JPH01219097A - Device for producing thin film - Google Patents

Device for producing thin film

Info

Publication number
JPH01219097A
JPH01219097A JP4481388A JP4481388A JPH01219097A JP H01219097 A JPH01219097 A JP H01219097A JP 4481388 A JP4481388 A JP 4481388A JP 4481388 A JP4481388 A JP 4481388A JP H01219097 A JPH01219097 A JP H01219097A
Authority
JP
Japan
Prior art keywords
filaments
electron beam
thin film
filament
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4481388A
Other languages
Japanese (ja)
Inventor
Makoto Shinohara
真 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP4481388A priority Critical patent/JPH01219097A/en
Publication of JPH01219097A publication Critical patent/JPH01219097A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent strain of an electron beam diffracted image and to simplify the constitution of the title device by reversing the turning direction of current allowed to flow through the filaments arranged in a crucible in one part for the other part. CONSTITUTION:The crucibles 4, 5 are arranged in a vacuum chamber 1 and the filaments 16, 17 are fitted to the outsides thereof respectively. In this case, the filaments 16, 17 are wound in the reverse directions. An AC electric source 14 for allowing current to flow through the filaments 16, 17 is provided to evaporate the material in the crucibles 4, 5. When a thin film buit-up on a substrate is projected by electron beams 11 with an electron gun 10 and a diffracted image is formed on a fluorescent plate 13, the induction magnetic fields formed in the routes of the beams 11 and diffracted electron beams 12 are mutually canceled and reduced by the current allowed to flow through the filaments 16, 17. Thereby strain of the electron beam diffracted image is reduced. The title device is simplified because the commercial AC electric source 14 is utilized.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はMBE (分子線エピタキシー)法等による薄
膜製造装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a thin film manufacturing apparatus using the MBE (molecular beam epitaxy) method or the like.

(ロ)従来の技術 従来の薄膜製造装置は、例えば第3図のように真空チェ
ンバ1内に噴射口2.3を備えたるつぼ4.5を配し、
るつぼ4.5の外部に配置したフィラメント36.37
に電流を流しるつぼの中に収容した材料を加熱蒸発させ
て試料台8上の基板9の表拘に堆積させるとともに、堆
積した薄膜に電子銃10から5乃至30keVの電子ビ
ーム11を照射し回折電子線12を蛍光板13により検
知して前記薄膜の状態を観察している。 rx中34゜
35はフィラメント36.37に電流を流すための電源
である。
(B) Prior Art A conventional thin film manufacturing apparatus includes a crucible 4.5 equipped with an injection port 2.3 in a vacuum chamber 1, as shown in FIG. 3, for example.
Filament 36.37 placed outside the crucible 4.5
The material housed in the crucible is heated to evaporate and deposited on the surface of the substrate 9 on the sample stage 8, and the deposited thin film is irradiated with an electron beam 11 of 5 to 30 keV from the electron gun 10 to cause diffraction. The state of the thin film is observed by detecting the electron beam 12 with a fluorescent screen 13. 34° 35 in rx is a power source for passing current through filaments 36 and 37.

(ハ)解決すべき課題 」一連の従来の薄膜製造装置においては、フィラメント
の電流がつくる誘導磁場によって電子ビーム及び回折電
子線が影響を受け、正確な電子線回折像が得られないと
いう問題があった。−特にフィラメントの電源が交流電
源であれば回折電子線が常に変動し、電子線回折像がぼ
やけたり全く得られなかったりし、その影響が大きい、
電源が直流電源であれば電子線回折像の位置関係が歪む
程度で比較的影響が小さいが、通常の商用電源から直流
電流を得るための整流回路が必要となる。また、フィラ
メントの周囲を透磁率の高いμメタル等の金属で磁気的
に遮蔽するには、遮蔽体が溶融しないようにフィラメン
トの周囲を熱的に遮蔽せねばならないという問題が生じ
る0本発明は以」−のような課題を解決することを目的
としている。
(c) Issues to be Solved: In a series of conventional thin film manufacturing equipment, the electron beam and diffracted electron beam are affected by the induced magnetic field created by the filament current, making it impossible to obtain accurate electron beam diffraction images. there were. -Especially if the filament's power source is an AC power source, the diffracted electron beam will constantly fluctuate, and the electron beam diffraction image may be blurred or not obtained at all, which has a large effect.
If the power source is a DC power source, the effect will be relatively small and the positional relationship of the electron beam diffraction image will be distorted, but a rectifier circuit will be required to obtain the DC current from a normal commercial power source. Furthermore, in order to magnetically shield the filament with a metal such as μ metal having high magnetic permeability, there arises the problem that the filament must be thermally shielded to prevent the shield from melting. The aim is to solve problems such as:

(ニ)課題を解決するための手段 」−記課題を解決するため、本発明においては少なくと
も一部のフィラメントに流す電流の旋回方向を他の部分
と逆にした。
(d) Means for Solving the Problems" - In order to solve the problems described above, in the present invention, the direction of rotation of the current flowing through at least a portion of the filament is reversed from that of the other portions.

