JPH01219526A - Optical temperature detector - Google Patents

Optical temperature detector

Info

Publication number
JPH01219526A
JPH01219526A JP63044207A JP4420788A JPH01219526A JP H01219526 A JPH01219526 A JP H01219526A JP 63044207 A JP63044207 A JP 63044207A JP 4420788 A JP4420788 A JP 4420788A JP H01219526 A JPH01219526 A JP H01219526A
Authority
JP
Japan
Prior art keywords
rod
temperature
optical
light energy
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63044207A
Other languages
Japanese (ja)
Inventor
Shunsuke Kubota
俊輔 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP63044207A priority Critical patent/JPH01219526A/en
Publication of JPH01219526A publication Critical patent/JPH01219526A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To measure high temperature with a little loss of light energy and high accuracy by forming a coating layer which is optically transparent and has a lower refractive index than an optical transmission rod on the outer peripheral surface of the rod. CONSTITUTION:The coating layer 52 is formed on the outer peripheral surface of the sapphire rod 50 by adhering the material which is optically transparent to infrared rays and has the lower refractive index than the rod 50, e.g. quartz glass or epoxy resin on the outer peripheral surface. Consequently, the light energy which is emitted by a radiation body 11 is reflected totally by the border surface between the sapphire rod 50 and low-refractive-index transparent material, so even if an absorbing material such as soot sticks on the coating layer 52 during measurement, the transmitted light energy is not absorbed and light energy attenuation in transmission is therefore prevented effectively.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高温度物体の温度を測定するのに好適な光学
式温度検出装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an optical temperature detection device suitable for measuring the temperature of a high-temperature object.

(従来の技術) 従来、自動車の内燃機関、ガスタービン機関や高温熱処
理炉、加熱炉等の燃焼温度等を制御するためには、高精
度の温度測定が必要であった。これら高温物体の温度を
測定する装置として、被測定領域の温度に応じた光エネ
ルギーを放射する黒体放射体を利用した光学式温度検出
装置が既知で諷り、例えば特開昭56−129827号
公報に開示されている。この既知の温度検出装置では、
光ファイバの入射端に黒体放射体に相当する筒管状の温
度放射物体が被嵌状に取付けられ、この温度放射物体を
測定すべき命域に近接させ、受熱状態にある温度放射物
体から放射される光エネルギーを光ファイバを介してそ
の出射端まで伝送している。そして、光ファイバの出射
端に測定系を連結し、伝送されてくる光エネルギーを電
気信号に変換し、ブランクの式に基づ(信号処理を行っ
て被測定領域の温度を決定するように構成されている。
(Prior Art) Conventionally, highly accurate temperature measurement has been necessary to control the combustion temperature of automobile internal combustion engines, gas turbine engines, high-temperature heat treatment furnaces, heating furnaces, and the like. As a device for measuring the temperature of these high-temperature objects, an optical temperature detection device using a blackbody radiator that emits light energy according to the temperature of the measurement area is known and published, for example, in Japanese Patent Application Laid-Open No. 56-129827. Disclosed in the official gazette. In this known temperature sensing device,
A cylindrical temperature radiating object corresponding to a black body radiator is fitted onto the input end of the optical fiber, and this temperature radiating object is brought close to the life area to be measured, and the temperature radiating object in the heat receiving state emits radiation. The optical energy is transmitted through the optical fiber to its output end. Then, a measurement system is connected to the output end of the optical fiber, converts the transmitted optical energy into an electrical signal, and performs signal processing based on Blank's equation to determine the temperature of the area to be measured. has been done.

別の光学式温度検出装置として、黒体放射体をサファイ
ヤロッドの先端に形成したセンサを用いる温度検出装置
が既知である(特開昭6l−210922)。この既知
の装置では、プラチナ、イリジウム等をスパッタリング
によってサファイヤロッドの先端面及び端面から所定の
距離に亘って被着し、これによりキャップ状の黒体放射
体を形成し、黒体放射体の内面で放射された光エネルギ
ーをサファイヤロッドを介してその出射端まで伝送し、
さらにサファイヤロッドの出射端に光ファイバを連結し
、サファイヤロッドを経て伝送されてくる光エネルギー
をさらに光ファイバを経て測定系まで伝送し、信号処理
を行って被測定領域の温度を決定するように構成されて
いる。
As another optical temperature detection device, a temperature detection device using a sensor in which a black body radiator is formed at the tip of a sapphire rod is known (Japanese Patent Laid-Open No. 61-210922). In this known device, platinum, iridium, etc. are deposited by sputtering over a predetermined distance from the tip and end surfaces of a sapphire rod, thereby forming a cap-like blackbody radiator, and depositing platinum, iridium, etc. on the inner surface of the blackbody radiator. transmits the light energy emitted by the sapphire rod to its output end,
Furthermore, an optical fiber is connected to the output end of the sapphire rod, and the light energy transmitted through the sapphire rod is further transmitted through the optical fiber to the measurement system, where signal processing is performed to determine the temperature of the area to be measured. It is configured.

