JPH01220163A - System and device for magneto-optical recording - Google Patents

System and device for magneto-optical recording

Info

Publication number
JPH01220163A
JPH01220163A JP4485188A JP4485188A JPH01220163A JP H01220163 A JPH01220163 A JP H01220163A JP 4485188 A JP4485188 A JP 4485188A JP 4485188 A JP4485188 A JP 4485188A JP H01220163 A JPH01220163 A JP H01220163A
Authority
JP
Japan
Prior art keywords
magneto
optical disk
film
plane
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4485188A
Other languages
Japanese (ja)
Inventor
Teruaki Fujinaga
輝明 藤永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4485188A priority Critical patent/JPH01220163A/en
Priority to EP89301883A priority patent/EP0330507A3/en
Priority to US07/315,166 priority patent/US5153868A/en
Publication of JPH01220163A publication Critical patent/JPH01220163A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10586Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material
    • G11B11/10589Details
    • G11B11/10591Details for improving write-in properties, e.g. Curie-point temperature
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10502Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing characterised by the transducing operation to be executed
    • G11B11/10504Recording
    • G11B11/10508Recording by modulating only the magnetic field at the transducer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10502Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing characterised by the transducing operation to be executed
    • G11B11/10517Overwriting or erasing

Landscapes

  • Recording Or Reproducing By Magnetic Means (AREA)

Abstract

PURPOSE:To enlarge the selecting range of the material of a magnetizing film and to use a magnetism generating source which is compact and has high performance by magnetizing the magnetizing film of a magneto-optical disk in an in-plane direction and executing the recording or erasing of information. CONSTITUTION:An optical disk 21 to use an in-plane magnetizing film is revolved around a shaft center and a magnetic field is impressed from a ring-shaped magnetic head 22 in the diameter direction of the optical disk 21. On the other hand, a laser beam to be outgoing from a semiconductor laser 23 is passed through a condenser lens 24, a prism 25 for shaping, a beam splitter (BS) 26 and an objective lens 27 and condensed to the magnetizing film. Thus, the temperature of the magnetizing film raises near a curie point or above a compensating temperature and the film is magnetized in the magnetic field impressing direction of the head 22. Then, the information are recorded or erased. At the time of reproducing, a reflected light whose polarizing surface is turned in correspondence to the magnetization is passed through the objective lens 27, the BSs 26, 28, a lambda/2 board 31 and a condenser lens 32 and separated into P and S components by a polarizing BS 34. Then, the light is incoming to photo-diodes 33 and 35 and an output is inputted to a differential amplifier 36. Then, the information is reproduced by a difference signal.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁気光学的効果を利用して情報を記録及び再
生する光磁気記録方式及びこれに用いる装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magneto-optical recording system for recording and reproducing information using magneto-optical effects, and a device used therefor.

〔従来の技術〕[Conventional technology]

情報の高度化に伴い、情報ファイル装置の大容量化、高
密度化が要求され、書換え可能な高密度記録装置として
光磁気ディスク装置が注目されている。
As information becomes more sophisticated, information file devices are required to have larger capacities and higher densities, and magneto-optical disk devices are attracting attention as rewritable high-density recording devices.

第4図は従来の光磁気ディスク装置における光磁気記録
方式の概念を示す図であって、予め一方向、例えば第4
図中の上向きに垂直磁化された垂直磁化111!41に
対し、対物レンズ44によって集光されたレーザ光45
を照射し、照射箇所の温度をキューリ点近く、または?
1lil温度以上まで上昇させてその保磁力を低下させ
るとともに、電磁石等からなる磁界発生源42から前記
垂直磁化膜41の磁化方向とは逆方向、即ち第4図中下
向きの外部磁界を印加して磁化方向を反転させ、垂直磁
化膜41に情報を記録する。
FIG. 4 is a diagram showing the concept of a magneto-optical recording method in a conventional magneto-optical disk device.
Laser light 45 focused by objective lens 44 on perpendicular magnetization 111!41 that is vertically magnetized upward in the figure
Is the temperature of the irradiated area close to the Curie point?
At the same time, an external magnetic field is applied in a direction opposite to the magnetization direction of the perpendicularly magnetized film 41, that is, downward in FIG. The magnetization direction is reversed and information is recorded on the perpendicularly magnetized film 41.

一方、垂直磁化膜41に記録した情報を消去する場合は
、垂直磁化膜41の当初の磁化方向(第2図中右向き)
と同方向の外部磁界を印加するとともに集光されたレー
ザ光を照射することにより、記録時と同様の原理で垂直
磁化膜41が上向きに磁化され、情報が消去された状態
となる。
On the other hand, when erasing the information recorded on the perpendicular magnetization film 41, the original magnetization direction of the perpendicular magnetization film 41 (towards the right in FIG. 2)
By applying an external magnetic field in the same direction as the perpendicularly magnetized film 41 and irradiating it with focused laser light, the perpendicularly magnetized film 41 is magnetized upward based on the same principle as during recording, and the information is erased.

