JPH0456362B2 - - Google Patents

Info

Publication number
JPH0456362B2
JPH0456362B2 JP10640183A JP10640183A JPH0456362B2 JP H0456362 B2 JPH0456362 B2 JP H0456362B2 JP 10640183 A JP10640183 A JP 10640183A JP 10640183 A JP10640183 A JP 10640183A JP H0456362 B2 JPH0456362 B2 JP H0456362B2
Authority
JP
Japan
Prior art keywords
magneto
magnetic field
optical
magnetic
optical disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10640183A
Other languages
Japanese (ja)
Other versions
JPS59231704A (en
Inventor
Koichi Ogawa
Toshihiko Iwamoto
Junichi Ichihara
Akio Nimata
Yasuyuki Ozawa
Shigeru Arai
Akira Minami
Masaharu Moritsugu
Shinji Okada
Minoru Fujino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP10640183A priority Critical patent/JPS59231704A/en
Publication of JPS59231704A publication Critical patent/JPS59231704A/en
Publication of JPH0456362B2 publication Critical patent/JPH0456362B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は光磁気デイスク装置に係り、さらに詳
しくは光磁気デイスクに記録、再生、消去時に必
要なバイアス磁界を印加する装置の機構に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a magneto-optical disk device, and more particularly to a mechanism of the device that applies a bias magnetic field necessary for recording, reproducing, and erasing to a magneto-optical disk.

(b) 技術の背景 電子計算機の高速化と大容量化に伴い、その主
要部である記憶装置も益々高密度で大容量化する
ことを要求されている。現在は記録再生が容易な
磁気デイスク等の磁気記憶装置が主流を占めてい
るが、光学的に情報の記録再生を行う光デイスク
は原理的に現在の磁気デイスクよりも一桁高い記
録密度を得ることが出来、特に画像情報の記録再
生に使用され始めている。さらに使用者が情報を
消去して反復記録再生出来る光磁気デイスクはそ
の記録媒体の性質上、頻繁に書換えを必要とする
大容量記憶媒体として磁気デイスクより格段に高
い記録密度を有し、磁気デイスクなみのアクセス
時間と磁気テープなみの低ビツトコストをもたら
し得る可能性のある記録媒体として注目されてい
る。
(b) Background of the Technology As electronic computers become faster and have larger capacities, storage devices, which are the main part of computers, are also required to have higher density and larger capacity. Currently, magnetic storage devices such as magnetic disks, which are easy to record and read, are the mainstream, but optical disks that record and read information optically can theoretically achieve a recording density one order of magnitude higher than current magnetic disks. It has begun to be used particularly for recording and reproducing image information. Furthermore, due to the nature of the recording medium, magneto-optical disks, which allow users to erase and repeatedly record and reproduce information, have a much higher recording density than magnetic disks as large-capacity storage media that require frequent rewriting. It is attracting attention as a recording medium that has the potential to provide comparable access times and low bit costs comparable to magnetic tape.

(c) 従来技術と問題点 現在開発されている光磁気記録法は光熱磁気記
録法ともいわれるように、レーザ光線を熱源とす
る所謂ヒートモード記録法である。第1図に示す
ような光磁気記録媒体の保磁力Hcとキユリイ温
度Tcとの特性線図に示すように、光磁気記録の
書込みは光磁気デイスク媒体のキユリイ温度Tc
付近における保磁力Hcの急激な低下を利用して
行う。
(c) Prior Art and Problems The magneto-optical recording method currently being developed is a so-called heat mode recording method using a laser beam as a heat source, also called a thermomagnetic recording method. As shown in the characteristic diagram of the coercive force Hc and the Curie temperature Tc of the magneto-optical recording medium shown in Figure 1, writing in magneto-optical recording is performed at the Curie temperature Tc of the magneto-optical disk medium
This is done by taking advantage of the sudden drop in coercive force Hc in the vicinity.

