JPS63311147A - Optical fiber type humidity sensor - Google Patents
Optical fiber type humidity sensorInfo
- Publication number
- JPS63311147A JPS63311147A JP62148274A JP14827487A JPS63311147A JP S63311147 A JPS63311147 A JP S63311147A JP 62148274 A JP62148274 A JP 62148274A JP 14827487 A JP14827487 A JP 14827487A JP S63311147 A JPS63311147 A JP S63311147A
- Authority
- JP
- Japan
- Prior art keywords
- core
- light
- porous layer
- end surface
- optical fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013307 optical fiber Substances 0.000 title claims description 29
- 238000005259 measurement Methods 0.000 claims description 25
- 239000010419 fine particle Substances 0.000 claims description 5
- 229920005573 silicon-containing polymer Polymers 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- 230000001902 propagating effect Effects 0.000 claims description 2
- 239000004071 soot Substances 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 5
- 230000000644 propagated effect Effects 0.000 abstract description 2
- 239000007789 gas Substances 0.000 description 12
- 238000000034 method Methods 0.000 description 9
- 230000003287 optical effect Effects 0.000 description 9
- 238000005253 cladding Methods 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- 238000001514 detection method Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 230000000875 corresponding effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 238000009423 ventilation Methods 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
Landscapes
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Light Guides In General And Applications Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野1
本発明は光フアイバ自体を湿度センサとして用い、気体
等の相対湿度が測定可能な光フアイバ型湿度センサに関
する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1] The present invention relates to an optical fiber type humidity sensor that uses an optical fiber itself as a humidity sensor and is capable of measuring the relative humidity of gas or the like.
[従来の技術]
従来の湿度測定は、セラミック・プラスチック等の素材
の湿度に対する抵抗変化や容量変化を利用し、これらを
電気的に検出して湿度を求める方式が大半を占めている
。[Prior Art] Most conventional humidity measurements utilize resistance changes and capacitance changes in materials such as ceramics and plastics due to humidity, and detect these electrically to determine humidity.
また、光ファイバを用いる方式としては、第4図に示す
ように、送光用光ファイバ41の出射端と受光用光ファ
イバ42の入射端とを光学レンズ43.44を介して空
間45を隔てて対向させて配置し、空間45内の空気の
湿度変化によるその赤外吸収強度変化を利用して、光源
46からの光を送光用光ファイバ41.空間45および
受光用光ファイバ42を伝送させてその強度を受光器4
7にて検出する方式がある。更に、この方式を改良した
ものとして、送・受光用光フアイバ間に特定波長の吸収
係数が湿度によって変化する感湿樹脂を介装する方式も
提案されている(特開昭56−67738号)、。Further, as a method using an optical fiber, as shown in FIG. The light from the light source 46 is transferred to the light transmitting optical fiber 41 . The space 45 and the light receiving optical fiber 42 are transmitted and the intensity is transmitted to the light receiver 4.
There is a method of detection in 7. Furthermore, as an improvement on this method, a method has been proposed in which a moisture-sensitive resin whose absorption coefficient of a specific wavelength changes depending on humidity is interposed between the transmitting and receiving optical fibers (Japanese Patent Laid-Open No. 56-67738). ,.
[発明が解決しようとする問題点]
ところが、上記の湿度に対する抵抗変化等を電気的に検
出する方式では、高電圧環境下における湿度検出に適用
するには、電気雑音など多くの問題がある。更に、この
方式では、多数の個所を同時に計測しようとする場合、
計測個所毎にセンサを設置して各センサからの出力信号
を金属線で引出す必要があり、計測区間に数多くの金属
線を布設しなければならないので、設置スペース、経済
性、安定性の点で実用的ではない。[Problems to be Solved by the Invention] However, the above-mentioned method of electrically detecting changes in resistance due to humidity, etc. has many problems such as electrical noise when applied to humidity detection in a high voltage environment. Furthermore, with this method, when trying to measure multiple locations simultaneously,
It is necessary to install a sensor at each measurement point and extract the output signal from each sensor using a metal wire, and because it is necessary to install a large number of metal wires in the measurement section, it is difficult to install in terms of installation space, economy, and stability. Not practical.
