JPH0335145A - Transmission measuring instrument for spectral analysis - Google Patents

Transmission measuring instrument for spectral analysis

Info

Publication number
JPH0335145A
JPH0335145A JP17096189A JP17096189A JPH0335145A JP H0335145 A JPH0335145 A JP H0335145A JP 17096189 A JP17096189 A JP 17096189A JP 17096189 A JP17096189 A JP 17096189A JP H0335145 A JPH0335145 A JP H0335145A
Authority
JP
Japan
Prior art keywords
light
amount
sample
container
vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17096189A
Other languages
Japanese (ja)
Inventor
Ryoji Suzuki
良治 鈴木
Masataka Shichiri
雅隆 七里
Masaaki Tsuchimoto
土本 正明
Hitoshi Ishibashi
石橋 仁志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP17096189A priority Critical patent/JPH0335145A/en
Publication of JPH0335145A publication Critical patent/JPH0335145A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure light transmittability with a good sensitivity even with a sample having a large degree of scattering by forming a reflecting surface which reflects the irradiating light to the inside surface in a vessel. CONSTITUTION:A light receiver 5 is removed from a small window 4 of the spherical vessel 1 and the sample 10 (collooidal soln., such as milk) is put into the sample 1 from the opened small window 4 to entirely fill the inside the vessel; thereafter, the light receiver 5 is mounted to the small window 4 to cap the window. A light source 6 is then lighted to diffuse and radiate light from the front end of an optical bundle 3. The radiated light transmits the inside of the sample 10 and is partly received directly in the light receiver 5. The light radiated from the front end of the optical bundle 3 and is scattered up to the light receiver 5 is irradiated onto the inside surface of the vessel 1 and is reflected repeatedly many times until finally the light is received in the light receiver 5. This light is outputted as a voltage value to an arithmetic unit 9. The value approximate to the true absorbed quantity of the light is thus determined.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、試料を収容する容器と、前記試料に透過させ
る光を発する発光手段と、透過した光を受光する受光手
段と、前記受光手段の情報から前記試料の吸光量を求め
る演算手段とを備えた分光分析の透過測定装置に関する
Detailed Description of the Invention [Field of Industrial Application] The present invention provides a container for containing a sample, a light emitting means for emitting light to be transmitted through the sample, a light receiving means for receiving the transmitted light, and the light receiving means. The present invention relates to a transmission measurement device for spectroscopic analysis, comprising a calculation means for determining the amount of light absorption of the sample from the information of.

〔従来の技術〕[Conventional technology]

先ず、分光分析の透過測定装置の基本的な原理について
簡単に説明する。
First, the basic principle of a transmission measurement device for spectroscopic analysis will be briefly explained.

第3図に示すように、発光器(7)と受光器(5)の中
間に容器(1)を配置し、この容器(1)に試料(10
)を入れる。そして発光器(7〉からの光が容器(1)
内に入射されて試料を透過し、更に容器(1)からの出
射された光が受光器(5)で受光されるようにする。尚
、容器(1)の周囲は、発光器(7)の光以外の光が受
光器(5)に受光されないように黒のシートで覆ってお
く。ここで■を入射光量、Aを吸光量、Tを透過光量、
Sを散乱光量、Rを反射光量とすると、I =A+T+
S+Rの関係式が威り立つ、従って、入射光量■から透
過光量Tと散乱光量Sと反射光IRが判れば、A=夏−
(T十S+R)の式から吸光NAを、延いては試料固有
の吸光度を計算することができる。
As shown in Figure 3, a container (1) is placed between the light emitter (7) and the light receiver (5), and the sample (10
). The light from the light emitter (7) is then sent to the container (1).
The light is incident on the container (1) and transmitted through the sample, and further, the light emitted from the container (1) is received by the light receiver (5). The area around the container (1) is covered with a black sheet so that the light receiver (5) does not receive any light other than the light from the light emitter (7). Here ■ is the amount of incident light, A is the amount of light absorption, T is the amount of transmitted light,
If S is the amount of scattered light and R is the amount of reflected light, I = A + T +
The relational expression S + R is important. Therefore, if the transmitted light amount T, scattered light amount S, and reflected light IR are determined from the incident light amount ■, then A = summer -
From the formula (T+S+R), it is possible to calculate the absorbance NA and, by extension, the absorbance specific to the sample.