(発明が解決しようとする問題点) 上述した光ファイバの先端に黒体放射体を直接取り付け
た温度検出装置では、光ファイバの耐熱性に限界があり
、例えば石英ファイバを用いても1500°C以上で使
用することができず、被測定領域の温度によって使用範
囲で制限される欠点があった。また、例えばエンジンの
シリンダ内の温度を測定するような場合、シリンダ壁部
に設けた孔を経て黒体放射体を所望の測定位置に配置す
る必要があるが、光ファイバはその可撓性故に機械的自
己保持力が弱いため黒体放射体を所望の位置に配置しに
くい欠点があった。特に、測定中に被測定物体に僅かな
振動が与えられるだけで、黒体放射体が取付けられてい
る先端部が大きく揺動してしまい、ノイズが大きく測定
精度が劣化する不具合が生じていた。更に、光ファイバ
はコアの外周にクラッド層が形成されているため、光フ
ァイバの入射端においてコアの入射面の面積が掻めて小
さく、黒体放射体で放射された光エネルギーのうち僅か
な量の光エネルギーしかコア内に入射でき、従って、伝
送される光エネルギーの量が少なすぎ、ノイズによる影
響を受は易い不都合が生じていた。
(Problems to be Solved by the Invention) In the above-mentioned temperature detection device in which a black body radiator is directly attached to the tip of an optical fiber, there is a limit to the heat resistance of the optical fiber. It cannot be used in the above range, and has the disadvantage that the range of use is limited depending on the temperature of the area to be measured. Furthermore, when measuring the temperature inside an engine cylinder, for example, it is necessary to place a black body radiator at the desired measurement position through a hole in the cylinder wall, but optical fibers are flexible. Since the mechanical self-holding force is weak, it is difficult to place the black body radiator at a desired position. In particular, even a slight vibration applied to the object to be measured during measurement would cause the tip, where the blackbody radiator is attached, to swing significantly, resulting in large noise and deterioration of measurement accuracy. . Furthermore, since an optical fiber has a cladding layer formed around the outer periphery of the core, the area of the entrance surface of the core at the input end of the optical fiber is extremely small, and only a small amount of the light energy emitted by the black body radiator is used. Only a small amount of light energy can enter the core, and therefore, the amount of light energy transmitted is too small and is susceptible to noise.

これに対して、サファイヤロッドの先端に黒体放射体を
形成し、黒体放射体で放射された光エネルギーをサファ
イヤロッド及び光ファイバを経て測定系まで伝送する装
置は、サファイヤロッドが1900°Cまでの耐熱性を
有しているから、より広い温度域に亘って測定できる利
点が達成される。また、サファイヤロッドは機械的強度
が高いためロッド状に形成でき、従って黒体放射体を所
望の位置に配置し易く、更にサファイヤロッドの外周に
はクラッド層が存在しないためその先端部の広範囲に亘
って黒体放射体をスパッタリング等によって直接形成で
きると共に黒体放射体で放射された光エネルギーの全て
を伝送できる。この結果、伝送される光ネルギーが大き
くなり、測定精度が向上する利点が達成される。
On the other hand, in a device that forms a blackbody radiator at the tip of a sapphire rod and transmits the light energy emitted by the blackbody radiator to the measurement system via the sapphire rod and optical fiber, the sapphire rod is heated to 1900°C. Since it has heat resistance up to In addition, since the sapphire rod has high mechanical strength, it can be formed into a rod shape, making it easy to place the black body radiator at the desired position.Furthermore, since there is no cladding layer around the outer periphery of the sapphire rod, the sapphire rod can be formed into a rod shape over a wide area at its tip. In addition, the black body radiator can be directly formed by sputtering or the like, and all of the light energy emitted by the black body radiator can be transmitted. As a result, the advantage of increased optical energy being transmitted and improved measurement accuracy is achieved.

