JPH01219836A - Mask for projected print - Google Patents

Mask for projected print

Info

Publication number
JPH01219836A
JPH01219836A JP63046668A JP4666888A JPH01219836A JP H01219836 A JPH01219836 A JP H01219836A JP 63046668 A JP63046668 A JP 63046668A JP 4666888 A JP4666888 A JP 4666888A JP H01219836 A JPH01219836 A JP H01219836A
Authority
JP
Japan
Prior art keywords
thin film
transparent
mask
transparent thin
thin films
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63046668A
Other languages
Japanese (ja)
Inventor
Naoaki Sugimoto
杉本 直明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP63046668A priority Critical patent/JPH01219836A/en
Publication of JPH01219836A publication Critical patent/JPH01219836A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

PURPOSE:To retain flatness of a transparent thin film facing a mask pattern and to inspect a foreign material precisely even when atmospheric pressure fluctuates by imparting a transparent substrate and placing thin films, thinner than a transparent thin film, which is placed on the wall surface of a frame bonding said thin film. CONSTITUTION:The title mask is equipped with the transparent substrate, and the thin films 12, windows are provided on the wall surfaces of the frame 11 adhering to the transparent thin films thereon at intervals, and they have the thin films 12 which are thinner than the transparent thin film. Even when the title mask is brought to a point of 2,000m is altitude and left as it is for one week, the thin films 12 expand prior to the transparent thin film because they are thinner, and weaker in tension, than the transparent thin film. Consequently the transparent thin film merely expands to outside. This phenomenon is the more remarkable and effective, as the difference of film thickness between the thin films 12 stretched in the frame 11 and the transparent thin film facing the transparent substrate becomes greater. Accordingly, the thin films 12 are better to be thinner so far as they endure a certain extent of tension. Thus, the transparent thin film facing the transparent substrate of the mask for a projected print retains its flatness against the fluctuation of atmospheric pressure, and a user recognizes debris adhering to the title mask precisely.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、−数的に、光学的パターン・マスクに係り、
更に具体的には、望ましくない付着物粒子のプリントを
回避するようなパターン・マスク構造体に係る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention - numerically relates to an optical pattern mask;
More specifically, the present invention relates to patterned mask structures that avoid the printing of undesirable deposit particles.

〔従来の技術〕[Conventional technology]

集積回路の製造で、いろいろなデバイス及び回路接続は
、フォトレジスト・マスクを用いて形成され、そのフォ
トレジスト・マスクは、食刻処理或は、金属被着処理が
望まれる領域を除いた半導体基板の領域を保護する。
In the manufacture of integrated circuits, various devices and circuit connections are formed using photoresist masks that cover the semiconductor substrate excluding areas where etching or metallization is desired. protect the area of

フォトレジス1〜・マスクは、基板をレジスト層で被膜
し、それからパターン・マスクの開口を通し紫外線光を
通してレジスト層をこのパターンに従って露光すること
によって形成される。光線は、照射領域のレジスl〜層
を、ネガティブ・レジストの場合は硬化し、ポジティブ
・レジストの場合には劣化させる。それからこの未硬化
領域即ち劣化領域は、現像源によって除去され、この現
像液が例えば金属被着処理の為に基板の一部分を露光さ
せる6通常、パターン・マスクは、一方の表面に例えば
銀或はクロムの不透明な領域パターンが形成された透明
基板で形成される。
Photoresist 1--The mask is formed by coating a substrate with a resist layer and then exposing the resist layer according to the pattern through ultraviolet light through the openings of the patterned mask. The light beam hardens the resist l~ layer in the irradiated area in the case of negative resists and degrades in the case of positive resists. This uncured or degraded area is then removed by a developer source that exposes a portion of the substrate, for example for a metallization process.6 Typically, the patterned mask has one surface coated with, for example, silver or It is formed of a transparent substrate with a pattern of chromium opaque areas formed thereon.