ここで、反射光量Rは容器(1)の特性に依存するので
、吸光IAと散乱光1sが既知である試料(10)を同
じ容器(1)に入れ、光を透過させて入射光量Iと透過
光iiTを測定すれば、反射光量Rは演算によって求め
ることができる。また散乱光ISは、試料(10)中で
散乱して容器(1)の何処からか出射するので測定する
ことはできないが、一般には透過光ilTに比較して十
分に小さいので無視できる。従って、透過光ilTを測
定するとともに既知の反射光fiRを前式に代入して演
算すれば、僅かながらも散乱光量Sの成分を含んではい
るが、凡その試料固有の透光度は求めることができる。
Here, since the amount of reflected light R depends on the characteristics of the container (1), a sample (10) whose absorption IA and scattered light 1s are known is placed in the same container (1), and the amount of incident light I is determined by transmitting the light. By measuring the transmitted light iiT, the amount of reflected light R can be determined by calculation. Further, the scattered light IS cannot be measured because it is scattered in the sample (10) and emitted from somewhere in the container (1), but it is generally sufficiently small compared to the transmitted light ILT and can therefore be ignored. Therefore, by measuring the transmitted light ilT and substituting the known reflected light fiR into the above equation for calculation, it is possible to obtain the light transmittance specific to the sample, although it includes a small component of the amount of scattered light S. I can do it.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、コロイド溶液のように散乱度の大きい試料では
、散乱光量Sが吸光量Aに比較して大きくなるので、吸
光量Aに含まれる散乱光量Sの成分を無視できなくなる
。このような場合、光が透過する試料の厚み(セル厚)
を薄くして散乱光の影響を小さくするが、入射光量Iと
透過光量Tの差も小さくなって感度が悪くなるので、透
過光量Tを精密に測定することが困難となる。
However, in a sample with a high degree of scattering such as a colloidal solution, the amount of scattered light S is larger than the amount of light absorption A, so the component of the amount of scattered light S included in the amount of light absorption A cannot be ignored. In such cases, the thickness of the sample through which light passes (cell thickness)
is made thinner to reduce the influence of scattered light, but the difference between the amount of incident light I and the amount of transmitted light T also becomes smaller and the sensitivity deteriorates, making it difficult to accurately measure the amount of transmitted light T.

本発明は、このような実情に鑑みてなされたもので、散
乱度が大きい試料であっても感度良く透光度を測定でき
るようにすることを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to make it possible to measure the light transmittance with high sensitivity even for a sample with a large degree of scattering.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達゛威するため本発明の分光分析の透過測定
装置にあっては、前記容器に、内面に照射された光を反
射する反射面が形成されている点を第1の特徴構成にし
ている。
In order to achieve the above object, the transmission measuring device for spectroscopic analysis of the present invention has a first feature that the container is formed with a reflective surface that reflects light irradiated onto the inner surface. ing.

また、前記容器がほぼ真球体である点を第2の特徴構成
にしている。
Further, a second characteristic configuration is that the container is substantially a perfect sphere.

更に、前記発光手段が前記容器の内部に配置されている
点を第3の特徴構成にしている。
Furthermore, a third characteristic configuration is that the light emitting means is arranged inside the container.

〔作 用〕[For production]

第1の特徴構成によれば、試料内を透過している光が散
乱して容器の内面に到達しても、容器を透過せずに反射
して試料内に戻される。この反射は、受光手段に受光さ
れるまでの間に何度となく繰り返される。そして、試料
に吸収されずに残った散乱光の一部が透過光と共に受光
されるようになる。最終的に、真の透過光量に散乱光量
Sの一部を加えた光量が透過光量Tとして測定されるよ
うになるので、入射光量■と透過光ITの差をとる際に
、吸光量に含まれる散乱光量Sの成分の一部が除去され
ることになる。
According to the first feature, even if light passing through the sample is scattered and reaches the inner surface of the container, it is reflected back into the sample without passing through the container. This reflection is repeated many times until the light is received by the light receiving means. Then, a portion of the scattered light remaining without being absorbed by the sample is received together with the transmitted light. Ultimately, the amount of light that is the addition of a portion of the amount of scattered light S to the true amount of transmitted light is measured as the amount of transmitted light T, so when taking the difference between the amount of incident light ■ and the transmitted light IT, it is included in the amount of absorbed light. A part of the component of the scattered light amount S is removed.