また、第4図に示す光学方式では、高電圧下でも適用可
能であるが、温度変化などによって送光用光ファイバ4
1と受光用光ファイバ42との光軸がずれたり、あるい
は外気中のほこりの影響を受けたりし易く安定した測定
が困難であり、限定された環境下でしか使用できない。The optical system shown in Figure 4 can be applied even under high voltage, but due to temperature changes etc.
The optical axes of the light-receiving optical fiber 42 and the light-receiving optical fiber 42 are easily misaligned, and stable measurements are difficult because they are easily affected by dust in the outside air, and can only be used in limited environments.
更に、光学レンズや光ファイバ41.42を支持する治
具等に高精度加工が要求される。Furthermore, high-precision processing is required for the jigs and the like that support the optical lenses and optical fibers 41 and 42.
一方、送・受光用光フアイバ間に感湿樹脂を介装する方
式では、光学系の固定が容易になると共にほこり等の影
響を受けにくくなる。しかし、感湿樹脂の吸湿膨潤によ
って感湿樹脂と光ファイバとの結合部にずれが生じ、こ
れに伴い損失が増加し安定した測定が難しい。また、感
湿樹脂が経年劣化し充分な長期性能が得られない。更に
光伝送路に感湿樹脂を挿入する方式であり、感湿樹脂を
厚くして湿度変化に対する感度を上げようとすると、必
然的に光の減衰が大きくなり受光量が低下するという問
題がある。また、特定の波長の光のみを検出する方式で
あるため、装置が高価なものノ、
となる。On the other hand, in a method in which a moisture-sensitive resin is interposed between optical fibers for transmitting and receiving light, the optical system can be easily fixed and is less susceptible to the effects of dust and the like. However, due to moisture absorption and swelling of the moisture-sensitive resin, displacement occurs at the joint between the moisture-sensitive resin and the optical fiber, which increases loss and makes stable measurement difficult. Furthermore, the moisture-sensitive resin deteriorates over time, making it impossible to obtain sufficient long-term performance. Furthermore, this method involves inserting a moisture-sensitive resin into the optical transmission path, and if you try to increase the sensitivity to changes in humidity by making the moisture-sensitive resin thicker, there is a problem that the attenuation of light will inevitably increase and the amount of light received will decrease. . Furthermore, since the method detects only light of a specific wavelength, the equipment is expensive.
本発明は以上の従来技術の問題点を解消すべく創案され
たものであり、本発明の目的は高安定。The present invention was devised to solve the above-mentioned problems of the prior art, and the purpose of the present invention is to achieve high stability.
高精度でしかも適用範囲の広い湿度測定を安価に実施で
きる光フアイバ型湿度センサを提供することにある。An object of the present invention is to provide an optical fiber type humidity sensor that can measure humidity with high precision and a wide range of applications at low cost.
[問題点を解決するための手段]
本発明の光フアイバ型湿度センサは、上記の目的を達成
するために、光ファイバのコアを伝搬する測定光の強度
変化から被測定気体の相対湿度を検出する光フアイバ型
湿度センサにおいて、上記コアの外周部に設けられた多
孔質層と、上記コアの一端面上に形成されると共に他端
面から入射された測定光を反射して該他端面へと戻すた
めの反射膜とを備え、上記他端面を上記測定光の入射端
及び出射端とするものである。[Means for Solving the Problems] In order to achieve the above object, the optical fiber type humidity sensor of the present invention detects the relative humidity of the gas to be measured from the intensity change of the measurement light propagating through the core of the optical fiber. An optical fiber type humidity sensor includes a porous layer provided on the outer periphery of the core, and a porous layer formed on one end surface of the core and reflecting measurement light incident from the other end surface to the other end surface. and a reflective film for returning the measurement light, and the other end surface is used as an input end and an output end of the measurement light.
[作用]
SiOz等の微粒子からなる多孔質層は被測定気体中の
水分を吸着させる作用を有しており、その吸着量は被測
定気体中の水分量と温度とに相関し、すなわち相対湿度
に相関したものとなる。[Function] A porous layer made of fine particles such as SiOz has the function of adsorbing moisture in the gas to be measured, and the amount of adsorption is correlated to the amount of moisture in the gas to be measured and the temperature, that is, the relative humidity It will be correlated to.
