetermined electric signal is sent to the damping mechanism 36 to set the damping constant of the damping mechanism 36 to a value suitable for the vibration mode.

【0026】ここときの制御サイクルは、リアルタイム
で行なうものではなく、構造物1の振動の1周期分以上
にする。時間的に言えば、数秒から数十分の間隔をもっ
て制御する。この点は、前記した第1実施例と同様であ
る。このように構造物1の例えば強風時の時系列におけ
る卓越振動モードの変化に応じて、両TMD30a,3
0bの錘31の間に介在した減衰機構36の減衰特性を
最適な値に変化させることで、制振効果を高めることが
でき、TMDの全体の特性を変える場合に比べ、TMD
のトータル的な特性の変化が簡単に行なえる利点があ
る。なお、上記した卓越振動モードの変化としては、構
造物の並進振動モードとねじれ振動モードの周期が異な
る場合の両者間の変化が最も大きい。
The control cycle at this time is not performed in real time, but is set to one cycle or more of the vibration of the structure 1. In terms of time, control is performed at intervals of several seconds to several tens of minutes. This point is the same as the first embodiment described above. In this way, according to the change in the predominant vibration mode of the structure 1 in a time series during strong wind, for example, both TMDs 30a, 3
By changing the damping characteristic of the damping mechanism 36 interposed between the weights 31 of 0b to an optimum value, the damping effect can be enhanced, and compared with the case where the entire characteristic of the TMD is changed,
It has the advantage that the total characteristics of can be changed easily. Note that the above-mentioned change in the dominant vibration mode is the largest change between the translational vibration mode and the torsional vibration mode of the structure when the periods are different.

【0027】図5および図6はモデルケースの比較図で
ある。前提条件として、両TMD30a,30bの錘3
1の和と構造物1の質量比は、0.01、構造物1の周
期T1は4.0秒、減衰定数h1は0.01とする。
5 and 6 are comparison diagrams of model cases. As a prerequisite, the weight 3 of both TMDs 30a and 30b
The sum of 1 and the mass ratio of the structure 1 is 0.01, the period T 1 of the structure 1 is 4.0 seconds, and the damping constant h 1 is 0.01.

【0028】図5における〈ケース1〉は、この場合の
風外力に対するする各TMD30a,30bの周波数応
答をT2,T3=4.0秒、h2,h3=0.06(1台当
たりの各TMD30a,30bの減衰定数を最適値に設
定した場合の値)とし、両TMD30a,30bの錘3
1,31の間に介在した弾性体35のバネ定数および減
衰機構36の減衰係数をそれぞれk4,c4=0とした場
合の特性を表す。
In <Case 1> in FIG. 5, the frequency response of each TMD 30a, 30b to the wind force in this case is T 2 , T 3 = 4.0 seconds, h 2 , h 3 = 0.06 (1 unit). The value of the damping constant of each TMD 30a, 30b is set to the optimum value), and the weight 3 of both TMDs 30a, 30b is set.
The characteristics are shown when the spring constant of the elastic body 35 and the damping coefficient of the damping mechanism 36 interposed between 1 and 31 are k 4 and c 4 = 0, respectively.

【0029】一方、図5における〈ケース2〉は、TM
D30aの周波数応答をT2=3.6秒、TMD30b
の周波数応答をT3=4.4秒、TMD30a,30b
の減衰定数h2,h3=0.02とし、両TMD30a,
30bの錘31,31の間に介在した弾性体35のバネ
定数および減衰機構36の減衰係数をそれぞれ適切な値
に設定した場合k4=0.009、c4=0.015とし
た場合の特性を表す。これら両ケース1,2を比べても
同様の減衰効果が得られるのがわかる。
On the other hand, <Case 2> in FIG.
The frequency response of D30a is T 2 = 3.6 seconds, TMD30b
Frequency response of T 3 = 4.4 seconds, TMD 30a, 30b
The damping constants h 2 and h 3 of 0.02 are set to 0.02, and both TMDs 30a,
When the spring constant of the elastic body 35 and the damping coefficient of the damping mechanism 36 interposed between the weights 31 and 31 of 30b are set to appropriate values, respectively, k 4 = 0.009 and c 4 = 0.015 Represents a characteristic. It can be seen that the same damping effect can be obtained by comparing the cases 1 and 2.