しかしながら、例えばエンジンのシリンダのように不完
全燃焼が存在する領域の温度を測定する場合、測定中に
黒体放射体から離れた低温領域においてサファイヤロッ
ドの外周に燃焼されなかったガスや煤が付着してしまい
、この付着物によって黒体放射体で放射された伝送中の
光エネルギーの一部が伝送中に吸収され、検出温度が実
際の温度よりも低く表示される不都合が生じていた0例
えば実験結果によれば、直径1.27mmのサファイヤ
ロッドを用いたもので、970°Cのエンジンのシリン
ダ内の温度を測定する場合、サファイヤロッドに長さ1
100aに亘って不完全燃焼の際に発生する煤が付着す
ると約23%の光エネルギーがロスし実際の温度よりも
約26°も低い温度が検出されていた。
However, when measuring the temperature of an area where incomplete combustion exists, such as an engine cylinder, unburned gas and soot adhere to the outer periphery of the sapphire rod in the low temperature area away from the black body radiator during measurement. Due to this deposit, part of the optical energy emitted by the black body radiator during transmission is absorbed during transmission, resulting in the inconvenience that the detected temperature is displayed lower than the actual temperature. According to the experimental results, when measuring the temperature inside the cylinder of an engine at 970°C using a sapphire rod with a diameter of 1.27 mm, the length of the sapphire rod is 1.
When soot generated during incomplete combustion adhered over 100a, about 23% of light energy was lost, and the detected temperature was about 26° lower than the actual temperature.

従って、本発明は上述した欠点を除去し、サファイヤロ
ッドのような耐熱性光伝送ロッドの先端部に黒体放射体
を形成したセンサを用いても、光エネルギーのロスがほ
とんどなく高精度の高温測定し得る光学式温度検出装置
を提供するものである。
Therefore, the present invention eliminates the above-mentioned drawbacks, and even when using a sensor in which a blackbody radiator is formed at the tip of a heat-resistant light transmission rod such as a sapphire rod, there is almost no loss of light energy and high-precision high-temperature The present invention provides an optical temperature detection device capable of measuring temperature.

(問題点を解決するための手段) 本発明による光学式温度検出装置は、耐熱性光伝送ロッ
ドの先端部に黒体放射体を形成し、黒体放射体から放射
される光エネルギーを前記光伝送ロッドを介して測定系
まで伝送し、伝送された光エネルギーに基づいて被測定
領域の温度を検出する光学式温度検出装置において、前
記光伝送ロッドの外周面上に光学的に透明で光伝送ロッ
ドの屈折率よりも低い屈折率の被覆層を形成したことを
特徴とするものである。
(Means for Solving the Problems) The optical temperature detection device according to the present invention forms a black body radiator at the tip of a heat-resistant light transmission rod, and converts the light energy emitted from the black body radiator into the light. In an optical temperature detection device that transmits light energy to a measurement system via a transmission rod and detects the temperature of a measured area based on the transmitted light energy, an optically transparent light transmitting device is provided on the outer peripheral surface of the light transmission rod. It is characterized by forming a coating layer with a refractive index lower than that of the rod.

(作 用) 光伝送ロッドの先端に黒体放射体を形成すると共に、光
伝送ロッドの外周面上に光学的に透明な低屈折率材料層
を形成すれば、黒体放射体で発生した光エネルギーは光
伝送ロッドと低屈折率材料層との間の界面で全反射しな
がら伝達する。この結果、測定中に煤等の光吸収材料が
光伝送ロッドに付着しても伝送される光エネルギーが付
着物によって吸収されるのを有効に防止することができ
、高精度の高温度測定を行うことができる。
(Function) If a black body radiator is formed at the tip of the light transmission rod and an optically transparent low refractive index material layer is formed on the outer peripheral surface of the light transmission rod, the light generated by the black body radiator can be Energy is transmitted while being totally reflected at the interface between the light transmission rod and the low refractive index material layer. As a result, even if light-absorbing materials such as soot adhere to the optical transmission rod during measurement, the transmitted light energy can be effectively prevented from being absorbed by the adhered materials, allowing highly accurate high-temperature measurement. It can be carried out.