レジスト・プリント法には、従来、数種の方法が用いら
れているが、もっとも−数的な方法は、縮小投影露光方
法である。このマスク像は、例えば、基板上に形成され
る像の5倍から20@の寸法である。これは、像がより
大きい為に、マスクの形成及び検査をより容易にする。
Conventionally, several types of resist printing methods have been used, but the most popular method is a reduction projection exposure method. This mask image is, for example, 5 to 20 times larger than the image formed on the substrate. This makes mask formation and inspection easier because the image is larger.

又、これは、マスクに寸法的誤差があったとしてもこれ
が基板上に形成される場合には寸法的に縮小されるため
に、マスクの誤差がほとんど無視できるという利点を有
する。一方、投影露光方法で認識される1つの欠点は、
マスクのパターン化表面の透明な領域に積もる付@物粒
子までも基板の平面に最適な解像度及びコントラストで
正確に焦点合わせされてしまい、その為に大粒子の像が
レジスト層にプリン1−されることである、このことは
、像の寸法を縮小するシステムではマスク領域の相対的
寸法が非常に大きい為に問題である。これは、プリント
されてしまう程十分な大きさの寸法を直した付着物がク
リーン・ルームの環境でさえもマスク・パターンの透明
な領域に付着される可能性を増す。
This also has the advantage that even if there is a dimensional error in the mask, the dimensional error is reduced when it is formed on the substrate, so that the error in the mask can be almost ignored. On the other hand, one drawback recognized with the projection exposure method is that
Even particles that accumulate in the transparent areas of the patterned surface of the mask are precisely focused on the plane of the substrate with optimal resolution and contrast, so that large particle images are printed onto the resist layer. This is a problem in systems that reduce image size because the relative size of the mask area is very large. This increases the likelihood that resized deposits large enough to be printed will be deposited on transparent areas of the mask pattern even in a clean room environment.

このようなゴミ粒子をプリントすることを回避する方法
が、特公昭54−28716等で提案されている。これ
は、マスクの表面に、数市の間隔をおいて、透明薄膜の
カバーを接着し、このカバーでパターンを損傷及びごみ
から保護し、しかも、カバーの外表面上の数十ミクロン
程度までのごみは、焦点外に保ち、それによってパター
ンが感光性基板にプリントされる時にごみ粒子の像がプ
リントされないというものである。
A method for avoiding printing such dust particles has been proposed in Japanese Patent Publication No. 54-28716 and the like. This involves gluing transparent thin film covers onto the surface of the mask at intervals of several cities, protecting the pattern from damage and dust, and also protecting the outer surface of the cover to the order of tens of microns. The dust is kept out of focus so that no image of the dust particles is printed when the pattern is printed on the photosensitive substrate.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、前述のようなごみの転写を防ぐ方法の場合、で
きるたけ大きなごみの転写を防ごうとすると、マスクと
、透明薄膜の間隔を大きくする必要があり、それに伴な
い、マスクの搬送が困難になったり、マスク収納ケース
の巨大化、マスク保管区域の広域化という問題があった
。また、マスクと、透明薄膜の間隔をある程度に押さえ
た場合、転写し、不良となる大きさのごみを管理する必
要がある。この管理方法として、−数的なものは、レー
ザ光を透明薄膜面にすれすれに入射し、ごみがあった場
合、その散乱光を受光し認知する方法である。この場合
、透明薄膜とマスクの間に密閉された空気が、気圧変動
により膨脹あるいは収縮すると、ごみの検出能力が低下
する。すなわち、膨脹した場合、ごみがないにもかかわ
らず、ごみと認知したり、逆に、収縮した時は、ごみが
あっても、認知しないという自体となる。
However, in the case of the method of preventing dust transfer as described above, in order to prevent the transfer of large dust as much as possible, it is necessary to increase the distance between the mask and the transparent thin film, which makes transporting the mask difficult. There were problems such as the mask storage case becoming huge and the mask storage area expanding. Furthermore, if the distance between the mask and the transparent thin film is kept to a certain level, it is necessary to control dust that is large enough to cause defects due to transfer. A numerical method for this management is a method in which a laser beam is barely incident on the surface of a transparent thin film, and if there is dust, the scattered light is received and recognized. In this case, when the air sealed between the transparent thin film and the mask expands or contracts due to changes in atmospheric pressure, the ability to detect dust decreases. In other words, when it expands, it recognizes it as garbage even though there is no garbage there, and conversely, when it contracts, it does not recognize it even though there is garbage.