【0030】図6は前記した条件において、構造物1の
周期T1が3.6秒に変わった場合を比較したものであ
って、図6の〈ケース1〉は図5における〈ケース1〉
と同じ条件下での特性を表し、図6の〈ケース2〉は図
5における〈ケース1〉において、減衰係数のみを最適
な値であるc4=0.03に可変した場合の特性を表
す。このように、図6においては、一見して〈ケース
2〉の方が〈ケース1〉に比べて構造物1の周波数応答
を小さくすることができるのがわかる。すなわち、両T
MD30a,30bの錘31の間に介在した減衰機構3
6の減衰特性を最適な値に変化させることで、制振効果
を高められるのがわかる。
FIG. 6 is a comparison of the case where the period T 1 of the structure 1 is changed to 3.6 seconds under the above-mentioned conditions. <Case 1> in FIG. 6 is <Case 1> in FIG.
6 represents the characteristics under the same conditions as described above, and <Case 2> in FIG. 6 represents the characteristics when only the damping coefficient is changed to c 4 = 0.03 which is the optimum value in <Case 1> in FIG. . Thus, in FIG. 6, it is apparent that the frequency response of the structure 1 can be made smaller in <Case 2> than in <Case 1>. That is, both T
Damping mechanism 3 interposed between the weights 31 of the MDs 30a and 30b
It can be seen that the damping effect can be enhanced by changing the damping characteristic of 6 to the optimum value.

【0031】[0031]

【発明の効果】請求項1記載の発明によれば、減衰機構
の減衰定数を設定するにあたり、所定の振動モードで構
造物が振動しているときに、構造物の振動応答データか
ら卓越振動モードと振動レベルを求め、この求めた値か
ら該振動モードに適する減衰機構の減衰定数を求め、こ
の値に前記減衰機構の減衰定数を設定して構造物の制振
を行なうものであり、このように減衰機構の減衰定数を
設定するのにリアルタイムで制御するものではなく、あ
る程度の時間的な幅をもって制御するものであるため、
制御が容易になり、しかも信頼性も高まる。また、周期
の異なるTMDを個々に設置する場合に比べて、低コス
ト化並びに小スペース化が図れる。
According to the first aspect of the present invention, when the damping constant of the damping mechanism is set, when the structure is vibrating in the predetermined vibration mode, the predominant vibration mode is calculated from the vibration response data of the structure. And the vibration level are obtained, the damping constant of the damping mechanism suitable for the vibration mode is obtained from the obtained value, and the damping constant of the damping mechanism is set to this value to suppress the structure vibration. Since it does not control in real time to set the damping constant of the damping mechanism, it controls with a certain temporal width,
Control is easier and more reliable. Further, as compared with the case where TMDs having different cycles are individually installed, the cost and space can be reduced.

【0032】請求項2記載の発明によれば、減衰機構の
減衰定数の設定間隔を、少なくとも構造物の振動の1周
期以上にすることとしており、このように減衰機構の減
衰定数の設定間隔を少なくとも構造物の振動の1周期以
上に設定すれば、その時点での構造物の卓越振動モード
と振動レベルとをある程度の精度をもって求めることが
でき、しかも制御応答速度もそれほど速いものが要求さ
れない。
According to the second aspect of the present invention, the setting interval of the damping constant of the damping mechanism is set to be at least one cycle of the vibration of the structure or more. By setting at least one cycle of vibration of the structure, the predominant vibration mode and vibration level of the structure at that time can be obtained with a certain degree of accuracy, and the control response speed is not required to be so high.

【0033】請求項3記載の発明によれば、制振対象と
なる構造物の上方に錘を設け、前記構造物と錘との間に
弾性体を設けるとともに減衰定数を可変可能な減衰機構
を設け、構造物が振動しているときに構造物の振動状況
を検出する振動センサを設け、該振動センサの出力値を
基に構造物の卓越振動モードと振動レベルを求め、これ
らの求めた値から該振動モードに適する前記減衰機構の
減衰定数を求めて前記減衰機構の減衰定数を調整する制
御手段を設けているので、請求項1または請求項2記載
の発明が容易に実施できる。
According to the third aspect of the present invention, a damping mechanism is provided in which a weight is provided above the structure to be damped, an elastic body is provided between the structure and the weight, and the damping constant is variable. Provided with a vibration sensor that detects the vibration state of the structure when the structure is vibrating, determine the predominant vibration mode and vibration level of the structure based on the output value of the vibration sensor, and obtain these values Since the control means for determining the damping constant of the damping mechanism suitable for the vibration mode and adjusting the damping constant of the damping mechanism is provided, the invention according to claim 1 or 2 can be easily implemented.