(実施例) 第1図は本発明による光学式温度検出装置の全体構成を
示す線図である。本発明による温度検出装置は、測定す
べき領域の温度に応じた光エネルギーを放射させるセン
サ部1と、放射された光エネルギーを電気信号に変換す
る変換部2と、この電気信号に基づいて被測定領域の温
度を決定する信号処理部3と、決定した温度を表示する
表示部4とを具える。センサ部1は耐熱性ロッド状光伝
送体10を有し、このロッド状光伝送体10の先端部に
黒体放射体11を形成する。ロッド状光伝送体の他端を
光コネクタ12を介して光ファイバ13の一端に接続し
、その他端を光コネクタ14を介して変換部2に光学的
に接続する。耐熱性ロッド状光伝送体を操作することに
よって黒体放射体11を測定すべき領域内の所望の位置
に配置すると、黒体放射体11は被測定領域から受熱し
て被測定領域の温度に応じた光エネルギーを放射する。
(Example) FIG. 1 is a diagram showing the overall configuration of an optical temperature detection device according to the present invention. The temperature detection device according to the present invention includes a sensor section 1 that emits light energy according to the temperature of an area to be measured, a converter section 2 that converts the emitted light energy into an electrical signal, and a sensor section 2 that converts the emitted light energy into an electrical signal. It includes a signal processing section 3 that determines the temperature of the measurement area, and a display section 4 that displays the determined temperature. The sensor section 1 has a heat-resistant rod-shaped optical transmitter 10, and a blackbody radiator 11 is formed at the tip of the rod-shaped optical transmitter 10. The other end of the rod-shaped optical transmission body is connected to one end of an optical fiber 13 via an optical connector 12, and the other end is optically connected to the converter 2 via an optical connector 14. When the black body radiator 11 is placed at a desired position within the area to be measured by operating the heat-resistant rod-shaped light transmitting body, the black body radiator 11 receives heat from the area to be measured and adjusts to the temperature of the area to be measured. Emit light energy accordingly.

放射された光エネルギーはロッド状光伝送体10、光コ
ネクタ12、光ファイバ13及び光コネクタ14を経て
測定系2まで伝送される。測定系2では、伝送されてく
る光波をレンズ20によって拡大光束とし、ハーフミラ
−21によって2個の光ビームに分割し、一方の光ビー
ムを第1の干渉フィルタ22及びレンズ23を経て第1
の光検出器24に入射させ、第1の波長光の光エネルギ
ーを検出する。また、他方の光ビームは全反射ミラー2
5で反射し、第2の干渉フィルタ26およびレンズ27
を経て第2の光検出器28に入射し、第1の光ビームと
は異なる第2の波長光の光エネルギーが検出される。第
1及び第2の光検出器24及び28からの電気信号を増
幅回路29で増幅した後信号処理回路30に供給する。
The emitted light energy is transmitted to the measurement system 2 via the rod-shaped optical transmission body 10, the optical connector 12, the optical fiber 13, and the optical connector 14. In the measurement system 2, the transmitted light wave is expanded by a lens 20, split into two light beams by a half mirror 21, and one of the light beams passes through a first interference filter 22 and a lens 23 and then becomes a first light beam.
The light energy of the first wavelength light is detected. In addition, the other light beam is transmitted to the total reflection mirror 2.
5, the second interference filter 26 and the lens 27
The light beam enters the second photodetector 28 through the light beam, and the light energy of the light having a second wavelength different from that of the first light beam is detected. The electrical signals from the first and second photodetectors 24 and 28 are amplified by an amplifier circuit 29 and then supplied to a signal processing circuit 30 .

信号処理回路30では、供給される電気信号をブランク
の式に基づいて信号処理を行い、検出した光エネルギー
から被測定領域の温度を決定する。尚、この信号処理は
、本願人が先に出願した特開昭61−210922号公
報に詳細に説明されているため、ここではその詳細な説
明は省略する。処理回路30で求めた温度は制御回路4
0を経てCRTデイスプレィ41に表示し、プリンタ4
2及びディスク43に記録する。
The signal processing circuit 30 performs signal processing on the supplied electrical signal based on Blank's equation, and determines the temperature of the measurement area from the detected optical energy. This signal processing is explained in detail in Japanese Unexamined Patent Application Publication No. 61-210922, which was previously filed by the applicant, so detailed explanation thereof will be omitted here. The temperature determined by the processing circuit 30 is sent to the control circuit 4.
0 on the CRT display 41, and the printer 4.
2 and the disk 43.