また、垂直磁化膜41に記録された情報を再生する際に
は、通常カー効果が利用される。即ち、垂直磁化膜41
に照射された直線偏光は、その偏光面を磁化の向きに応
じて左または右に回転した反射光となり(極力−効果)
、この回転を検光子等により光量変化に変換する等して
再生信号を得る。
Further, when reproducing information recorded on the perpendicularly magnetized film 41, the Kerr effect is usually used. That is, the perpendicular magnetization film 41
Linearly polarized light irradiated onto the surface becomes reflected light with its plane of polarization rotated to the left or right depending on the direction of magnetization (as much as possible - effect).
A reproduced signal is obtained by converting this rotation into a change in light amount using an analyzer or the like.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、垂直磁化膜41は記録感度を確保するため、
その膜厚は一般的に1000Å以下が要求され、その薄
さのために膜自身の磁化による大きな反磁界を生じ、記
録磁化を減少させる。従って、垂直磁化11+41は、
記録磁化を保つために保磁力の高い物質でなければなら
ないが、このような性質を有する物質として現在知られ
ているのは、カー効果が小さく、酸化腐食を受は易いと
いった重大な欠点を有する希土類−遷移金属の非晶質膜
のみであって磁化膜材料の選択範囲が狭いという問題が
ある。
By the way, in order to ensure the recording sensitivity of the perpendicular magnetization film 41,
The thickness of the film is generally required to be 1000 Å or less, and due to its thinness, a large demagnetizing field is generated due to the magnetization of the film itself, reducing recorded magnetization. Therefore, the perpendicular magnetization 11+41 is
In order to maintain recording magnetization, a material must have a high coercive force, but currently known materials with this property have serious drawbacks such as a small Kerr effect and susceptibility to oxidative corrosion. There is a problem in that only an amorphous film of rare earth-transition metal is used, and the selection range of magnetized film materials is narrow.

また、従来の光磁気記録方式及びこれに用いる装置は磁
化膜に対して垂直な磁界の印加を必要とし、印加した磁
界が発散するため、磁界分布が少なく、高周波変調が可
能な小型磁界発生源の構成が困難であるという問題があ
る。
In addition, conventional magneto-optical recording methods and the devices used therein require the application of a magnetic field perpendicular to the magnetized film, and the applied magnetic field diverges, resulting in small magnetic field distribution and a small magnetic field generator capable of high-frequency modulation. The problem is that it is difficult to configure.

本発明はこのような課題を解決するためになされたもの
であって、磁化膜の材料の選択範囲が広く、小型高性能
の磁界発生源を使用し得る光磁気記録方式及びこれに用
いる装置の堤供を目的とする。
The present invention has been made to solve these problems, and provides a magneto-optical recording system that allows a wide selection of magnetized film materials and uses a small, high-performance magnetic field generation source, and a device used therefor. The purpose is to donate money.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の光磁気記録方式は、光磁気ディスクに光ビーム
を照射してその磁化膜を磁化し、情報を記録または消去
する光磁気記録方式において、光磁気ディスクの磁化膜
を面内方向に磁化して情報を記録または消去することを
特徴とし、また本発明に係る光磁気ディスク装置は、前
記光磁気記録方式において、光磁気ディスクが、面内方
向に磁化きれる面内磁化膜を備えてなることを特徴とす
る。
The magneto-optical recording method of the present invention is a magneto-optical recording method that records or erases information by irradiating a magneto-optical disk with a light beam to magnetize its magnetized film. The magneto-optical disk device according to the present invention is characterized in that in the magneto-optical recording method, the magneto-optical disk is provided with an in-plane magnetized film that can be magnetized in an in-plane direction. It is characterized by

〔作用〕[Effect]

本発明の光磁気記録方式は、光磁気ディスクの磁化膜の
磁化方向を、極めて薄い磁化膜の厚み方向ではなく磁化
膜の面内方向とすることにより、磁化の両端に生ずる磁
極N、S間の距離が十分長くなり反磁界が大幅に減少す
る。従って、面内方向に記録することにより、保磁力の
低い磁化膜であっても磁化の減磁は生ぜず、安定した情
報記録ができる。
In the magneto-optical recording method of the present invention, the magnetization direction of the magnetization film of the magneto-optical disk is set not in the thickness direction of the extremely thin magnetization film but in the in-plane direction of the magnetization film. When the distance becomes sufficiently long, the demagnetizing field decreases significantly. Therefore, by recording in the in-plane direction, demagnetization does not occur even in a magnetized film with a low coercive force, and stable information recording can be performed.