即ち、第2図aのように基板1上の光磁気媒体
層2が上向き矢印方向に磁化されていて、下向き
矢印方向のバイアス磁界Hの中に置かれている時
に、第2図bのようにレーザ光線3をレンズ4で
集光してスポツト像5で当該磁気媒体層2を照射
すると、該被照射面の温度が上昇し、当該部分の
保磁力Hcが記録磁界(バイアス磁界と反磁界と
の和)以下に下がると、磁化が反転して第2図c
に示すように円筒状の磁区が記録される。この過
程は磁気的な状態の遷移であつて何等の熱エネル
ギーを必要としないので記録感度も高いという長
所を有している。
That is, when the magneto-optical medium layer 2 on the substrate 1 is magnetized in the direction of the upward arrow as shown in FIG. When a laser beam 3 is focused by a lens 4 and a spot image 5 is irradiated onto the magnetic medium layer 2, the temperature of the irradiated surface increases, and the coercive force Hc of the area increases due to the recording magnetic field (bias magnetic field and demagnetizing field). When the value decreases below (the sum of
A cylindrical magnetic domain is recorded as shown in . This process is a magnetic state transition and does not require any thermal energy, so it has the advantage of high recording sensitivity.

情報の消去にはバイアス磁界Hの方向を逆転し
て当該光磁気記録媒体の記録箇所をレーザ光線で
照射すればよいことは自明である。
It is obvious that information can be erased by reversing the direction of the bias magnetic field H and irradiating the recording area of the magneto-optical recording medium with a laser beam.

情報記録の再生には、レーザ光線を光磁気媒体
層2を透過させる場合はフアラデイ効果、反射さ
せる場合はカー効果の光磁気的効果を利用して、
磁化による投射レーザ光線1の偏光面の回転を偏
光子で検出して情報を読み取る方法によつてい
る。この回転角は0.4゜程度の微妙なものであるの
で、信号雑音比の向上に努力が払われている。
To reproduce information recorded, the Faraday effect is used when the laser beam is transmitted through the magneto-optical medium layer 2, and the Kerr effect is used when the laser beam is reflected.
This method uses a polarizer to detect the rotation of the polarization plane of the projected laser beam 1 due to magnetization to read information. Since this rotation angle is a delicate one of about 0.4°, efforts are being made to improve the signal-to-noise ratio.

第3図は光学的情報記録再生装置としての光磁
気デイスク装置の構成を示す構成図である。
FIG. 3 is a block diagram showing the structure of a magneto-optical disk device as an optical information recording/reproducing device.

図に於いて、半導体レーザ6より発射されたレ
ーザ光線3はコリメーテイングレンズ7、真円補
正プリズム8を通り円断面を有する平行なレーザ
光ビーム9となり、偏光子10で直線偏光され、
ビームスプリツタ11、反射鏡12を経て、対物
レンズ13に入射し光磁気デイスク14上に投射
されて微小なスポツト像5を形成する。この時前
述のように磁気印加装置(図示せず)により印加
されたバイアス磁界Hにより情報が記録される。
In the figure, a laser beam 3 emitted from a semiconductor laser 6 passes through a collimating lens 7 and a circular correction prism 8 to become a parallel laser beam 9 having a circular cross section, which is linearly polarized by a polarizer 10.
The beam passes through a beam splitter 11 and a reflecting mirror 12, enters an objective lens 13, and is projected onto a magneto-optical disk 14 to form a minute spot image 5. At this time, information is recorded by the bias magnetic field H applied by the magnetic application device (not shown) as described above.

再生時には前述と同一の光路を経て入射したレ
ーザ光ビーム9の内、光磁気デイスク14で反射
された光を前記ビームスプリツタ11で入射光と
分離し、分離された反射光15は第2のビームス
プリツタ16で情報再生用とサーボ信号用とに分
離される。即ち、ビームスプリツタ16を透過し
たレーザ光ビーム15aはマスクを兼ねた反射鏡
17で分割され、集光レンズ18に入射した後2
分割検出器20に投射され、フオーカスエラー信
号が検出器20の差分から得られる。
During reproduction, the beam splitter 11 separates the light reflected by the magneto-optical disk 14 from the laser light beam 9 incident through the same optical path as described above from the incident light, and the separated reflected light 15 is split into a second beam. A beam splitter 16 separates the signal for information reproduction and for servo signals. That is, the laser light beam 15a transmitted through the beam splitter 16 is split by a reflecting mirror 17 which also serves as a mask, and after entering the condensing lens 18, two
It is projected onto a segmented detector 20 and a focus error signal is obtained from the difference of the detector 20.