第2図a及びbはロッド状光伝送体の一例の構成を示す
線図的断面図である。ロッド状光伝送体10はサファイ
ヤロッド50を有し、その先端部に黒体放射体11を形
成する。サファイヤロッドは赤外領域において光吸収特
性を有していないため、黒体放射体11で放射された赤
外光を伝送するために極めて好適である。黒体放射体1
1はプラチナ、イリジウムのような光学的に不透明な高
沸点材料をスパッタリングによってサファイヤロッド5
0の先端部の端面及びその付近の外周面に亘って被着す
ることにより構成される。このように、サファイヤロッ
ドの端面だけでなく外周面に亘って黒体放射体材料を被
着することにより、光ファイバの先端に黒体放射体を形
成した既知のセンサに比べ黒体放射体で放射される光エ
ネルギーが一層増大し、伝送中における外部からのノイ
ズの影響を一層低減することができる。黒体放射体11
の外周にA1z03皮膜を形成して保護層51とする。
FIGS. 2a and 2b are diagrammatic cross-sectional views showing the structure of an example of a rod-shaped optical transmission body. The rod-shaped light transmitting body 10 has a sapphire rod 50, and a black body radiator 11 is formed at the tip thereof. Since the sapphire rod does not have light absorption characteristics in the infrared region, it is extremely suitable for transmitting infrared light emitted by the black body radiator 11. black body radiator 1
1 is a sapphire rod 5 made by sputtering an optically opaque high-boiling material such as platinum or iridium.
It is constructed by covering the end face of the tip of the 0 and the outer circumferential surface of the vicinity thereof. In this way, by coating the black body radiator material not only on the end surface of the sapphire rod but also over the outer circumferential surface, the black body radiator material is coated not only on the end surface but also on the outer circumferential surface of the sapphire rod. The emitted light energy is further increased, and the influence of external noise during transmission can be further reduced. black body radiator 11
An A1z03 film is formed on the outer periphery of the protective layer 51.

黒体放射体11で放射された光エネルギーはサファイヤ
ロッドとその周囲の空気との界面で全反射を繰り返しな
がら伝達し光コネクタに到達する。前述したように、エ
ンジンのシリンダの温度等を測定する場合、測定中に煤
等がサファイヤロッド50の外周面上に付着すると、黒
体放射体11で放射された光エキルギーが伝送中に付着
した煤等によって吸収されてしまう。このため、本発明
ではサファイヤロッド50の外周面上に被覆層52を形
成する。この被覆]152は黒体放射体で放射された赤
外光に対して光学的に透明であり、サファイヤロッドの
屈折率よりも小さい屈折率材料、例えば石英ガラス、エ
ポキシ樹脂、アクリル樹脂等を外周面上に被着すること
によって構成する。サファイヤロッドの外周面上に低屈
折率透明材料層を形成すれば、黒体放射体で放射された
光エネルギーはサファイヤロッドと低屈折率透明材料と
の間の界面で全反射するから、測定中に被覆層52上に
煤等の吸収材料が付着しても伝送される光エネルギーが
吸収されず、従って伝送中における光エネルギー減衰を
有効に防止するとこができる。例えば、前述したような
直径1.27mmのサファイヤロッドの表面にエポキシ
樹脂を塗布した上に煤を付着させた場合、前述と同じ条
件での光エネルギーの吸収による損失は、わずか1.4
%となり、過度誤差は1.5°C程度となる。
The optical energy radiated by the black body radiator 11 is transmitted while repeating total reflection at the interface between the sapphire rod and the surrounding air, and reaches the optical connector. As mentioned above, when measuring the engine cylinder temperature, etc., if soot or the like adheres to the outer peripheral surface of the sapphire rod 50 during the measurement, the light energy emitted by the black body radiator 11 may adhere during transmission. It is absorbed by soot etc. Therefore, in the present invention, a coating layer 52 is formed on the outer peripheral surface of the sapphire rod 50. This coating] 152 is optically transparent to infrared light emitted by the blackbody radiator, and is made of a material with a refractive index smaller than that of the sapphire rod, such as quartz glass, epoxy resin, acrylic resin, etc. Constructed by depositing on a surface. If a low refractive index transparent material layer is formed on the outer circumferential surface of the sapphire rod, the light energy emitted by the blackbody radiator will be totally reflected at the interface between the sapphire rod and the low refractive index transparent material, so it will not be affected during measurement. Even if an absorbing material such as soot adheres to the coating layer 52, the transmitted optical energy is not absorbed, and therefore optical energy attenuation during transmission can be effectively prevented. For example, if the surface of a sapphire rod with a diameter of 1.27 mm is coated with epoxy resin and soot is attached to it, the loss due to absorption of light energy under the same conditions as described above is only 1.4 mm.
%, and the excessive error is about 1.5°C.