さらに、磁化膜面内での磁化方向は、隣りあう記録磁化
の同極の磁極が相対するように磁化されれば、互いに記
録磁化を打ち消し合う方向の磁界を生ずるので、同極の
磁極が応対しない方向に磁化し記録することが、より安
定した情報記録ができるとともに、より保磁力を必要と
せず適当である。
Furthermore, regarding the magnetization direction within the plane of the magnetized film, if adjacent magnetic poles with the same polarity of recording magnetization are magnetized so as to face each other, a magnetic field is generated in a direction that cancels out the recording magnetization, so the magnetic poles with the same polarity respond. It is appropriate to record by magnetizing in a direction in which the magnetic field does not move, as this allows more stable information recording and requires less coercive force.

〔原理〕〔principle〕

次に、本発明に係る光磁気記録方式の記録原理につき、
第2図に示す光磁気記録方式の概念図に基づき説明する
。第2図において、予め一方向、例えば本概念図では第
2図中右向きに磁化された面内磁化膜11に対し、対物
レンズ14によりレーザ光を集光して照射し、照射箇所
の温度をキューリ点近く、または補償温度以上まで上昇
させてその保磁力を低下させるとともに、面内磁界発生
源、例えば本概念図では第2図中のリング型磁気ヘッド
22から前記面内磁化膜11の磁化方向とは逆方向、本
概念図では第2図中左向きの外部磁界を加えて局所的に
磁化方向を反転させ、前記面内磁化膜11に情報を記録
する。
Next, regarding the recording principle of the magneto-optical recording method according to the present invention,
The explanation will be based on the conceptual diagram of the magneto-optical recording method shown in FIG. In FIG. 2, a laser beam is focused and irradiated by an objective lens 14 onto an in-plane magnetized film 11 that has been magnetized in one direction, for example, rightward in FIG. The temperature is raised to near the Curie point or above the compensation temperature to reduce its coercive force, and the magnetization of the in-plane magnetized film 11 is removed from an in-plane magnetic field generation source, for example, the ring-shaped magnetic head 22 in FIG. 2 in this conceptual diagram. By applying an external magnetic field in the opposite direction, in this conceptual diagram, to the left in FIG. 2, the magnetization direction is locally reversed, and information is recorded in the in-plane magnetized film 11.

一方、面内磁化1iillに記録した情報を消去する場
合は、前記面内磁化膜11の当初の磁化方向(第2図中
右向き)と同方向の外部磁界を印加するとともに集光さ
れたレーザ光を照射することにより記録時と同様の原理
により情報が消去される。
On the other hand, when erasing the information recorded in the in-plane magnetization film 1iill, an external magnetic field is applied in the same direction as the original magnetization direction (rightward in FIG. 2) of the in-plane magnetization film 11, and a focused laser beam is applied to the in-plane magnetization film 11. Information is erased by irradiating it using the same principle as during recording.

また、面内磁化膜11に記録された情報を再生する場合
には、通常カー効果が利用される。即ち、面内磁化l1
111に照射された直線偏光は、その偏光面を磁化の向
きに応じて左または右に回転した反射光となり(縦カー
効果または横カー効果)、この回転を検光子等により光
量変化に変換する等して再生信号を得る。
Further, when reproducing information recorded on the in-plane magnetized film 11, the Kerr effect is usually used. That is, in-plane magnetization l1
The linearly polarized light irradiated to 111 becomes reflected light with its plane of polarization rotated to the left or right depending on the direction of magnetization (vertical Kerr effect or horizontal Kerr effect), and this rotation is converted into a change in light intensity using an analyzer etc. etc. to obtain a reproduced signal.

なお、磁界発生源としては、例えばリング型磁気ヘッド
22を用いれば、面内磁化膜11と組み合わせることに
より、本概念図第2図に示すように、磁束13がリング
型磁気ヘッド22の一端から放出されて面内磁化膜ll
中を通り、リング型磁気ヘッド22の他端に入って戻る
という閉磁路構成となり、磁束漏れが少なく磁束効率が
高く適当である。磁束効率が高まれば、所要強度の外部
磁界を面内磁化膜に印加するために、より少ないコイル
巻数またはコイル通電電流でよく、磁界の高周波変調ま
た磁界発生源の小型化が可能となる。
If, for example, a ring-shaped magnetic head 22 is used as the magnetic field generation source, by combining it with the in-plane magnetized film 11, the magnetic flux 13 will be transmitted from one end of the ring-shaped magnetic head 22, as shown in FIG. 2 of this conceptual diagram. Emitted and in-plane magnetized film
It has a closed magnetic path configuration in which it passes through the ring, enters the other end of the ring-shaped magnetic head 22, and returns, and is suitable for having little magnetic flux leakage and high magnetic flux efficiency. If the magnetic flux efficiency is increased, a smaller number of coil turns or a smaller coil current is required to apply an external magnetic field of the required intensity to the in-plane magnetized film, and high frequency modulation of the magnetic field and miniaturization of the magnetic field generation source are possible.