他方、反射鏡17で反射されて集光レンズ19
に入射したレーザ光ビーム15aは同じく2分割
検出器21に投射されてトラツキング信号が差分
として得られる。
On the other hand, it is reflected by the reflecting mirror 17 and passes through the condensing lens 19.
The incident laser beam 15a is also projected onto a two-split detector 21, and a tracking signal is obtained as a difference.

又ビームスプリツタ16で反射された信号再生
用レーザ光ビーム15bは光偏光面の変化を検出
するための検光子22を通過後、集光レンズ23
で集光され光検出器24に入射して光信号から電
気信号に光電変換される。
The signal reproducing laser beam 15b reflected by the beam splitter 16 passes through an analyzer 22 for detecting changes in the optical polarization plane, and then passes through a condenser lens 23.
The light is focused and incident on the photodetector 24, where the optical signal is photoelectrically converted into an electrical signal.

ここで、情報は光磁気デイスク14の光磁気媒
体層2の反転磁化部による偏光面の回転として読
み出される訳である。
Here, information is read out as the rotation of the plane of polarization by the reversed magnetization portion of the magneto-optical medium layer 2 of the magneto-optical disk 14.

以上の構成において、情報の記録、再生および
消去に必須な前述のバイアス磁界の印加装置につ
いて考察しよう。
In the above configuration, let us consider the aforementioned bias magnetic field application device essential for recording, reproducing, and erasing information.

バイアス磁界の印加装置としては永久磁石と電
磁石を用いる方法があるが、両者とも以下に述べ
るような欠点がある。
There are methods using permanent magnets and electromagnets as bias magnetic field applying devices, but both have drawbacks as described below.

永久磁石を使用すると印加磁界の方向を切り換
えるために、磁石そのものを反転させるか、2個
の磁石を備えて交互に機械的に入れ換える方法が
あるが、いずれも切り換え時間が長く、かつ装置
内に余分の空間を必要とする等の難点がある。殊
に切り換え時間の長いことは電子計算機用フアイ
ルに使用する場合には致命的な欠点となる。
When using permanent magnets, in order to switch the direction of the applied magnetic field, there are methods such as reversing the magnet itself or using two magnets and mechanically switching them alternately, but both require a long switching time and require a lot of space inside the device. There are drawbacks such as the need for extra space. In particular, the long switching time is a fatal drawback when used for electronic computer files.

電磁石を使用する場合には、記録動作中あるい
は消去動作中に所定のバイアス磁界を維持するた
めに連続して励磁コイルに大電流を流して置かね
ばならないので、電磁石の温度上昇が著しくなり
磁界切り換え時の反転した磁界の立ち上がり、立
ち下がりが遅くなるので、特別の冷却手段が必要
となる。
When using an electromagnet, a large current must be continuously passed through the excitation coil to maintain a predetermined bias magnetic field during recording or erasing operations, resulting in a significant temperature rise in the electromagnet and the need to switch the magnetic field. Because the rise and fall of the time-reversed magnetic field is delayed, special cooling means are required.

以上に述べたように、従来の光磁気デイスク装
置のバイアス磁界印加装置に特有の欠点を解消し
た高性能のバイアス磁界印加装置の出現が待望さ
れていた。
As described above, the emergence of a high-performance bias magnetic field applying device that eliminates the drawbacks peculiar to conventional bias magnetic field applying devices for magneto-optical disk devices has been long awaited.

(d) 発明の目的 本発明は前述の点に鑑みなされたもので、光磁
気デイスク装置のバイアス磁界用として、電気的
に印加磁界の方向を高速に反転させ、かつ磁界印
加装置自体の発熱のないバイアス磁界印加装置を
提供しようとするものである。
(d) Purpose of the Invention The present invention has been made in view of the above-mentioned points, and is intended for use as a bias magnetic field in a magneto-optical disk device, by electrically reversing the direction of an applied magnetic field at high speed, and by reducing the amount of heat generated by the magnetic field applying device itself. The present invention is intended to provide a bias magnetic field applying device that does not require a bias magnetic field.