尚、この場合のエポキシ樹脂のみによる損失は約0.1
%であり、事実上無視できる。また、光学的に高い樹脂
を選択すことによりこのロスはさらに低下させることが
できる。被測定領域の温度が極めて高温の場合、被覆層
の材料として石英ガラスが好適であり、石英ガラスをサ
ファイヤロッドの外周面上に融着することによって被覆
層を形成することができる。また、被測定領域が比較的
低温の場合エポキシ樹脂、アクリル樹脂等の耐熱性合成
樹脂を塗布等によって被着する。尚、煤等の吸収材料は
、エンジンのシリンダの内部や拡散炉の内部のように高
温領域ではほとんど発生せず、それらの周囲の低温領域
で発生し易いため、黒体放射体から若干離れた位置から
光コネクタまでの間の外周部に形成する。ただし、第2
図すに示すように黒体放射体から光コネクタまでの全域
に亘って形成することもでき、この場合には石英ガラス
のように高温耐熱性材料を被着することが望ましい。
In addition, the loss due to the epoxy resin alone in this case is approximately 0.1
% and can be virtually ignored. Moreover, this loss can be further reduced by selecting an optically high resin. When the temperature of the region to be measured is extremely high, quartz glass is suitable as the material for the covering layer, and the covering layer can be formed by fusing quartz glass onto the outer peripheral surface of the sapphire rod. Furthermore, if the area to be measured is at a relatively low temperature, a heat-resistant synthetic resin such as epoxy resin or acrylic resin is applied by coating or the like. Absorbing materials such as soot are rarely generated in high-temperature areas such as the inside of engine cylinders and diffusion furnaces, but are more likely to be generated in low-temperature areas around these areas. It is formed on the outer periphery between the position and the optical connector. However, the second
As shown in the figure, it can also be formed over the entire area from the black body radiator to the optical connector, and in this case it is desirable to cover it with a high temperature heat resistant material such as quartz glass.

本発明は上述した実施例だけに限定されず種々の変形が
可能である。例えば上述した実施例では、光伝送ロッド
としてサファイヤロッドを用いたが、ジルコニアロッド
のように耐熱性を有するロッド状光伝送材料を用いるこ
ともできる。
The present invention is not limited to the embodiments described above, and various modifications are possible. For example, in the embodiments described above, a sapphire rod was used as the light transmission rod, but a heat-resistant rod-shaped light transmission material such as a zirconia rod may also be used.

(発明の効果) 以上説明したように本発明によれば、耐熱性光伝送ロッ
ドの先端に黒体放射体を形成すると共に、光伝送ロッド
の外周面上に低屈折材料の被覆層を形成しているので、
黒体放射体で放射された光エネルギーを減衰させること
なく測定系まで伝送することができる。この結果測定中
にロッド状光伝送体の外周に煤等の吸収材料が付着して
もエネルギー減衰が発生せず、高精度な高温度測定を行
うことができる。
(Effects of the Invention) As explained above, according to the present invention, a blackbody radiator is formed at the tip of a heat-resistant light transmission rod, and a coating layer of a low refractive material is formed on the outer peripheral surface of the light transmission rod. Because
The optical energy emitted by the blackbody radiator can be transmitted to the measurement system without attenuation. As a result, even if absorbing material such as soot adheres to the outer periphery of the rod-shaped light transmitting body during measurement, energy attenuation does not occur, and highly accurate high temperature measurement can be performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による光学式温度検出装置の全体構成を
示す線図、 第2図a及びbはセンサ部の詳細な構成を示す線図的断
面図である。 10・・・ロッド状光伝送体  11・・・黒体放射体
50・・・サファイヤロッド  51・・・保護層52
・・・被覆 特許出願人  日本鉱業株式会社 第2図
FIG. 1 is a diagram showing the overall configuration of the optical temperature detection device according to the present invention, and FIGS. 2 a and 2 b are diagrammatic sectional views showing the detailed configuration of the sensor section. 10... Rod-shaped light transmission body 11... Black body radiator 50... Sapphire rod 51... Protective layer 52
...Coating patent applicant Nippon Mining Co., Ltd. Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1、耐熱性光伝送ロッドの先端部に黒体放射体を形成し
、黒体放射体から放射される光エネルギーを前記光伝送
ロッドを介して測定系まで伝送し、伝送された光エネル
ギーに基づいて被測定領域の温度を検出する光学式温度
検出装置において、前記光伝送ロッドの外周面上に光学
的に透明で光伝送ロッドの屈折率よりも低い屈折率の被
覆層を形成したことを特徴とする光学式温度検出装置。
1. A blackbody radiator is formed at the tip of a heat-resistant optical transmission rod, and the optical energy emitted from the blackbody radiator is transmitted to the measurement system via the optical transmission rod, and the optical energy is measured based on the transmitted optical energy. An optical temperature detection device that detects the temperature of a region to be measured, characterized in that an optically transparent coating layer having a refractive index lower than the refractive index of the light transmission rod is formed on the outer peripheral surface of the light transmission rod. Optical temperature detection device.
JP63044207A 1988-02-29 1988-02-29 Optical temperature detector Pending JPH01219526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63044207A JPH01219526A (en) 1988-02-29 1988-02-29 Optical temperature detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63044207A JPH01219526A (en) 1988-02-29 1988-02-29 Optical temperature detector