第2の特徴構成によれば、容器がほぼ真球体であるので
、散乱光が最小の反射回数で受光されるようになり、透
過距離が短くなって試料に吸収される割合が減少する。
According to the second characteristic configuration, since the container is substantially spherical, the scattered light is received with a minimum number of reflections, the transmission distance is shortened, and the proportion of absorbed light by the sample is reduced.

そのため受光手段に受光される散乱光量Sの成分が増大
することになる。
Therefore, the component of the amount of scattered light S received by the light receiving means increases.

第3の特徴構成によれば、発光手段が容器の内部に配置
されているので、光が容器に入射する際の反射が無くな
る。
According to the third feature, since the light emitting means is arranged inside the container, there is no reflection when light enters the container.

〔発明の効果〕〔Effect of the invention〕

第1の特徴構成によれば、散乱度の大きい試料であって
も、散乱光による誤差を小さく抑えて精度良く吸光量A
を求めることができるようになる。
According to the first characteristic configuration, even if the sample has a high degree of scattering, the error due to scattered light can be kept small and the absorbance amount A can be accurately measured.
You will be able to ask for

第2の特徴構成によれば、受光手段に受光される散乱光
量Sが更に増大することで、より精度良く吸光量Aを求
めることができるようになる。
According to the second characteristic configuration, the amount of scattered light S received by the light receiving means is further increased, so that the amount of light absorption A can be determined with higher accuracy.

第3の特徴構成によれば、吸光量Aを求めるに際して容
器の反射光量Rを求める手間が省ける。従って、吸光量
Aを求める演算も簡素化される。
According to the third characteristic configuration, when determining the amount of light absorption A, the effort of determining the amount of reflected light R of the container can be saved. Therefore, the calculation for determining the amount of light absorption A is also simplified.

〔実施例〕〔Example〕

分光分析の透過測定装置の構造を図面に基づいて説明す
る。
The structure of a transmission measuring device for spectroscopic analysis will be explained based on the drawings.

第1図に示すように、中空で真球状に形成されたガラス
製の容器(1)がある、この容器(1)の外周には鏡面
層(2)を形成してあり、内面に照射された光を全反射
するようにしである。また、容器(1)内に、光ファイ
バーを束ねた光バンドル(3)を差し込んであり、その
先端を容器(1)の中心点に位置させである。更に容器
(1)の一部に小窓(4)を形成してあり、この小窓(
4)に受光素子を備えた受光器(5)を取り付けである
As shown in Fig. 1, there is a hollow, spherical glass container (1).A mirror layer (2) is formed on the outer periphery of this container (1), and the inner surface is irradiated. It is designed so that all the light is reflected. Furthermore, an optical bundle (3) made up of optical fibers is inserted into the container (1), and its tip is positioned at the center of the container (1). Furthermore, a small window (4) is formed in a part of the container (1), and this small window (
4) Attach a light receiver (5) equipped with a light receiving element.

前記光バンドル(3)は、一定のスペクトルの光を発す
る光源(6)に接続してあり、光源(6)からの光が、
先端部から容器(1)内の試料を透過して受光器(5)
に向けて照射されるようになっている。つまり、光バン
ドル(3)と光[(6)とで発光手段(7)を構成して
いる。
Said light bundle (3) is connected to a light source (6) that emits light of a certain spectrum, and the light from the light source (6) is
The light passes through the sample in the container (1) from the tip to the receiver (5).
It is designed to be irradiated towards. In other words, the light bundle (3) and the light (6) constitute the light emitting means (7).

前記受光器(5)には、受光した光を電圧値に変換する
光電素子を利用しており、変換された電圧を電気コード
(8)を介して演算装置(9)に出力するようにしであ
る。
The light receiver (5) uses a photoelectric element that converts the received light into a voltage value, and outputs the converted voltage to the arithmetic unit (9) via the electric cord (8). be.

次に透過測定装置の使用方法について説明する。Next, how to use the transmission measuring device will be explained.