そこで、本発明は、このような問題点を解決するもので
、その目的とする所は、気圧が変動しても、マスク・パ
ターンに面した透明薄膜を平坦に保ち、異物検査を正確
に行えるようにすることである。
The present invention is intended to solve these problems.The purpose of the present invention is to keep the transparent thin film facing the mask pattern flat even when the atmospheric pressure fluctuates, so that foreign object inspection can be performed accurately. It is to do so.

〔課題を解決するための手段〕[Means to solve the problem]

本発明による投影プリント用マスクは、不透明な領域及
び透明な領域を有するパターンが形成された透明基板の
少なくとも、一方の面に、間隔を置いて透明薄膜を設け
た投影プリンタ用マスクにおいて、前記透明基板と、前
記透明薄膜を接着する枠の壁面に、窓を設け、前記窓に
前記透明薄膜よりも薄い薄膜を有することを特徴とする
The projection printing mask according to the present invention is a projection printing mask in which a transparent thin film is provided at intervals on at least one surface of a transparent substrate on which a pattern having an opaque area and a transparent area is formed. A window is provided on the wall surface of the frame to which the substrate and the transparent thin film are bonded, and the window has a thin film thinner than the transparent thin film.

〔実 施 例〕〔Example〕

本発明の実施例を、従来例と比較しながら下記に示す。 Examples of the present invention will be shown below in comparison with conventional examples.

標高100mの地点における実験室にて、透明基板への
透明薄膜へ接着を行う、すなわち、−退的13aaの正
方形の透明基板を2枚用意し、1枚には第2図のように
プラスチック性の枠21(厚さ3市、幅7鴎、長辺12
■、短辺10CXI)を接着剤により、すきまのないよ
うに接着する。もう1枚には、第1図のように前記枠の
長辺には、10(2)X50111の、短辺には、80
X5態の1口窓を設け、そこに厚さ0.2ミクロンの薄
膜12をたるまないように接着した上で、透明基板へ接
着剤により、すきまのないように接着する。ここで、薄
膜12は、透明である必要はないが、商品名マイラとし
て市販されているポリオキシエチレン・テレフタル酸、
ニトロスルロース、及びパリレンのようなポリマの膜が
適当である。その後、前記2つの枠21.11の厚さ2
ミクロンの透明rJ膜を破れない程度の張力をもって、
接着する。この透明iMは、前述の薄膜12と同じ材料
のマイラである。
In a laboratory at an altitude of 100 m, adhesive is applied to a transparent thin film on a transparent substrate. In other words, two square transparent substrates of -13aa are prepared, and one is coated with plastic as shown in Figure 2. Frame 21 (Thickness: 3, Width: 7, Long side: 12
(2) Glue the short sides (10CXI) with adhesive so that there are no gaps. On the other sheet, as shown in Figure 1, the long side of the frame is 10 (2) x 50111, and the short side is 80
A single window in the X5 state is provided, and a thin film 12 having a thickness of 0.2 microns is adhered thereto so as not to sag, and is then adhered to a transparent substrate with an adhesive so that there is no gap. Here, the thin film 12 does not need to be transparent, but may be made of polyoxyethylene terephthalic acid, which is commercially available under the trade name Mylar.
Membranes of polymers such as nitrosululose and parylene are suitable. Then the thickness 2 of said two frames 21.11
With enough tension to not tear the micron transparent RJ film,
Glue. This transparent iM is made of mylar, which is the same material as the thin film 12 described above.