(e) 発明の構成 上記の発明の目的は、半導体レーザ等の光源か
らの光ビームを光学レンズで集光してその光スポ
ツトをバイアス磁界を印加した光磁気デイスクに
投射して情報を記録あるいは消去するようにした
光学的情報記録再生装置において、前記バイアス
磁界印加手段が半硬質磁性材料より形成され十分
なN極とS極間の距離を有する磁芯と前記磁極の
極性を反転し得る励磁コイルおよびパルス励磁電
流電源より構成されたことを特徴とする光磁気デ
イスクのバイアス磁界印加装置を採用することに
より容易に達成される。
(e) Structure of the Invention The object of the above invention is to record or record information by condensing a light beam from a light source such as a semiconductor laser using an optical lens and projecting the light spot onto a magneto-optical disk to which a bias magnetic field is applied. In the optical information recording/reproducing device, the bias magnetic field applying means is made of a semi-hard magnetic material and has a magnetic core having a sufficient distance between the north pole and the south pole, and excitation capable of reversing the polarity of the magnetic pole. This can be easily achieved by employing a magneto-optical disk bias magnetic field applying device characterized by comprising a coil and a pulse excitation current power supply.

(f) 発明の実施例 以下本発明の一実施例について説明する前に磁
石の磁芯の磁性材料について述べる。
(f) Embodiment of the Invention Before describing an embodiment of the present invention, the magnetic material of the magnetic core of the magnet will be described below.

周知のように磁性材料は磁気特性によつて軟磁
性材料と硬磁性材料とに大別される。半硬質磁性
材料は軟・硬磁性の中間の特性値、保磁力Hcが
10〜100Oe程度のものを磁化コイルによつて磁化
の逆転や磁束の変化をあたえるような使用法をし
た時特に呼称される用語であつて、磁界を取り去
つた後の残留磁束を利用する点では硬磁性材料と
同一である。
As is well known, magnetic materials are broadly classified into soft magnetic materials and hard magnetic materials depending on their magnetic properties. Semi-hard magnetic materials have characteristic values between soft and hard magnetism, and coercive force Hc
This term is especially used when a magnet of about 10 to 100 Oe is used to reverse the magnetization or change the magnetic flux using a magnetizing coil, and the point is that the residual magnetic flux after the magnetic field is removed is used. It is the same as hard magnetic material.

半硬質磁性材料を電磁石の磁芯材料として用い
ると次ぎの利点がある。即ち (1) 保磁力Hcが100Oe程度であるので、電気的
に容易に磁化方向を逆転出来る。
Using a semi-hard magnetic material as the magnetic core material of an electromagnet has the following advantages. That is, (1) since the coercive force Hc is about 100 Oe, the magnetization direction can be easily reversed electrically.

(2) 磁気異方性が強く、角形性も非常に優れてい
るので、一旦磁化すると、保磁力Hc以上の外
部磁界を印加しない限り磁化方向は反転しな
い。従つて情報の記録と消去の切り換え時のみ
パルス状の磁化反転電流を流せばよい。
(2) It has strong magnetic anisotropy and excellent squareness, so once it is magnetized, the direction of magnetization will not reverse unless an external magnetic field with a coercive force Hc or higher is applied. Therefore, it is sufficient to flow a pulsed magnetization reversal current only when switching between recording and erasing information.

(3) 半硬質磁性材料の残留磁束密度は通常
10000G以上もあり、Fe−Co系合金を用いれば
15000〜20000Gにも達するので永久磁石材料の
アルニコ系磁性材料やR−Cos系磁性材料、あ
るいは純鉄を磁芯とする電磁石でえられる磁界
と略同じ強さの磁界を発生することが出来る。
(3) The residual magnetic flux density of semi-hard magnetic materials is usually
It can be more than 10,000G, and if Fe-Co alloy is used,
Since it reaches 15,000 to 20,000 G, it is possible to generate a magnetic field with approximately the same strength as that obtained with an electromagnet whose core is made of permanent magnet materials such as Alnico magnetic material, R-Cos magnetic material, or pure iron.

(4) 半硬質磁性材料は硬磁性材料と異なり、一般
に柔らかく機械的加工性がよく光磁気デイスク
装置に必要な任意の形に容易に加工出来る。
(4) Unlike hard magnetic materials, semi-hard magnetic materials are generally soft and have good mechanical workability, and can be easily processed into any shape required for magneto-optical disk devices.