従って、上記のような構成とすることにより被測定気体
の相対湿度に応じて多孔質の巨視的屈折率が変化し、コ
ア中を反射伝搬する測定光のコアと多孔質層との界面に
おける散乱量が変化する。Therefore, with the above configuration, the macroscopic refractive index of the porous material changes depending on the relative humidity of the gas to be measured, and the measurement light that is reflected and propagated in the core is scattered at the interface between the core and the porous layer. The amount changes.
その結果、この測定光の強度は被測定気体の相対湿度に
依存して変化することとなる。特に、センサの入射端か
らコア中に入射された測定光は反射膜で反射されて戻っ
てくるので、多孔質層からの影響を往復2度にわたって
受けることになり、相対湿度に対して変化の大きな信号
を得ることができる。As a result, the intensity of this measurement light changes depending on the relative humidity of the gas to be measured. In particular, the measurement light that enters the core from the input end of the sensor is reflected by the reflective film and returns, so it is affected by the porous layer twice in both directions, and changes in relative humidity occur. You can get a big signal.
[実施例] 以下、本発明の実施例を添付図面に従って説明する。[Example] Embodiments of the present invention will be described below with reference to the accompanying drawings.
第1図は本発明の一実施例に係る光フアイバ型湿度セン
サの構成を示す断面図である。石英ガラスあるいは多成
分ガラス等からなるコア1の外周部に石英ガラスあるい
はプラスチック等からなるクラッド2が設けられている
。コア1の先端部近傍では所定の長さにわたってクラッ
ド2が剥離されており、クラッド2の代りにコア1の外
周部にSiOz微粒子からなる多孔質層3が形成されて
・ −〇−
いる。また、コア1の先端面4上には反射膜5がコーテ
ィングされている。FIG. 1 is a sectional view showing the structure of an optical fiber type humidity sensor according to an embodiment of the present invention. A cladding 2 made of quartz glass, plastic, or the like is provided around the outer periphery of a core 1 made of quartz glass, multicomponent glass, or the like. The cladding 2 is peeled off over a predetermined length near the tip of the core 1, and instead of the cladding 2, a porous layer 3 made of SiOz fine particles is formed around the outer periphery of the core 1. Further, the tip end surface 4 of the core 1 is coated with a reflective film 5.
このようにして、センサの感湿部が構成されており、こ
の感湿部を内包し保護するカバー6が接着剤7によりク
ラッド2の外周部に取り付けられている。このカバー6
には通気性をよくするために多数の通気孔8が設けられ
ている。In this way, a moisture sensing section of the sensor is constructed, and a cover 6 that encloses and protects this moisture sensing section is attached to the outer circumference of the cladding 2 with an adhesive 7. This cover 6
A large number of ventilation holes 8 are provided to improve ventilation.
次に、本実施例の作用を述べる。Next, the operation of this embodiment will be described.
まず、センサの感湿部を被測定気体中に位置させてコア
1の後端面9からコア1内に測定光を入射させる。する
と、測定光はコア1とクラッド2との界面における反射
を繰り返しながら伝搬して感湿部に至る。ここで、多孔
質層3は被測定気体中の水分を吸着しており、感湿部に
至った測定光はコア1と多孔質層3との界面における反
射の際に多孔質層3の吸着水分量に応じた影響を受ける
こととなる。すなわち、吸着水分量に対応して多孔質層
3の巨視的屈折率が変化し、測定光のコア1と多孔質層
3との界面における散乱量が変化する。First, the moisture sensitive part of the sensor is positioned in the gas to be measured, and measurement light is made to enter the core 1 from the rear end surface 9 of the core 1. Then, the measurement light propagates while being repeatedly reflected at the interface between the core 1 and the cladding 2, and reaches the moisture sensing section. Here, the porous layer 3 adsorbs moisture in the gas to be measured, and the measurement light that reaches the moisture sensing section is absorbed by the porous layer 3 when reflected at the interface between the core 1 and the porous layer 3. The effect will depend on the amount of water. That is, the macroscopic refractive index of the porous layer 3 changes in accordance with the amount of adsorbed water, and the amount of scattering of measurement light at the interface between the core 1 and the porous layer 3 changes.