〔実施例〕〔Example〕

以下、本発明をその実施例を示す図面に基づき詳述する
。第1図は本発明に係る光磁気ディスク装置要部の構成
の一例を概略的に示す模式図であって、図中21は面内
方向に磁化される面内磁化膜を使用した光磁気ディスク
である。光磁気ディスク21は情報の記録トラックが同
心円状または螺旋状に形成され、その軸心周りに高速で
回転しており、リング型磁気へンド22のヨーク両端は
光磁気ディスク21の径方向に配されて光磁気ディスク
21径方向に磁界を印加する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below based on drawings showing embodiments thereof. FIG. 1 is a schematic diagram schematically showing an example of the configuration of a main part of a magneto-optical disk device according to the present invention, in which reference numeral 21 denotes a magneto-optical disk using an in-plane magnetization film that is magnetized in an in-plane direction. It is. The magneto-optical disk 21 has information recording tracks formed concentrically or spirally, and rotates around its axis at high speed. Both ends of the yoke of the ring-shaped magnetic head 22 are arranged in the radial direction of the magneto-optical disk 21. A magnetic field is applied in the radial direction of the magneto-optical disk 21.

一方、半導体レーザ23から発生したレーザ光を集光レ
ンズ24、整形用プリズム25及びビームスプリッタ2
6を経て対物レンズ27によって光磁気ディスク21の
面内磁化膜に集光照射して磁化膜の温度をキューリ点近
く、または補償温度以上まで上昇させると、面内磁化膜
はリング型磁気ヘッド22の磁界印加方向に応じて磁化
され、情報が記録または消去される。
On the other hand, the laser beam generated from the semiconductor laser 23 is transferred to the condensing lens 24, the shaping prism 25, and the beam splitter 2.
6, the in-plane magnetized film of the magneto-optical disk 21 is irradiated with condensed light through the objective lens 27 to raise the temperature of the magnetized film to near the Curie point or above the compensation temperature. It is magnetized depending on the direction of magnetic field application, and information is recorded or erased.

情報再生時には、半導体レーザ23から発生した直線偏
光を集光レンズ24、整形用プリズム25、ビームスプ
リッタ26及び対物レンズ27を経て光磁気ディスク2
1の面内磁化膜の所要部位に照射すると、磁化の向きに
応じて反射光の偏光面が回転する。
When reproducing information, the linearly polarized light generated from the semiconductor laser 23 passes through the condenser lens 24, the shaping prism 25, the beam splitter 26, and the objective lens 27, and then enters the magneto-optical disk 2.
When a predetermined portion of the in-plane magnetized film 1 is irradiated with light, the plane of polarization of the reflected light rotates depending on the direction of magnetization.

この反射光を対物レンズ27、ビームスプリンタ26、
ビームスプリンタ28.172波長板31及び集光レン
ズ32を経て偏光ビームスプリンタ34によってP。
This reflected light is transferred to the objective lens 27, the beam splinter 26,
Beam splinter 28. P by polarization beam splinter 34 via 172 wavelength plate 31 and condensing lens 32.

S成分に分離し、分離した各成分の光強度をフォトダイ
オード33及び35によって電気信号に変換し、差動増
幅器36はこれら両成分の差から偏光面の回転に応じた
信号を出力し、情報が再生される。
The light intensity of each separated component is converted into an electrical signal by the photodiodes 33 and 35, and the differential amplifier 36 outputs a signal corresponding to the rotation of the polarization plane from the difference between these two components, and outputs information. is played.

また、情報の記録、再生、消去時に照射するレーザ光の
一部はビームスプリッタ28から円筒レンズ29を経て
4分割されたフォトダイオード30によって検知され、
照射光のフォーカシング、トラッキングが行われる。
Further, a part of the laser light emitted when recording, reproducing, or erasing information is detected by the photodiode 30 divided into four parts from the beam splitter 28 through the cylindrical lens 29.
Focusing and tracking of the irradiated light is performed.

なお、第1図に示す模式図は本発明の1実施例であり、
これに限定されるものではなく、例えば、偏光ビームス
プリンタ34の代わりにウォラストンプリズム、サバー
ル板等を用いてもよく、様々な光学系構成が可能であり
、またカー効果による偏光面回転検出手段としても差動
をとらず直接再生信号を得ることも可能である。
Note that the schematic diagram shown in FIG. 1 is one embodiment of the present invention,
The invention is not limited to this, and for example, a Wollaston prism, a Savart plate, etc. may be used instead of the polarization beam splinter 34, and various optical system configurations are possible. Also, polarization plane rotation detection means using the Kerr effect can be used. However, it is also possible to obtain a reproduction signal directly without using a differential signal.