【0034】請求項4記載の発明によれば、制振対象と
なる構造物の上方に錘を複数個設け、前記構造物と各錘
との間にそれぞれ弾性体と減衰機構を設け、前記錘同士
の間に弾性体と減衰定数を可変できる減衰機構を介在さ
せ、所定の振動モードで構造物が振動しているときに構
造物の振動状況を検出する振動センサを設け、該振動セ
ンサの出力値を基に構造物の卓越振動モードと振動レベ
ルを求め、これらの求めた値から該振動モードに適する
前記減衰機構の減衰定数を求めて前記減衰機構の減衰定
数を調整する制御手段を設けているので、請求項3記載
の発明と同様に、本発明方法を容易に実施できる。
According to the fourth aspect of the present invention, a plurality of weights are provided above the structure to be damped, and an elastic body and a damping mechanism are provided between the structure and each weight. An elastic body and a damping mechanism capable of varying a damping constant are interposed between the two, and a vibration sensor for detecting the vibration state of the structure when the structure vibrates in a predetermined vibration mode is provided, and the output of the vibration sensor Based on the value, the predominant vibration mode and vibration level of the structure are obtained, and a control means for adjusting the damping constant of the damping mechanism by obtaining the damping constant of the damping mechanism suitable for the vibration mode from these obtained values is provided. Therefore, the method of the present invention can be easily carried out as in the case of the third aspect of the invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる構造物の制振装置の第1実施例
を示す概略図である。
FIG. 1 is a schematic view showing a first embodiment of a structure vibration damping device according to the present invention.

【図2】同第1実施例の要部を示す断面図である。FIG. 2 is a sectional view showing a main part of the first embodiment.

【図3】同第1実施例において用いられる減衰機構の断
面図である。
FIG. 3 is a sectional view of a damping mechanism used in the first embodiment.

【図4】本発明にかかる構造物の制振装置の第2実施例
を示す概略図である。
FIG. 4 is a schematic view showing a second embodiment of the vibration damping device for structures according to the present invention.

【図5】同第2実施例の作用を示すグラフである。FIG. 5 is a graph showing an operation of the second embodiment.

【図6】同第2実施例の作用を示すグラフである。FIG. 6 is a graph showing an operation of the second embodiment.

【符号の説明】[Explanation of symbols]

1 構造物 2a,2b TMD 11 弾性体 12 錘 13 減衰機構 18 電気粘性流体 30a,30b TMD 31 錘 35 弾性体 36 減衰機構 1 Structure 2a, 2b TMD 11 Elastic body 12 Weight 13 Damping mechanism 18 Electrorheological fluid 30a, 30b TMD 31 Weight 35 Elastic body 36 Damping mechanism

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 制振対象となる構造物の上方に錘を設
け、前記構造物と錘との間に弾性体を設けるとともに減
衰定数を可変できる減衰機構を設け、随時変化する構造
物の振動モードに対応して減衰機構の減衰定数を可変さ
せながら構造物の制振を行なう構造物の制振方法であっ
て、 前記減衰機構の減衰定数を設定するにあたり、構造物が
振動しているときに、構造物の振動応答データから卓越
振動モードと振動レベルを求め、この求めた値から該振
動モードに適する前記減衰機構の減衰定数を求め、この
値に前記減衰機構の減衰定数を設定して前記構造物の制
振を行なうことを特徴とする構造物の制振方法。
1. A vibration of a structure, which comprises a weight above a structure to be damped, an elastic body provided between the structure and the weight, and a damping mechanism capable of varying a damping constant. A method for damping a structure in which the damping constant of a damping mechanism is varied in accordance with a mode, wherein the structure is vibrating when the damping constant of the damping mechanism is set. In addition, the predominant vibration mode and the vibration level are obtained from the vibration response data of the structure, the damping constant of the damping mechanism suitable for the vibration mode is obtained from the obtained value, and the damping constant of the damping mechanism is set to this value. A structure damping method, characterized in that the structure is damped.
【請求項2】請求項1記載の構造物の制振方法におい
て、 前記減衰機構の減衰定数の設定間隔は、少なくとも前記
構造物の振動の1周期以上とすることを特徴とする構造
物の制振方法。
2. The structure damping method according to claim 1, wherein a setting interval of the damping constant of the damping mechanism is at least one cycle of vibration of the structure or more. Shaking method.
【請求項3】制振対象となる構造物の上方に錘を設け、
前記構造物と錘との間に弾性体を設けるとともに減衰定
数を可変可能な減衰機構を設け、所定の振動モードで構
造物が振動しているときに構造物の振動状況を検出する
振動センサを設け、該振動センサの出力値を基に構造物
の卓越振動モードと振動レベルを求め、これらの求めた
値から該振動モードに適する前記減衰機構の減衰定数を
求めて前記減衰機構の減衰定数を調整する制御手段を設
けてなることを特徴とする構造物の制振装置。
3. A weight is provided above the structure to be damped,
A vibration sensor that detects the vibration state of the structure when the structure vibrates in a predetermined vibration mode is provided by providing an elastic body between the structure and the weight and a damping mechanism that can vary the damping constant. Provided, the predominant vibration mode and the vibration level of the structure based on the output value of the vibration sensor, the damping constant of the damping mechanism suitable for the vibration mode from these obtained values to determine the damping constant of the damping mechanism A vibration damping device for a structure, comprising a control means for adjusting.
【請求項4】制振対象となる構造物の上方に錘を複数個
設け、前記構造物と各錘との間にそれぞれ弾性体と減衰
機構を設け、前記錘同士の間に弾性体と減衰定数を可変
できる減衰機構を介在させ、所定の振動モードで構造物
が振動しているときに構造物の振動状況を検出する振動
センサを設け、該振動センサの出力値を基に構造物の卓
越振動モードと振動レベルを求め、これらの求めた値か
ら該振動モードに適する前記減衰機構の減衰定数を求め
て前記減衰機構の減衰定数を調整する制御手段を設けた
ことを特徴とする構造物の制振装置。
4. A plurality of weights are provided above a structure to be damped, an elastic body and a damping mechanism are provided between the structure and each weight, and the elastic body and the damping are provided between the weights. A vibration sensor that detects the vibration status of the structure when the structure vibrates in a predetermined vibration mode is provided with a damping mechanism that can change the constant, and the predominance of the structure is determined based on the output value of the vibration sensor. A structure including a control means for determining a vibration mode and a vibration level, and determining a damping constant of the damping mechanism suitable for the vibration mode from the obtained values to adjust the damping constant of the damping mechanism. Vibration control device.
JP4953694A 1994-03-18 1994-03-18 Vibration control method and its device for structure Pending JPH07259911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4953694A JPH07259911A (en) 1994-03-18 1994-03-18 Vibration control method and its device for structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4953694A JPH07259911A (en) 1994-03-18 1994-03-18 Vibration control method and its device for structure