このようにして、被測定気体の相対湿度に応じて強度変
化した測定光は、反射膜5で反射した後再びコア1と多
孔質層3との界面にて強度変化を受け、後端面9へと戻
る。In this way, the measurement light whose intensity has changed depending on the relative humidity of the gas to be measured is reflected by the reflective film 5 and then undergoes an intensity change again at the interface between the core 1 and the porous layer 3, and then reaches the rear end surface 9. and return.
そこで、後端面9から出射した反射光を分離測定するこ
とにより被測定気体の相対湿度が検出される。Therefore, by separately measuring the reflected light emitted from the rear end surface 9, the relative humidity of the gas to be measured is detected.
本実施例のセンサを用いて種々の気体の相対湿度を測定
したところ、相対湿度の値に応じて反射光の強度変化は
第2図のような特性を示した。すなわち、相対湿度の増
加に伴って反射光の強度は低下し、相対湿度が20%か
ら80%まで変化すると反射光の強度変化は約10 d
Bもの大きさとなる。When the relative humidity of various gases was measured using the sensor of this example, the intensity change of reflected light showed characteristics as shown in FIG. 2 depending on the value of relative humidity. In other words, the intensity of reflected light decreases as the relative humidity increases, and when the relative humidity changes from 20% to 80%, the change in the intensity of reflected light is approximately 10 d.
It will be as big as B.
なお、5iOz微粒子からなる多孔質層3はコア1の外
周部にシリコーン重合体を被膜した後これを熱処理する
ことにより形成することができる。The porous layer 3 made of 5iOz fine particles can be formed by coating the outer periphery of the core 1 with a silicone polymer and then heat-treating it.
すなわち、コア1の外周部にシリコーン樹脂やシリコー
ンゴム等のシリコーン重合体を塗布後これを燃焼させて
酸化し、次にアルコールで表面洗浄する。こうすると、
コア1の表面にシリコーン重合体の酸化物とし5iOz
微粒子が多孔質状態で残置され、多孔質層3が形成され
る。That is, a silicone polymer such as silicone resin or silicone rubber is applied to the outer circumferential portion of the core 1, and then burned and oxidized, and then the surface is cleaned with alcohol. This way,
5iOz silicone polymer oxide on the surface of core 1
The fine particles are left in a porous state, forming a porous layer 3.
この他、多孔質層3はコア1の外周部にSi 02スー
トを直接付着させることによっても形成することができ
る。In addition, the porous layer 3 can also be formed by directly depositing Si 02 soot on the outer circumference of the core 1 .
次に、第3図に感湿部を複数個設けて多点検出を行う場
合の実施例を示す。1本の光ファイバ31の長手方向に
沿って複数個所に分岐部32を設け、各分岐部32の先
端に第1図に示したような感湿部33を形成する。そし
て、光ファイバ31の基端部を光パルス試験装置(OT
DR装置)34に接続する。Next, FIG. 3 shows an embodiment in which a plurality of moisture sensing sections are provided to perform multi-point detection. Branch portions 32 are provided at a plurality of locations along the longitudinal direction of one optical fiber 31, and a moisture sensing portion 33 as shown in FIG. 1 is formed at the tip of each branch portion 32. Then, the proximal end of the optical fiber 31 is connected to an optical pulse tester (OT).
DR device) 34.
この光パルス試験装置34から光ファイバ31に光パル
スを入射させると、光パルス試験装置34から各感湿部
33までの距離に対応した時間遅れで且つ各感湿部33
における相対湿度に応じた強度の反射光パルスが戻って
くる。そこで、この反射光パルスを測定することにより
被測定気体の相対湿度の多点同時計測を行うことが可能
となる。When a light pulse is inputted into the optical fiber 31 from this light pulse test device 34, a time delay corresponding to the distance from the light pulse test device 34 to each humidity sensing portion 33 occurs, and
A reflected light pulse returns with an intensity corresponding to the relative humidity at the temperature. Therefore, by measuring this reflected light pulse, it becomes possible to simultaneously measure the relative humidity of the gas to be measured at multiple points.