Publications (1)

Publication Number Publication Date
JPH01219526A true JPH01219526A (en) 1989-09-01

Family

ID=12685112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63044207A Pending JPH01219526A (en) 1988-02-29 1988-02-29 Optical temperature detector

Country Status (1)

Country Link
JP (1) JPH01219526A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0639063A1 (en) * 1993-03-08 1995-02-22 Thermoscan Inc. Optical system for an infrared thermometer
US6682216B1 (en) * 1999-12-16 2004-01-27 The Regents Of The University Of California Single-fiber multi-color pyrometry
JP2015038487A (en) * 2009-10-26 2015-02-26 ザ・ボーイング・カンパニーTheBoeing Company Optical sensor interrogation system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0639063A1 (en) * 1993-03-08 1995-02-22 Thermoscan Inc. Optical system for an infrared thermometer
EP0639063A4 (en) * 1993-03-08 1995-06-14 Thermoscan Inc Optical system for an infrared thermometer.
US6682216B1 (en) * 1999-12-16 2004-01-27 The Regents Of The University Of California Single-fiber multi-color pyrometry
JP2015038487A (en) * 2009-10-26 2015-02-26 ザ・ボーイング・カンパニーTheBoeing Company Optical sensor interrogation system

Similar Documents

Publication Publication Date Title
EP0392897B1 (en) Three-parameter optical fiber sensor and system
US6320184B1 (en) Optoelectric measuring device for monitoring combustion processes
US4408827A (en) Imaging system for hostile environment optical probe
JPH05196528A (en) Optical fiber pressure sensor device
JPS6156449B2 (en)
US4950885A (en) Fluid coupled fiber optic sensor
US4770544A (en) Temperature sensor
US4928006A (en) Fluid coupled fiber optic sensor
US4380394A (en) Fiber optic interferometer
CA2028352A1 (en) High temperature sensor
JPH01219526A (en) Optical temperature detector
US4839515A (en) Fiber optic transducer with fiber-to-fiber edge coupling
JPS6465430A (en) Manufacture of measuring device and fiber for transparent object and fiber manufactured thereby
US5349181A (en) Fiber optic chemical sensor having specific channel connecting design
US6041150A (en) Multipass cavity sensor for measuring a tissue-equivalent radiation dose
JPH0335145A (en) Transmission measuring instrument for spectral analysis
JPS63311147A (en) Optical fiber type humidity sensor
Boothe et al. Goniometric characteristics of optical fibres for temperature measurement in diesel engine exhaust filters
JPH03156332A (en) Temperature sensor
Campbell Use of fiber optics in industrial infrared thermometry
EP0079945A1 (en) Fiber optic interferometer
EP0451374B1 (en) Optical pressure sensor for determining the variation of the pressure in an internal combustion engine
JP2900769B2 (en) Temperature detecting optical fiber and method of manufacturing the same
JPS6155312A (en) Detector for flame figure in combustion chamber of reciprocating internal-combustion engine
JPH0258575B2 (en)