Publications (1)

Publication Number Publication Date
JPH07259911A true JPH07259911A (en) 1995-10-13

Family

ID=12833904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4953694A Pending JPH07259911A (en) 1994-03-18 1994-03-18 Vibration control method and its device for structure

Country Status (1)

Country Link
JP (1) JPH07259911A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005188272A (en) * 2003-12-01 2005-07-14 Bridgestone Corp Damping device and building structure
JP2011043201A (en) * 2009-08-20 2011-03-03 Toshiba Corp Damping support
JP2018003269A (en) * 2016-06-27 2018-01-11 鹿島建設株式会社 Vibration control device, vibration control system, and vibration control method
JP2018003317A (en) * 2016-06-28 2018-01-11 鹿島建設株式会社 Vibration control device, vibration control system, and vibration control method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005188272A (en) * 2003-12-01 2005-07-14 Bridgestone Corp Damping device and building structure
JP2011043201A (en) * 2009-08-20 2011-03-03 Toshiba Corp Damping support
JP2018003269A (en) * 2016-06-27 2018-01-11 鹿島建設株式会社 Vibration control device, vibration control system, and vibration control method
JP2018003317A (en) * 2016-06-28 2018-01-11 鹿島建設株式会社 Vibration control device, vibration control system, and vibration control method

Similar Documents

Publication Publication Date Title
Xu et al. An active-damping-compensated magnetorheological elastomer adaptive tuned vibration absorber
Emura et al. Development of the semi-active suspension system based on the sky-hook damper theory
Lin et al. Semiactive control of building structures with semiactive tuned mass damper
Serrand et al. Multichannel feedback control for the isolation of base-excited vibration
Moutinho et al. Vibration control of a slender footbridge using passive and semiactive tuned mass dampers
JPH034047A (en) Suspension device for vehicle
JPH06675Y2 (en) Controlled vibration control device
KR102228003B1 (en) Smart vibration reduction devices for retractable roof structure
WO2007087018A1 (en) System for and method of monitoring free play of aircraft control surfaces
JPH07259911A (en) Vibration control method and its device for structure
Loveday et al. Modification of piezoelectric vibratory gyroscope resonator parameters by feedback control
WO1994016241A1 (en) Semiactive control for electro-viscous damper
JPH0221044A (en) Vibration proofing method and device thereof
JPH03250165A (en) Hybrid dynamic vibration reducer
Wang Structural vibration suppression via parametric control actions—piezoelectric materials with real-time semi-active networks
Hirunyapruk Vibration control using an adaptive tuned magneto-rheological fluid vibration absorber
Faal et al. Vibration analysis of undamped, suspended multi-beam absorber systems
JPS6395512A (en) Vibrator controller
Rohman et al. Optimization of excitation source and Dva mass from the weight point in the 2-Dof main systems in reducing translation and rotation vibration
Lin et al. Application of electromagnetic tuned mass damper with flywheels for controlling building structure vibration
şi Mecatronică Experimental study of an electromechanical system used to control the mechanical mobility
JPH02159437A (en) Control type engine mount
JP4031072B2 (en) Hybrid vibration control device
JP2000088044A (en) Dynamic vibration absorber for vehicle
JPH0464743A (en) Hybrid dynamic absorber

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020730