等々である。etc.

本発明は以上に述べた半硬質磁性材料の特徴を
十分に利用したものである。その一実施例を第4
図の斜視図に概念的に示す。
The present invention makes full use of the characteristics of the semi-hard magnetic material described above. An example of this is shown in the fourth section.
It is conceptually shown in the perspective view of the figure.

光磁気デイスク14の半径方向のデータ領域の
全長(図示のように長さD)にわたり、細長い磁
極面Mを有する磁芯30を図のように、光磁気デ
イスク14に対し磁極面Mを約1mmの間隙をおい
て配設固定する。磁芯30の材料の半硬質磁性材
料は強い磁気異方性をもつが、その異方性の方向
は光磁気デイスク14に垂直な方向に配列する。
As shown in the figure, a magnetic core 30 having an elongated magnetic pole face M is placed over the entire length of the data area in the radial direction of the magneto-optical disk 14 (length D as shown). Place and fix with a gap of . The semi-hard magnetic material of the magnetic core 30 has strong magnetic anisotropy, and the direction of the anisotropy is aligned perpendicular to the magneto-optical disk 14.

磁芯30の磁極面Mは前述のように細長い形で
磁芯30はやや薄肉であるが、反対側の図におい
てBで示す部分は比較的厚肉で幅の狭い形にして
ある。このB部分に励磁コイル31が巻回されて
いて、端子Tで図示していないパルス励磁電源に
接続されている。該パルス励磁電源は光磁気デイ
スク装置の書込み/読み出し/消去制御回路に連
動して制御される。
The magnetic pole surface M of the magnetic core 30 is elongated as described above, and the magnetic core 30 is somewhat thin, but the portion indicated by B in the opposite figure is relatively thick and narrow. An excitation coil 31 is wound around this B portion, and is connected to a pulse excitation power source (not shown) through a terminal T. The pulse excitation power source is controlled in conjunction with the write/read/erase control circuit of the magneto-optical disk device.

一方、従来の通りの光学系によりレーザ光ビー
ム9は図示のように光磁気デイスク14のバイア
ス磁界用の磁芯30の磁極面Mと反対側から光磁
気デイスク14に投射し、レーザ光ビームのスポ
ツト像5(第3図参照)をむすび、当該点の光磁
気媒体層2(第2図参照)を加熱することで記
録、再生、消去を行う。
On the other hand, using a conventional optical system, the laser beam 9 is projected onto the magneto-optical disk 14 from the side opposite to the magnetic pole surface M of the magnetic core 30 for the bias magnetic field of the magneto-optical disk 14, as shown in the figure. Recording, reproduction, and erasing are performed by forming a spot image 5 (see FIG. 3) and heating the magneto-optical medium layer 2 (see FIG. 2) at that point.

これらの光学系の可動部分の駆動、特に光学ヘ
ツドのフオーカシング用の電磁石からの漏洩磁界
が30〜50Oeなので保磁力Hcが80Oe程度の半硬質
磁性材料バイカロイ系(Fe−Co−V)が適当で
ある。
Since the leakage magnetic field from the electromagnet for driving the movable parts of these optical systems, especially the focusing of the optical head, is 30 to 50 Oe, a semi-hard magnetic material baicaloy (Fe-Co-V) with a coercive force Hc of about 80 Oe is suitable. be.

なお第4図に示す32はヨークで、半硬質磁性
材料が望ましいが純鉄製でもよい。また必ずしも
磁極Mの反対側に近い位置に配置しなくてもよ
い。
Note that 32 shown in FIG. 4 is a yoke, which is preferably made of a semi-hard magnetic material, but may also be made of pure iron. Further, it is not necessarily necessary to arrange it at a position close to the opposite side of the magnetic pole M.