先ず、受光器(5)を容器(1)の小窓(4)から外し
、空いた小窓(4〉から容器(1)内に試料(10) 
(牛乳などのコロイド状の溶液)を入れて隙間なく満た
した後、受光器(5)を取り付けて小窓(4)に蓋をす
る。そして光源(6)を点灯し、光バンドル(3)の先
端から光を拡散放射させる。
First, remove the photodetector (5) from the small window (4) of the container (1), and insert the sample (10) into the container (1) through the open small window (4).
(colloidal solution such as milk) and fill it without any gaps, then attach the light receiver (5) and cover the small window (4). Then, the light source (6) is turned on to diffusely emit light from the tip of the light bundle (3).

こうすると、放射された光は試料(10)内を透過して
一部は受光器(5)に直接受光される。また、光バンド
ル(3)先端から放射されて受光器(5)に至るまでに
散乱された光は、容器(1)の内面に照射されて何回も
繰り返して反射され、最終的には受光器(5)に受光さ
れる。受光器(5)によって受光されると、それが電圧
値として演算装置(9)に出力される。
In this way, the emitted light passes through the sample (10) and a portion is directly received by the light receiver (5). In addition, the light emitted from the tip of the light bundle (3) and scattered before reaching the light receiver (5) is irradiated onto the inner surface of the container (1), is reflected many times, and is finally received. The light is received by the vessel (5). When the light is received by the light receiver (5), it is output as a voltage value to the arithmetic unit (9).

さて、従来の透過測定装置では、Iを入射光量、Aを吸
光量、Tを透過光量、Sを散乱光量、Rを反射光量とす
ると、I=A+T+S+Rの関係式が一般的に戒り立つ
、そして前式を、A+S−1−T−Rの式に変換して演
算し、その結果を吸光量として求めている。従って、求
められる吸光量には真の吸光量への他に散乱光量Sの全
ての成分を含むことになる。
Now, in conventional transmission measurement devices, the relational expression I=A+T+S+R is generally established, where I is the amount of incident light, A is the amount of light absorbed, T is the amount of transmitted light, S is the amount of scattered light, and R is the amount of reflected light. Then, the above equation is converted into the equation A+S-1-T-R, and the result is calculated as the amount of light absorption. Therefore, the amount of light absorption to be determined includes all components of the amount of scattered light S in addition to the true amount of light absorption.

本実施例の透過測定装置では、反射光量を考慮する必要
がないので、I−A+T+Sが成り立つ。但し、散乱光
量Sは容器(1)の内面で反射を繰り返すことによって
試料(10)に吸収されるか或いは受光器(5)に受光
されるため、最終的には、吸光量の成分と透過光量の成
分のいずれかに含まれてしまう。従って、その吸光量の
成分をAs、透過光量の成分をTsとすれば、5=As
+Tsであり、前式に代入すると、■=A+A s +
T十T sの関係式が成り立つ。
In the transmission measuring device of this embodiment, there is no need to consider the amount of reflected light, so I-A+T+S holds true. However, since the amount of scattered light S is absorbed by the sample (10) or received by the light receiver (5) by repeating reflection on the inner surface of the container (1), the amount of scattered light S is ultimately divided into the components of the amount of light absorption and the transmitted light. It will be included in one of the components of the amount of light. Therefore, if the component of the amount of light absorption is As and the component of the amount of transmitted light is Ts, then 5=As
+Ts, and by substituting it into the previous equation, ■=A+A s +
The relational expression T + T s holds true.

前記演算装置(9)では、前式を変換して、A+A s
 = 1−(T十T s)とし、この式から受光量をA
+Asとして求めている。ここで、入射光量Iは一定で
既知であり、それに応じた電圧値が演算装置(9)に記
憶されている。また、透過光量は受光器にT+Tsとし
て受光されている。この結果、受光量をA+Sとして求
めている従来の場合に比較すると、真の吸光量AにTs
だけ近い値を求めることができるのである。
The arithmetic unit (9) converts the previous equation to A+A s
= 1-(T + T s), and from this formula, the amount of light received is A
It is required as +As. Here, the amount of incident light I is constant and known, and a voltage value corresponding to it is stored in the arithmetic device (9). Further, the amount of transmitted light is received by the light receiver as T+Ts. As a result, compared to the conventional case where the amount of received light is calculated as A+S, the true amount of light absorption A is
It is possible to find values that are close to each other.