[発明の効果コ
以上説明したように、本発明によれば、次の如き優れた
効果が発揮される。[Effects of the Invention] As explained above, according to the present invention, the following excellent effects are exhibited.
(1) 光フアイバ以外の光学的素子を全く必要とせ
ず、また赤外線等の特定波長で測定する必要もない。こ
のため測定系の簡素化が図れ、取扱いも容易であると共
にコストを低減できる。(1) No optical elements other than optical fibers are required, and there is no need to measure at specific wavelengths such as infrared rays. Therefore, the measurement system can be simplified, handling is easy, and costs can be reduced.
(2) 反射膜で反射されて戻る測定光は多孔質層か
らの影響を往復2度にわたって受けており、感度の高い
測定が行われる。(2) The measurement light that is reflected by the reflective film and returned is influenced by the porous layer twice in both directions, resulting in highly sensitive measurements.
(3) 光フアイバ自体をセンサとしているので、経
年劣化や光学レンズ等の介在による損失発生要因がなく
長期信頼性に優れると共に電磁誘導等の影響を受けるこ
とがない。(3) Since the optical fiber itself is used as a sensor, there is no loss caused by deterioration over time or the intervention of optical lenses, etc., and it has excellent long-term reliability and is not affected by electromagnetic induction.
(4) 感湿部が小型且つ軽量であり、微小空間の湿
度測定も可能である。(4) The humidity sensing section is small and lightweight, making it possible to measure humidity in minute spaces.
(5) 多孔質層の水分吸着に伴う光学定数変化を利
用するので幅広い湿度領域で高感度且つ応答性の優れた
測定を行うことができる。(5) Since changes in optical constants accompanying water adsorption in the porous layer are utilized, measurements with high sensitivity and excellent responsiveness can be performed over a wide range of humidity.
第1図は本発明の一実施例に係る光ファイバ型湿度セン
サの構成を示す断面図、第2図は実施例による測定結果
を示すグラフ、第3図は多点同時計測を行う場合の他の
実施例を示す構成図、第4図は従来例を示す構成図であ
る。
図中、1はコア、2はクラッド、3は多孔質層、4は先
端面、5は反射膜、9は後端面である。
特許出願人 東京電力株式会社
日立電線株式会社
代理人弁理士 絹 谷 信 雄
1・・・コア 4・・・先端面2・・・
クラッド 5・・・反射膜3・・・多孔質層
9・・・後端面相対湿度(0ム)
第2図FIG. 1 is a cross-sectional view showing the configuration of an optical fiber type humidity sensor according to an embodiment of the present invention, FIG. 2 is a graph showing measurement results according to the embodiment, and FIG. Fig. 4 is a block diagram showing a conventional example. In the figure, 1 is a core, 2 is a cladding, 3 is a porous layer, 4 is a front end surface, 5 is a reflective film, and 9 is a rear end surface. Patent applicant: Tokyo Electric Power Company, Hitachi Cable, Ltd. Representative Patent Attorney Nobuo Kinutani 1...Core 4...Tip surface 2...
Cladding 5... Reflective film 3... Porous layer 9... Rear end surface relative humidity (0 μm) Figure 2
Claims (4)
ら被測定気体の相対湿度を検出する光フアイバ型湿度セ
ンサにおいて、上記コアの外周部に設けられた多孔質層
と、上記コアの一端面上に形成されると共に他端面から
入射された測定光を反射して該他端面へと戻すための反
射膜とを備え、上記他端面を上記測定光の入射端及び出
射端とすることを特徴とする光フアイバ型湿度センサ。(1) In an optical fiber humidity sensor that detects the relative humidity of a gas to be measured from changes in the intensity of measurement light propagating through the core of the optical fiber, a porous layer provided on the outer periphery of the core and a portion of the core and a reflective film formed on the end surface and for reflecting the measurement light incident from the other end surface and returning it to the other end surface, and the other end surface is used as an input end and an output end of the measurement light. Features: Optical fiber type humidity sensor.
特徴とする特許請求の範囲第1項記載の光フアイバ型湿
度センサ。(2) The optical fiber type humidity sensor according to claim 1, wherein the porous layer is made of SiO_2 fine particles.