第5図は既に述べた磁芯30の極性反転のタイ
ムチヤートであつて横軸は時間軸である。第5図
aは消去動作のタイムチヤートでEは消去動作を
示し、第5図bは記録(書込み)のタイムチヤー
トでRは記録動作を示す。この時光磁気デイスク
装置のバイアス磁界は反転するを要し、第5図c
に示すタイムチヤートのようにP+PとP−のパ
ルス状励磁電流を励磁コイルに流す。この励磁電
流の電力は極めて小さいので特に冷却を必要とす
るような熱は発生せず、従つてパルス励磁電流の
立ち上がり、立ち下がりは急峻で高速情報処理に
最適である。また余計な冷却装置を要しない点も
利点である。
FIG. 5 is a time chart of the polarity reversal of the magnetic core 30 described above, and the horizontal axis is the time axis. FIG. 5a is a time chart of the erasing operation, and E indicates the erasing operation. FIG. 5b is a recording (writing) time chart, and R indicates the recording operation. At this time, the bias magnetic field of the magneto-optical disk device must be reversed, as shown in Fig. 5c.
Pulsed excitation currents of P+P and P- are passed through the excitation coil as shown in the time chart. Since the power of this excitation current is extremely small, it does not generate any heat that requires cooling, and therefore the pulse excitation current has a steep rise and fall, making it ideal for high-speed information processing. Another advantage is that no extra cooling device is required.

(g) 発明の効果 以上の説明から明らかなように、本発明に基づ
いて光磁気デイスク装置のバイアス磁界を印加す
る磁界装置の磁芯に半硬質磁性材料を使用し、光
磁気デイスクへの記録、消去に応じてパルス状の
励磁コイル電流を印加して磁界の極性反転を行う
ことで少ない電力で高速でバイアス磁界の反転操
作が可能になり、励磁コイルの冷却装置が不要で
あるし、高速の情報記録、再生が出来るので、大
容量、高速の記録媒体としての光磁気デイスクの
性能を一段と向上するという効果がある。
(g) Effects of the invention As is clear from the above description, a semi-hard magnetic material is used for the magnetic core of a magnetic field device that applies a bias magnetic field to a magneto-optical disk device based on the present invention, and recording on a magneto-optical disk is achieved. By applying a pulsed excitation coil current in response to erasure and reversing the polarity of the magnetic field, it is possible to reverse the bias magnetic field at high speed with less power, and there is no need for a cooling device for the excitation coil. Since information can be recorded and reproduced, it has the effect of further improving the performance of magneto-optical disks as large-capacity, high-speed recording media.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は光磁気媒体の保磁力Hcの温度特性を
示す線図、第2図は光磁気デイスクの情報記録の
原理を示す説明図、第3図は従来の光磁気デイス
ク装置の構成図、第4図は本発明に基づくバイア
ス磁界の印加装置の一実施例を示す斜視図、第5
図は光磁気デイスクの記録、消去動作とこれに連
動するバイアス磁界印加装置の励磁コイル電流の
相互の関係を示すタイムチヤートである。 図において、1は光磁気デイスクの基板、2は
光磁気媒体層、3はレーザ光線、4はレンズ、5
は光スポツト像、6は半導体レーザ、7はコリメ
ーテイングレンズ、8は真円補正プリズム、9,
15,15bはレーザ光ビーム、10は偏光子、
11,16はビームスプリツタ、12は反射鏡、
13は対物レンズ、14は光磁気デイスク、17
はマスクを兼ねた反射鏡、18,19,23は集
光レンズ、20,21は2分割検出器、22は検
光子、24は光検出器、30は磁芯、31は励磁
コイル、32はヨークをそれぞれ示す。
Fig. 1 is a diagram showing the temperature characteristics of the coercive force Hc of a magneto-optical medium, Fig. 2 is an explanatory diagram showing the principle of information recording on a magneto-optical disk, and Fig. 3 is a configuration diagram of a conventional magneto-optical disk device. FIG. 4 is a perspective view showing one embodiment of a bias magnetic field applying device based on the present invention;
The figure is a time chart showing the mutual relationship between the recording and erasing operations of the magneto-optical disk and the excitation coil current of the bias magnetic field applying device interlocked with the recording and erasing operations. In the figure, 1 is the substrate of the magneto-optical disk, 2 is the magneto-optical medium layer, 3 is the laser beam, 4 is the lens, and 5 is the magneto-optical disk.
is a light spot image, 6 is a semiconductor laser, 7 is a collimating lens, 8 is a perfect circle correction prism, 9,
15 and 15b are laser beams, 10 is a polarizer,
11 and 16 are beam splitters, 12 is a reflecting mirror,
13 is an objective lens, 14 is a magneto-optical disk, 17
18, 19, 23 are condenser lenses, 20, 21 are two-split detectors, 22 is an analyzer, 24 is a photodetector, 30 is a magnetic core, 31 is an excitation coil, 32 is a reflecting mirror that also serves as a mask, 32 is a Each yoke is shown.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体レーザ等の光源からの光ビームを光学
レンズで集光してその光スポツトをバイアス磁界
を印加した光磁気デイスクに投射して情報を記録
あるいは消去するようにした光学的情報記録再生
装置において、前記バイアス磁界印加手段が半硬
質磁性材料より形成され十分なN極とS極間の距
離を有する磁芯と前記磁極の極性を反転し得る励
磁コイルおよびパルス励磁電流電源より構成され
たことを特徴とする光磁気デイスクのバイアス磁
界印加装置。
1. In an optical information recording/reproducing device that records or erases information by condensing a light beam from a light source such as a semiconductor laser using an optical lens and projecting the light spot onto a magneto-optical disk to which a bias magnetic field is applied. , the bias magnetic field applying means is composed of a magnetic core made of a semi-hard magnetic material and having a sufficient distance between the north and south poles, an excitation coil capable of reversing the polarity of the magnetic poles, and a pulsed excitation current power supply. Features: Bias magnetic field application device for magneto-optical disks.
JP10640183A 1983-06-13 1983-06-13 Bias magnetic field impressing device of opto-magnetic disk Granted JPS59231704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10640183A JPS59231704A (en) 1983-06-13 1983-06-13 Bias magnetic field impressing device of opto-magnetic disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10640183A JPS59231704A (en) 1983-06-13 1983-06-13 Bias magnetic field impressing device of opto-magnetic disk