次に、本発明に係る光磁気記録方式の記録原理につき、
第2図及び第3図に示す光磁気記録方式の概念図に基づ
き説明する。第2図において、予め一方向、本実施例で
は第2図中右向きに磁化された面内磁化膜11に対し、
対物レンズ14によりレーザ光を集光して照射し、照射
箇所の温度をキューり点近く、または補償温度以上まで
上昇させてその保磁力を低下させるとともに、面内磁界
発生源、例えばリング型磁気ヘッド22から前記面内磁
化膜11の磁化方向とは逆方向、本実施例では第2図中
左向きの外部磁界を加えて局所的に磁化方向を反転させ
、前記面内磁化膜11に情報を記録する。
Next, regarding the recording principle of the magneto-optical recording method according to the present invention,
The explanation will be based on conceptual diagrams of the magneto-optical recording method shown in FIGS. 2 and 3. In FIG. 2, with respect to the in-plane magnetized film 11 that has been magnetized in advance in one direction, in this example, rightward in FIG.
A laser beam is focused and irradiated by the objective lens 14, and the temperature of the irradiated area is raised to near the cue point or above the compensation temperature to reduce its coercive force, and the in-plane magnetic field source, for example, a ring-shaped magnetic An external magnetic field is applied from the head 22 in a direction opposite to the magnetization direction of the in-plane magnetized film 11, which in this embodiment is directed to the left in FIG. Record.

一方、面内磁化15111に記録した情報を消去する場
合は、前記面内磁化膜11の当初の磁化方向(第2図中
右向き)と同方向の外部磁界を印加するとともに集光さ
れたレーザ光を照射することにより記録時と同様の原理
により情報が消去される。
On the other hand, when erasing the information recorded in the in-plane magnetization 15111, an external magnetic field is applied in the same direction as the original magnetization direction (rightward in FIG. 2) of the in-plane magnetization film 11, and a focused laser beam is applied. Information is erased by irradiating it using the same principle as during recording.

また、面内磁化膜11に記録された情報を再生する場合
には、通常カー効果が利用される。即ち、面内磁化膜1
1に照射された直線偏光は、その偏光面を磁化の向きに
応じて左または右に回転した反射光となり(縦カー効果
または横カー効果)、この回転を検光子等により光量変
化に変換する等して再生信号を得る。
Further, when reproducing information recorded on the in-plane magnetized film 11, the Kerr effect is usually used. That is, the in-plane magnetized film 1
The linearly polarized light irradiated on the magnet becomes reflected light with its plane of polarization rotated to the left or right depending on the direction of magnetization (vertical Kerr effect or horizontal Kerr effect), and this rotation is converted into a change in light intensity using an analyzer etc. etc. to obtain a reproduced signal.

また、面内での磁化方向は第3図(a)及び(b)に示
すような典型的な2例が考えられるが、第3開山)に示
す如く記録トラック方向に磁化する場合、同極の磁極が
相対するように磁化され、互いに記録磁化を打ち消し合
う方向の磁界を生じて記録磁化を減少させる。従って、
第3図(alに示す如く、トランク幅方向に磁化し、磁
極N、Sが交互に並んでいる場合の方が同極の磁極が相
対しないため、より保磁力を必要とせず適当である。
In addition, there are two typical examples of in-plane magnetization directions as shown in Figure 3 (a) and (b), but when magnetization is in the recording track direction as shown in Figure 3 (a), if magnetization occurs in the recording track direction, The magnetic poles are magnetized so as to face each other, and a magnetic field is generated in a direction that cancels out the recorded magnetization, thereby reducing the recorded magnetization. Therefore,
As shown in FIG. 3 (al), the case where the trunk is magnetized in the width direction and the magnetic poles N and S are arranged alternately is more suitable because the magnetic poles of the same polarity do not face each other, and therefore less coercive force is required.

即ち、本発明に係る光磁気ディスク装置は、光磁気ディ
スクの磁化膜の磁化方向を、極めて薄い磁化膜の厚み方
向ではなく磁化膜の面内方向とすることにより、磁化の
両端に生じる磁極N、S間の距離が十分長くなり反磁界
が大幅に減少する。
That is, in the magneto-optical disk device according to the present invention, by setting the magnetization direction of the magnetization film of the magneto-optical disk not in the thickness direction of the extremely thin magnetization film but in the in-plane direction of the magnetization film, the magnetic pole N generated at both ends of magnetization is , S becomes sufficiently long, and the demagnetizing field is significantly reduced.

従って、面内方向且つトラック幅方向に記録することに
より、保磁力の低い磁化膜であっても磁化の減磁は生ぜ
ず、安定した情報記録ができる。
Therefore, by recording in the in-plane direction and the track width direction, demagnetization does not occur even in a magnetized film with a low coercive force, and stable information recording can be performed.