〔別実施例〕[Another example]

第2図に示すように、先の実施例と同じ真球状の2個の
容器(IA) 、 (1B)を並べ、一方の容器(IA
)には試料(10)を入れ、他方の容器(IB)には基
準物質である水(11)を入れである。2個の容器(1
^)、(IB)の近くには、光源(6)からの光を等し
く分光するビームスプリッタ(12)を配置しである。
As shown in FIG.
) is filled with a sample (10), and the other container (IB) is filled with water (11), which is a reference substance. 2 containers (1
A beam splitter (12) that equally splits the light from the light source (6) is placed near the light source (IB).

それぞれの容器(IA) 、 (IB)には受光器(5
)を取り付けてあり、これらの受光器(5)には出力電
圧を差動増幅器する演算装置(9)を接続しである。こ
のような透過測定装置では、試料(10)の吸光量Aと
散乱光量Sを求める際において反射光量Rやノイズを除
去できてより精密な測定を行える。
Each container (IA) and (IB) has a photodetector (5
), and these light receivers (5) are connected to an arithmetic unit (9) for differentially amplifying the output voltage. With such a transmission measuring device, when determining the light absorption amount A and the scattered light amount S of the sample (10), the reflected light amount R and noise can be removed, and more precise measurements can be performed.

本発明を実施するに、容器(1)は真球であることが好
ましいのであるが必ずしも真球である必要はない。また
、鏡面層(2)を容器(1)の内周面に形成しても良い
、また、発光手段(7)を容器(1)の外に配置したり
、受光器(5)を容器(1)の内部に配置することも可
能である。更に、発光手段(7)からの光の波長を変化
させ、一つ4 の試料(11)に対して様々な波長の光の吸光IAを求
めてみるのもよい。
In carrying out the present invention, it is preferable that the container (1) be a true sphere, but it is not necessarily necessary to be a true sphere. Further, the mirror layer (2) may be formed on the inner peripheral surface of the container (1), the light emitting means (7) may be placed outside the container (1), or the light receiver (5) may be placed outside the container (1). It is also possible to arrange it inside 1). Furthermore, it is also a good idea to vary the wavelength of the light from the light emitting means (7) and determine the absorption IA of light of various wavelengths for each sample (11).

尚、特許請求の範囲の項に図面との対照を便利にするた
めに符号を記すが、この記入により本発明は添付図面の
構造に限定されるものではない。
Incidentally, although reference numerals are written in the claims section for convenient comparison with the drawings, the present invention is not limited to the structure shown in the accompanying drawings.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は分光分析の透過測定装置の全体的な概略構成を
示す図、第2図は別実施例を示す図、第3図は従来例の
原理的な説明図である。 (1)・・・・・・容器、(2)・・・・・・反射面、
(5)・・・・・・受光手段、(7)・・・・・・受光
手段、(9)・・・・・・演算手段、(10)・・・・
・・試料。
FIG. 1 is a diagram showing the overall schematic configuration of a transmission measuring device for spectroscopic analysis, FIG. 2 is a diagram showing another embodiment, and FIG. 3 is a diagram illustrating the principle of a conventional example. (1)... Container, (2)... Reflective surface,
(5)... Light receiving means, (7)... Light receiving means, (9)... Calculating means, (10)...
··sample.

Claims (1)

【特許請求の範囲】 1、試料(10)を収容する容器(1)と、前記試料(
10)に透過させる光を発する発光手段(7)と、透過
した光を受光する受光手段(5)と、前記受光手段(5
)の情報から前記試料(10)の吸光量を求める演算手
段(9)とを備えた分光分析の透過測定装置であって、
前記容器(1)には、内面へ照射された光を反射する反
射面(2)が形成されている分光分析の透過測定装置。 2、前記容器(1)がほぼ真球体である請求項1記載の
分光分析の透過測定装置。 3、前記発光手段(7)が前記容器(1)の内部に配置
されている請求項1又は2記載の分光分析の透過測定装
置。
[Claims] 1. A container (1) containing a sample (10);
10), a light receiving means (5) for receiving the transmitted light, and a light receiving means (5) for receiving the transmitted light.
) A spectroscopic transmission measuring device comprising a calculation means (9) for determining the amount of light absorption of the sample (10) from the information of
A transmission measuring device for spectroscopic analysis, in which the container (1) is provided with a reflective surface (2) that reflects light irradiated onto the inner surface. 2. The transmission measuring device for spectroscopic analysis according to claim 1, wherein the container (1) is approximately spherical. 3. The spectroscopic transmission measuring device according to claim 1 or 2, wherein the light emitting means (7) is arranged inside the container (1).
JP17096189A 1989-06-30 1989-06-30 Transmission measuring instrument for spectral analysis Pending JPH0335145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17096189A JPH0335145A (en) 1989-06-30 1989-06-30 Transmission measuring instrument for spectral analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17096189A JPH0335145A (en) 1989-06-30 1989-06-30 Transmission measuring instrument for spectral analysis