〔発明の効果〕〔Effect of the invention〕

前述の2枚の透明基板を、標高2000mの地点へ持っ
ていき、1週間放置した。すると、枠に窓を設けて、薄
膜を張った方の透明基板に面した透明薄膜は、平坦のま
まであったが、枠に窓を設けなかった方の透明薄膜は、
約2關膨脹した。これは、気圧の低下のために、透明基
板と透明薄膜の間に密閉された空気の圧力が、外圧より
も高くなったために、透明薄膜の張力と等しくなるまで
、透明薄膜が外側へふくらんだものである、一方、枠に
窓を設けて、薄膜を張った方は、この薄膜が透明薄膜よ
りも薄く、張力が弱いために、透明薄膜よりも優先的に
膨張し、その結果、透明薄膜は、はとんど外側へふくれ
ることがない。
The two transparent substrates described above were taken to a point at an altitude of 2000 m and left for one week. As a result, the transparent thin film facing the transparent substrate on which the window was provided and the thin film was stretched remained flat, but the transparent thin film on the side where the window was not provided on the frame remained flat.
It expanded about 2 degrees. This is because due to the drop in atmospheric pressure, the pressure of the air sealed between the transparent substrate and the transparent thin film became higher than the external pressure, so the transparent thin film expanded outward until it became equal to the tension of the transparent thin film. On the other hand, if a window is provided in the frame and a thin film is stretched, this thin film is thinner than the transparent thin film and has weaker tension, so it expands preferentially than the transparent thin film, and as a result, the transparent thin film It almost never swells outward.

このような現象は、枠に張った薄膜と、透明基板に面し
た透明薄膜の膜厚差か大きいほど、顕著で、効果も大き
い、従って、枠に張った薄膜は、ある程度の張力に耐え
うる厚さで、薄いほどよい。
This phenomenon is more pronounced and effective as the difference in thickness between the thin film stretched on the frame and the transparent thin film facing the transparent substrate is larger. Therefore, the thin film stretched on the frame can withstand a certain amount of tension. As for thickness, the thinner the better.

実験的に調べた所、少くとも0.2ミクロン以上の均一
な膜であれば、実施例のような気圧変動に十分耐えうろ
ことがわかった。また透明基板に面する透明薄膜は、投
影装置の光路に実質的に影響しない程度の厚さで、厚い
ほどよい、実験的には、2ミクロン程度の厚さでは、対
象物上で、わすかに0.4ミクロンのシフl〜を生じる
だけで、この程度のシフトは、縮少投影露光方式では問
題がない、従って、枠に張る薄膜の厚さは0.2ミクロ
ン以下、透明基板に面する透明薄膜の厚さは、2ミクロ
ン以上と、この差は1.8ミクロン以上まで可能となる
。他のポリマの膜をさらに検討し、最適化することによ
り、この差は、さらに大きくでき、ひいては、本発明の
目的とする。透明基板に面した透明薄膜の気圧変動に対
する膨張あるいは収縮の防止の効果か向上するものであ
る。
Experimental research has shown that a uniform film of at least 0.2 microns or more can withstand atmospheric pressure fluctuations as in the example. In addition, the thickness of the transparent thin film facing the transparent substrate should be such that it does not substantially affect the optical path of the projection device, and the thicker the better. A shift of this magnitude only causes a shift of 0.4 microns l~, which is not a problem with the reduction projection exposure method. The thickness of the transparent thin film can be 2 microns or more, and the difference can be up to 1.8 microns or more. By further investigating and optimizing films of other polymers, this difference can be made even greater, and thus is an object of the present invention. This improves the effect of preventing the transparent thin film facing the transparent substrate from expanding or contracting due to changes in atmospheric pressure.

なお、実施例では、密閉された空圧が外圧よりも高い例
を示したが、逆に、外圧よりも低い場合ら同様な効果が
得られることは言うまでもない。
In addition, in the embodiment, an example was shown in which the air pressure in the sealed air is higher than the external pressure, but it goes without saying that the same effect can be obtained when the air pressure is lower than the external pressure.