Publications (2)

Publication Number Publication Date
JPS59231704A JPS59231704A (en) 1984-12-26
JPH0456362B2 true JPH0456362B2 (en) 1992-09-08

Family

ID=14432661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10640183A Granted JPS59231704A (en) 1983-06-13 1983-06-13 Bias magnetic field impressing device of opto-magnetic disk

Country Status (1)

Country Link
JP (1) JPS59231704A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH077535B2 (en) * 1986-07-30 1995-01-30 キヤノン株式会社 Magneto-optical recording device

Also Published As

Publication number Publication date
JPS59231704A (en) 1984-12-26

Similar Documents

Publication Publication Date Title
US4672594A (en) Magneto-optical recording system utilizing a leakage magnetic field of focusing actuator
CA1177577A (en) Magnetooptical recording medium and recording-and- reproducing device using the same
US4518657A (en) Recording medium and recording-reproduction system provided with the recording medium
JPS61192048A (en) System and device for optical/magnetic recording, reproducing and erasing
JPS607635A (en) Photomagnetic disc device
US4363052A (en) Thermomagnetic recording device
JPS6217282B2 (en)
JPH0456362B2 (en)
JPH0456363B2 (en)
JPS61214258A (en) Write and reproducing integrated magnetic head
JPS5841451A (en) Vertical magnetic recording medium
JPH0568763B2 (en)
JP2604700B2 (en) Magneto-optical recording / reproduction / erasing method and apparatus
JP2604702B2 (en) Magneto-optical recording / reproduction / erasing method and apparatus
JP2591729B2 (en) Magneto-optical recording / reproduction / erasing method and apparatus
JPS5819753A (en) Vertical magnetic recording medium and reproducing method of vertical magnetizing signal using said recording medium
JPS58171738A (en) Photomagnetic memory medium
JPS6113461A (en) Photomagnetic disk device
JPS62128034A (en) Optical head for photomagnetic disc
JPS58130458A (en) Information recording and reproducing device
KR100357094B1 (en) apparatus and method for magneto-optical writing/reading using near field
JPS60103539A (en) Photomagnetic recording and reproducing device
JPS63281251A (en) Magneto-optical disk device
JPS61217902A (en) Reproducing method for magnetic recording information and reproducing head
JPS61269203A (en) Magnetic field applying device