Publications (1)

Publication Number Publication Date
JPH0335145A true JPH0335145A (en) 1991-02-15

Family

ID=15914587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17096189A Pending JPH0335145A (en) 1989-06-30 1989-06-30 Transmission measuring instrument for spectral analysis

Country Status (1)

Country Link
JP (1) JPH0335145A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5508919A (en) * 1993-06-01 1996-04-16 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Control system and control method for controlling power steering apparatus
JP2000039397A (en) * 1998-05-18 2000-02-08 Sumitomo Metal Mining Co Ltd Calibrator for nondestructive transmission-type light- measuring device
US6740170B2 (en) 2000-02-03 2004-05-25 Dai Nippon Printing Co., Ltd. Apparatus and method for cleaning peripheral part of substrate
JP2006300811A (en) * 2005-04-22 2006-11-02 Hitachi Displays Ltd Method of measuring film thickness of thin film, method of forming polycrystal semiconductor thin film, manufacturing method for semiconductor device, manufacturing apparatus for the same, and manufacture method for image display
JP2013505462A (en) * 2009-09-22 2013-02-14 ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド Method and apparatus for measuring biological processes using mid-infrared spectroscopy

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5508919A (en) * 1993-06-01 1996-04-16 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Control system and control method for controlling power steering apparatus
JP2000039397A (en) * 1998-05-18 2000-02-08 Sumitomo Metal Mining Co Ltd Calibrator for nondestructive transmission-type light- measuring device
US6740170B2 (en) 2000-02-03 2004-05-25 Dai Nippon Printing Co., Ltd. Apparatus and method for cleaning peripheral part of substrate
JP2006300811A (en) * 2005-04-22 2006-11-02 Hitachi Displays Ltd Method of measuring film thickness of thin film, method of forming polycrystal semiconductor thin film, manufacturing method for semiconductor device, manufacturing apparatus for the same, and manufacture method for image display
JP2013505462A (en) * 2009-09-22 2013-02-14 ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド Method and apparatus for measuring biological processes using mid-infrared spectroscopy

Similar Documents

Publication Publication Date Title
JP3406640B2 (en) Portable spectrophotometer
US5767976A (en) Laser diode gas sensor
WO2004051320B1 (en) Spectroscopic system and method using a ceramic optical reference
US5035508A (en) Light absorption analyser
JPH09206283A (en) Device for measuring light reflection
CN106033054B (en) A kind of laser humiture measurement mechanism and method
US2451501A (en) Specular reflectometer
JPH0335145A (en) Transmission measuring instrument for spectral analysis
KR100781968B1 (en) Variable light-path gas density sensor
CN106092968A (en) Optical detection apparatus and method
JPS5925594B2 (en) Tobacco tip filling degree inspection device
JPH0611443A (en) Calibration reflector device for optical measuring system
JP2898489B2 (en) Equipment for spectrophotometric analysis
CN110487740A (en) Unginned cotton regain on-line measurement system and its measurement method based on Near-Infrared Absorption Method
US5349181A (en) Fiber optic chemical sensor having specific channel connecting design
KR20230112641A (en) Spectral Sensing Devices and Methods for Measuring Optical Radiation
TW202229823A (en) An optical absorbance spectrometer, optical device and method of optical absorbance spectrometry
JPH09133628A (en) Analyzer provided with built-in composite element
JPS61225627A (en) Photometer
CN209979483U (en) Non-spectroscopic infrared gas sensor
JPH10160570A (en) Powder atr measuring method, device therefor, and infrared spectrophotometer
CN215893966U (en) High-transmissivity and high-reflectivity measuring device for optical element
JP7231689B2 (en) Assembly for measuring relative humidity levels inside watch cases
CN212255747U (en) Sensor for detecting whether liquid exists in thin tube
JP7069786B2 (en) Detection device