例えば、従来の光磁気ディスク装置ではその保磁力が小
さいために磁化膜として用いることができなかったカー
効果の非常に大きな材料PtMn5b(θに一〜1.8
°)等を用いることができる。なお、従来の希土類−遷
移金属非晶質膜ではカー効果(θk)が0.2〜0.4
°程度と小さい。
For example, in conventional magneto-optical disk devices, PtMn5b (with θ of 1 to 1.8
°) etc. can be used. In addition, in the conventional rare earth-transition metal amorphous film, the Kerr effect (θk) is 0.2 to 0.4.
It's as small as °.

なお、磁界発生源としては、第2図に示すようなリング
型磁気ヘッド22を用いるが、磁束13はリング型磁気
ヘッド22の一端から放出されて面内磁化膜ll中を通
り、リング型磁気ヘッド22の他端に入って戻るという
閉磁路構成となり、磁束漏れが少なく、磁束効率が非常
に高く適当である磁束効率が高まれば、所要強度の外部
磁界を面内磁化膜に印加するために、より少ないコイル
巻数またはより少ないコイル通電電流でよく、磁界の高
周波変調が可能となるとともに磁界発生源が小型化して
光磁気ディスク装置も小型化が可能となる。
As a magnetic field generation source, a ring-shaped magnetic head 22 as shown in FIG. It has a closed magnetic circuit configuration in which it enters the other end of the head 22 and returns, with little magnetic flux leakage and very high magnetic flux efficiency.If the magnetic flux efficiency increases, it is possible to apply an external magnetic field of the required strength to the in-plane magnetized film. , a smaller number of coil turns or a smaller coil current is required, making it possible to modulate the magnetic field at high frequencies, and also making it possible to downsize the magnetic field generation source and the magneto-optical disk device.

さらに、高い周波数での磁界方向反転が容易となること
により、磁界変調方式によるオーバーライドが可能とな
り、記録情報の実効転送速度が高速となる。
Furthermore, since the direction of the magnetic field can be easily reversed at a high frequency, overriding by a magnetic field modulation method becomes possible, and the effective transfer speed of recorded information increases.

また、リング型磁気ヘッドはヘッドからの距離変動に対
して磁界強度の変動がより少なく、ディスク面振れ等に
よりディスク−ヘッド間の距離変動が避けられない光磁
気ディスク装置には有効である。
Furthermore, the ring-type magnetic head has less variation in magnetic field strength with respect to variation in distance from the head, and is effective for magneto-optical disk drives where variation in the distance between the disk and the head is unavoidable due to disk surface runout or the like.