このように、本発明により、気圧変動に対し、投影プリ
ント用マスクの透明基板に面した透明薄膜の平坦度が保
たれ、付着するごみの認知を正確に行えるようになり、
ひいては、歩留りの向上が可能となる。
As described above, the present invention maintains the flatness of the transparent thin film facing the transparent substrate of the projection printing mask against atmospheric pressure fluctuations, making it possible to accurately recognize attached dust.
As a result, it is possible to improve the yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例による投影プリント用マスクの
透明基板と透明薄膜を接着する枠の投影図、第2図は、
従来の投影プリント用マスクの透明基板と透明薄膜を接
着する枠の加工例の投影図を示す。 11.21・・・枠 12・・・・・・薄膜 以上 英A邑 第2固
FIG. 1 is a projected view of a frame for bonding a transparent substrate and a transparent thin film of a projection printing mask according to an embodiment of the present invention, and FIG.
A projection view of a processing example of a frame for bonding a transparent substrate and a transparent thin film of a conventional projection printing mask is shown. 11.21...Frame 12...Thin film or above, Ying A-eup 2nd hard

Claims (1)

【特許請求の範囲】[Claims]  不透明な領域及び透明な領域を有するパターンが形成
された透明基板の少なくとも、一方の面に、間隔を置い
て透明薄膜を設けた投影プリント用マスクにおいて、前
記透明基板と、前記透明薄膜を接着する枠の壁面に、窓
を設け、前記窓に前記透明薄膜よりも薄い薄膜を有する
ことを特徴とする投影プリント用マスク。
In a projection printing mask in which transparent thin films are provided at intervals on at least one surface of a transparent substrate on which a pattern having opaque areas and transparent areas is formed, the transparent substrate and the transparent thin film are bonded. A mask for projection printing, characterized in that a window is provided on a wall surface of a frame, and the window has a thin film thinner than the transparent thin film.
JP63046668A 1988-02-29 1988-02-29 Mask for projected print Pending JPH01219836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63046668A JPH01219836A (en) 1988-02-29 1988-02-29 Mask for projected print

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63046668A JPH01219836A (en) 1988-02-29 1988-02-29 Mask for projected print

Publications (1)

Publication Number Publication Date
JPH01219836A true JPH01219836A (en) 1989-09-01

Family

ID=12753734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63046668A Pending JPH01219836A (en) 1988-02-29 1988-02-29 Mask for projected print

Country Status (1)

Country Link
JP (1) JPH01219836A (en)

Similar Documents

Publication Publication Date Title
US4131363A (en) Pellicle cover for projection printing system
KR100441349B1 (en) Frame-supported pellicle for photomask protection
TWI431415B (en) A photomask unit comprising a photomask and a pellicle attached to the photomask and a method for fabricating a photomask unit
JP2992585B2 (en) Pressure-releasing pellicle
JP2020098227A (en) Pellicle film for photo lithography and pellicle equipped with the same
JP2642637B2 (en) Dustproof film
KR100779956B1 (en) Photomask blank and manufacturing process of photomask
JP4512782B2 (en) Mask structure and semiconductor device manufacturing method using the same
US20020142234A1 (en) Photomask
KR100856621B1 (en) Pellicle remove apparatus for photo mask and method therefor
JPH01219836A (en) Mask for projected print
JPH05150445A (en) Mask for exposure
US5332604A (en) Adhesive system for reducing the likelihood of particulate
KR100526527B1 (en) Photomask and foaming mask pattern using the same
JP2550281Y2 (en) Pellicle frame
JPH1062966A (en) Pellicle for lithography
JPH02250055A (en) Manufacture of photomask and semiconductor device
KR20190016061A (en) Pellicle
JPS6250758A (en) Formation of pattern
JPS6053871B2 (en) Exposure method
JPH04216553A (en) Mask for production of semiconductor
JPH01105255A (en) Glass mask
JPH10144594A (en) X-ray mask structure body, x-ray aligner using the x-ray mask structure body, and semiconductor device formed by using the x-ray mask structure body
JPS61241756A (en) Photomask
JPH0497250A (en) Nonstatic chargeable pellicle