合体を被覆した後、これを熱処理することにより形成さ
れることを特徴とする特許請求の範囲第2項記載の光フ
アイバ型湿度センサ。(3) The optical fiber type humidity sensor according to claim 2, wherein the porous layer is formed by coating the outer periphery of the core with a silicone polymer and then heat-treating it. .
とを特徴とする特許請求の範囲第2項記載の光フアイバ
型湿度センサ。(4) The optical fiber type humidity sensor according to claim 2, wherein the porous layer is formed by attaching SiO_2 soot to the outer periphery of the core.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62148274A JPS63311147A (en) | 1987-06-15 | 1987-06-15 | Optical fiber type humidity sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62148274A JPS63311147A (en) | 1987-06-15 | 1987-06-15 | Optical fiber type humidity sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63311147A true JPS63311147A (en) | 1988-12-19 |
Family
ID=15449102
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62148274A Pending JPS63311147A (en) | 1987-06-15 | 1987-06-15 | Optical fiber type humidity sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63311147A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5578528A (en) * | 1995-05-02 | 1996-11-26 | Industrial Technology Research Institute | Method of fabrication glass diaphragm on silicon macrostructure |
US6025209A (en) * | 1997-08-12 | 2000-02-15 | Industrial Technology Research Institute | Deep groove structure for semiconductors |
CN103048269A (en) * | 2012-12-19 | 2013-04-17 | 南京师范大学 | Relative humidity sensor of optical fiber bundle modified by inverse opal film and preparation method thereof |
JP2017020946A (en) * | 2015-07-13 | 2017-01-26 | 国立大学法人 岡山大学 | Optical fiber device |
-
1987
- 1987-06-15 JP JP62148274A patent/JPS63311147A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5578528A (en) * | 1995-05-02 | 1996-11-26 | Industrial Technology Research Institute | Method of fabrication glass diaphragm on silicon macrostructure |
US6025209A (en) * | 1997-08-12 | 2000-02-15 | Industrial Technology Research Institute | Deep groove structure for semiconductors |
CN103048269A (en) * | 2012-12-19 | 2013-04-17 | 南京师范大学 | Relative humidity sensor of optical fiber bundle modified by inverse opal film and preparation method thereof |
JP2017020946A (en) * | 2015-07-13 | 2017-01-26 | 国立大学法人 岡山大学 | Optical fiber device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5903685A (en) | Sensor arrangement | |
JPS6158001B2 (en) | ||
JPS63311147A (en) | Optical fiber type humidity sensor | |
JPS5925594B2 (en) | Tobacco tip filling degree inspection device | |
CN107576369B (en) | Optical fiber continuous liquid level sensor based on end face reflection coupling | |
CN112595435B (en) | High-sensitivity temperature measurement demodulation sensing system based on optical fiber strong evanescent field interferometer | |
CN112098367B (en) | Optical fiber humidity sensor and manufacturing method thereof | |
US7819590B2 (en) | Ferrule for an evanescence field sensor line | |
JPH01193629A (en) | Optical fiber type smoke detection sensor | |
JPS629255A (en) | Measuring method for humidity and humidity sensor used for measuring method | |
JPH01193628A (en) | Measurement of average humidity | |
JPS62204143A (en) | Optical fiber type humidity sensor | |
JPH02181707A (en) | Optical fiber for detecting liquid, gas or the like | |
CN213902467U (en) | Temperature and humidity sensor based on fiber bragg grating | |
JPS63265140A (en) | Optical fiber type humidity sensor | |
JPH0216436A (en) | Optical fiber type temperature and humidity sensor | |
Stewart et al. | Chemical Sensing By Evanescent Field Absorption: The Sensitivity Of Optical Waveguides. | |
CN113866132B (en) | Multichannel SPR differential intensity modulation sensor | |
JPH0232570B2 (en) | ||
JPH0260259B2 (en) | ||
JPS586431A (en) | Temperature measuring method using optical fiber | |
JPS629240A (en) | Optical fiber type temperature sensor | |
JPH01219526A (en) | Optical temperature detector | |
JPS63311307A (en) | Optical fiber type temperature sensor | |
JPS63154941A (en) | Physical value measuring apparatus for fluid |