〔発明の効果〕〔Effect of the invention〕

本発明に係る光磁気記録方式は、光磁気ディスクの磁化
膜を面内方向に磁化して情報を記録または消去すること
により、光磁気ディスクの磁化膜に必ずしも高い保磁力
を必要とせず、従来保磁力が低くて使用できなかったカ
ー効果の高い材料が使用できる等、磁化膜の材料選択の
範囲が広がって高出力で信頼性の高い材料を選択するこ
とができ、また、本発明に係る光磁気ディスク装置に、
面内磁化膜とともに閉磁路を形成するリング型磁気ヘッ
ドを磁界発生源として使用することにより磁束効率が高
まるため、より少ないコイル巻数またはより少ないコイ
ル通電電流で所要磁界強度が得られ、磁界発生源が小型
化され、光磁気ディスク装置を小型化し得るとともに、
高周波数での磁界方向反転が容易となり、磁界変調方式
によるオーバーライドが可能となり、記録情報の実効転
送速度を高速にできるという優れた効果を奏する。
The magneto-optical recording method according to the present invention records or erases information by magnetizing the magnetized film of the magneto-optical disk in the in-plane direction, thereby eliminating the need for a high coercive force in the magnetizing film of the magneto-optical disk, Materials with a high Kerr effect, which could not be used due to their low coercive force, can now be used, expanding the range of material selection for magnetized films, making it possible to select materials with high output and high reliability. In the magneto-optical disk device,
By using a ring-shaped magnetic head that forms a closed magnetic path with an in-plane magnetized film as a magnetic field generation source, magnetic flux efficiency is increased, so the required magnetic field strength can be obtained with fewer coil turns or less coil current, and the magnetic field generation source is miniaturized, making it possible to miniaturize the magneto-optical disk device, and
This makes it easy to reverse the direction of the magnetic field at high frequencies, enables override using the magnetic field modulation method, and has the excellent effect of increasing the effective transfer rate of recorded information.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る光磁気ディスク装置の要部構成の
1例を概略的に示す模式図、第2図及び第3図は本発明
に係る光磁気記録方式の概念図、第4図は従来の光磁気
記録方式の概念図である。 11・・・面内磁化膜 13・・・磁束 21・・・光
磁気ディスク 22・・・リング型磁気ヘッド 23・
・・半導体レーザ特 許 出願人 住友金属工業株式会
社代理人 弁理士 河  野  登  夫IL 第    1    図 弔    2    図          第   
 4    図第    3    図 手続補正書(白銀 光磁気記録方式及びこれに用いる装置 3、補正をする者 事件との関係  特許出願人 所在地 大阪市東区北浜5丁目15番地名 称 (21
1)住友金属工業株式会社代表者新宮康男 4、代理人 住 所 ■543大阪市天王寺区四天王寺1丁目14番
22号 日進ビル207号河野特許事務所(電話06−
779−3088 >−:1 ]−二 一二I 明細書の「発明の詳細な説明」の欄、及び図面 6、補正の内容 6−1 「発明の詳細な説明」の欄 +1)  明細書の第2頁5行目に「磁気光学的効果」
とあるのを「磁気光学効果」と訂正する。 (2)  明細書の第2頁17〜18行目に「キューリ
点」とあムのを「キュリー点」と訂正する。 (3)  明細書の第5頁20行目に「応対しない」と
あるのを[相対しないJと訂正する。 (4)  明m書の第6頁10〜11行目に「キューリ
点」とあるのを「キュリー点」と訂正する。 (5)  明細書の第7頁4行目に「即ち」とあるのを
「たとえば」と訂正する。 (6)明細書の第7頁7行目に「または横カー効果」と
あるのを削除する。 (7)  明t4書の第7頁19〜20行目に「高周波
変調また」とあるのを「高周波変調及び」と訂正する。 (8)  明細書の第8頁11行目に1印加する」とあ
るのを「印加できる」と訂正する。 (9)  明細書の第8頁16行目に「キューリ点」と
あるのを「キュリー点」と訂正する。 Oat  明細書の第10頁9〜IO行目に「キューり
点」とあるのを「キュリー点」と訂正する。 (11)  明細書の第11頁2行目に「即ち」とある
のを「たとえば」と訂正する。 (I2)  明細書の第11頁5行目に「または横カー
効果」とあるのを削除する。 (13)  明細書の第12頁2行目に1従って」とあ
るのを「さらに」と訂正する。 (14)  明細書の第12頁16行目に「適当である
磁束」とあるのを「適当である。磁束」と訂正する。 6−2図面 第1図、第2図及び第4図を添付図面の如くに訂正する
。なお、第3図は訂正の要なし。 7、添付W類の目録 +11  訂正図面              1通
 L 箪    1    図 2    図          !4rA■    
3    図
FIG. 1 is a schematic diagram schematically showing an example of the main configuration of a magneto-optical disk device according to the present invention, FIGS. 2 and 3 are conceptual diagrams of a magneto-optical recording system according to the present invention, and FIG. 4 is a conceptual diagram of a conventional magneto-optical recording system. 11... In-plane magnetized film 13... Magnetic flux 21... Magneto-optical disk 22... Ring-shaped magnetic head 23.
...Semiconductor laser patent Applicant Sumitomo Metal Industries Co., Ltd. Agent Patent attorney Tomio Kono IL Figure 1 Condolence Figure 2
4 Figure 3 Procedural amendment (Silver magneto-optical recording system and equipment used therein 3, relationship with the case of the person making the amendment Patent applicant location 5-15 Kitahama, Higashi-ku, Osaka Name (21)
1) Representative of Sumitomo Metal Industries Co., Ltd. Yasuo Shingu 4, agent address: Kono Patent Office, No. 207, Nisshin Building, 1-14-22 Shitennoji, Tennoji-ku, Osaka 543 (Telephone: 06-
779-3088 >-:1]-212I "Detailed Description of the Invention" column of the specification and Drawing 6, contents of amendment 6-1 "Detailed Description of the Invention" column + 1) of the specification “Magneto-optical effect” on page 2, line 5
Correct the statement to "magneto-optical effect." (2) On page 2, lines 17-18 of the specification, "Curie point" is corrected to "Curie point." (3) On page 5, line 20 of the specification, the phrase "do not respond" is corrected to "J does not respond." (4) On page 6, lines 10-11 of the book M, the phrase "Curie point" is corrected to "Curie point." (5) On page 7, line 4 of the specification, the word "that is" is corrected to "for example." (6) Delete the phrase "or horizontal car effect" on page 7, line 7 of the specification. (7) On page 7, lines 19-20 of Book t4, the phrase "high frequency modulation also" is corrected to "high frequency modulation and." (8) On page 8, line 11 of the specification, the phrase ``1 application shall be applied'' should be corrected to ``can be applied.'' (9) On page 8, line 16 of the specification, the phrase "Curie point" is corrected to "Curie point." Oat On page 10, lines 9 to IO of the specification, "Curie point" is corrected to "Curie point." (11) In the second line of page 11 of the specification, the word "that is" is corrected to "for example." (I2) Delete the phrase "or horizontal car effect" on page 11, line 5 of the specification. (13) On page 12, line 2 of the specification, the phrase ``in accordance with 1'' is corrected to ``further''. (14) On page 12, line 16 of the specification, the phrase "appropriate magnetic flux" is corrected to "appropriate magnetic flux." 6-2 Drawings Figures 1, 2, and 4 are corrected as shown in the attached drawings. There is no need to make any corrections to Figure 3. 7.Inventory of attached W types + 11 Corrected drawings 1 copy L chest 1 Figure 2 Figure ! 4rA■
3 diagram

Claims (1)

【特許請求の範囲】 1、光磁気ディスクに光ビームを照射してその磁化膜を
磁化し、情報を記録または消去する光磁気記録方式にお
いて、 光磁気ディスクの磁化膜を面内方向に磁化 して情報を記録または消去することを特徴とする光磁気
記録方式。 2、前記面内磁化方向において同極の磁極が相対しない
方向とする請求項1記載の光磁気記録方式。 3、光磁気ディスクに光ビームを照射してその磁化膜を
磁化し、情報を記録または消去する光磁気ディスク装置
において、 前記光磁気ディスクが、面内方向に磁化さ れる面内磁化膜を備えてなることを特徴とする光磁気デ
ィスク装置。 4、前記磁化膜を磁化する磁界発生源が、リング型磁気
ヘッドである請求項3記載の光磁気ディスク装置。
[Claims] 1. In a magneto-optical recording method in which a light beam is irradiated onto a magneto-optical disk to magnetize its magnetized film to record or erase information, the magneto-optical disk's magnetized film is magnetized in the in-plane direction. A magneto-optical recording method characterized by recording or erasing information using 2. The magneto-optical recording method according to claim 1, wherein magnetic poles of the same polarity do not face each other in the in-plane magnetization direction. 3. In a magneto-optical disk device that records or erases information by irradiating a magneto-optical disk with a light beam to magnetize its magnetized film, the magneto-optical disk includes an in-plane magnetized film that is magnetized in an in-plane direction. A magneto-optical disk device characterized by: 4. The magneto-optical disk device according to claim 3, wherein the magnetic field generation source that magnetizes the magnetized film is a ring-shaped magnetic head.
JP4485188A 1988-02-26 1988-02-26 System and device for magneto-optical recording Pending JPH01220163A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP4485188A JPH01220163A (en) 1988-02-26 1988-02-26 System and device for magneto-optical recording
EP89301883A EP0330507A3 (en) 1988-02-26 1989-02-24 Magneto-optic recording and regenerating process, device using same and magneto-optic disk
US07/315,166 US5153868A (en) 1988-02-26 1989-02-24 Magneto-optic recording and regenerating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4485188A JPH01220163A (en) 1988-02-26 1988-02-26 System and device for magneto-optical recording

Publications (1)

Publication Number Publication Date
JPH01220163A true JPH01220163A (en) 1989-09-01

Family

ID=12702981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4485188A Pending JPH01220163A (en) 1988-02-26 1988-02-26 System and device for magneto-optical recording

Country Status (1)

Country Link
JP (1) JPH01220163A (en)

Similar Documents

Publication Publication Date Title
JPS60170048A (en) Photomagnetic memory device
JPS61192048A (en) System and device for optical/magnetic recording, reproducing and erasing
US5283775A (en) Split detector system for direct read-while-write operation on magneto-optic media
KR930008148B1 (en) Optical magnetic recording device
JPS61214256A (en) Photomagnetic disc device
US5153868A (en) Magneto-optic recording and regenerating device
JPS6217282B2 (en)
JPS607635A (en) Photomagnetic disc device
JPH01220163A (en) System and device for magneto-optical recording
JPS63187439A (en) Magneto-optical recording system
JP2811673B2 (en) Magnetic field applying electromagnet for magneto-optical disk
JPH0568763B2 (en)
JP2604702B2 (en) Magneto-optical recording / reproduction / erasing method and apparatus
JPH01178104A (en) Magnetic field electromagnet for magneto-optical disk
JPS6113461A (en) Photomagnetic disk device
JPS63281251A (en) Magneto-optical disk device
JPS58171738A (en) Photomagnetic memory medium
JPS59148142A (en) Optical information memory device
JPH0522304B2 (en)
JPS62128034A (en) Optical head for photomagnetic disc
JPS5938949A (en) Magneto-optical reproducer
JPH0456362B2 (en)
JPS59148143A (en) Method for erasing optical information memory
JPS6288102A (en) Photomagnetic recording and reproducing device
JPS59142757A (en) Tracking control method