(ホ)作用 一部のフィラメントに流す電流の旋回方向を他の部分と
逆にすることにより、フィラメントの電流が電子ビーム
及び回折電子線の経路につくる誘導磁場(の変動)を減
少させることができる。
(E) Effect: By reversing the direction of rotation of the current flowing through one part of the filament to the other parts, it is possible to reduce (the fluctuations in) the induced magnetic field created by the current in the filament in the path of the electron beam and the diffracted electron beam. can.

(へ)実施例 第1図は本発明の一実施例を示す構成図である。(f) Example FIG. 1 is a block diagram showing an embodiment of the present invention.

本図に示すように、真空チェンバ1内に噴射口2゜3を
備えたるつぼ4.5を配し、これらのるつぼの外部に配
置したフィラメン1−16.17に電流を流してるつぼ
の中に収容した材料を加熱蒸発させて試料台8上の基板
9の表面に堆積させるとともに、堆積した薄膜に電子銃
10から5乃至30keVの電子ビーム11を照射し回
折電子線】2を蛍光板】3により検知して前記薄膜の状
態を観察する。】4はフィラメント1(>、17に電流
を流すための交流電源である1本実施例においてはるつ
ぼ4.5に巻いたフィラメン)−16,17の巻き方が
逆であり、フィラメント16に流す電流の旋回方向がフ
ィラメン1〜17に流す電流の旋回方向と逆になってい
る。そのため、フィラメント16.17を流れる電流が
電子ビーム及び[oll電電子線経路につくる誘導磁場
が互いに打ち消し合って減少する。また、交流電源14
は通常の商用電源を直接に用いることができ、装置構成
が部門になる。
As shown in this figure, a crucible 4.5 equipped with an injection port 2°3 is arranged in a vacuum chamber 1, and a current is passed through a filament 1-16.17 placed outside the crucible. The material housed in the is heated to evaporate and deposited on the surface of the substrate 9 on the sample stage 8, and the deposited thin film is irradiated with an electron beam 11 of 5 to 30 keV from an electron gun 10 to convert the diffracted electron beam 2 to the fluorescent plate 3. to observe the state of the thin film. ] 4 is an AC power source for passing current through filament 1 (>, 17) 1 In this example, the filament wound around crucible 4.5 - 16 and 17 are wound in the opposite manner, and current is passed through filament 16. The swirling direction of the current is opposite to the swirling direction of the current flowing through the filaments 1 to 17. Therefore, the current flowing through the filaments 16 and 17 decreases as the electron beam and the induced magnetic field created in the electron beam path cancel each other out. In addition, the AC power supply 14
can directly use a normal commercial power supply, and the equipment configuration is sectional.

第2図は第2の実施例を示す要部構成図で、るつぼ4.
5に巻いたフィラメン1−26.27の巻き方は同じで
あるが、交流の位相が逆になるように交流電源24とフ
ィラメント26.27との間を配線している。
FIG. 2 is a main part configuration diagram showing the second embodiment, in which the crucible 4.
The filaments 1-26 and 27 are wound in the same way, but the AC power supply 24 and the filaments 26 and 27 are wired so that the AC phase is reversed.

第4図(a)は第3の実施例を示す要部構成図(フィラ
メント46及び交流電源44の構成を示す図)で、るつ
ぼに巻いたフィラメント46が二重になっており、隣合
う線の電流の向きが逆で誘導磁場が互いに打ち消し合う
FIG. 4(a) is a diagram showing the main part configuration of the third embodiment (a diagram showing the configuration of the filament 46 and the AC power source 44), in which the filament 46 wound around the crucible is doubled, and adjacent lines The directions of the currents are opposite, and the induced magnetic fields cancel each other out.

第4図(b)は第4の実施例を示す要部構成図(フィラ
メント56及び交流電源54の構成を示す154)で、
るつぼに巻いたフィラメント56の巻き方が途中から逆
になっていて誘導磁場が互いに打ち消し合う。
FIG. 4(b) is a main part configuration diagram (154 showing the configuration of the filament 56 and AC power source 54) showing the fourth embodiment,
The winding direction of the filament 56 wound around the crucible is reversed halfway, so that the induced magnetic fields cancel each other out.

(1・)効果 本発明によると、薄膜製造装置において用いられる高速
電子回折(RHEEI))の電子ビーム及び回折電子線
の経路の誘導磁場(の変動)が減少し、正確な電子線回
折像が得られ、また、フィラメントの電源は通常の商用
電源を直接に用いることができるので装置構成が簡単に
なるという優れた効果を奏する。
(1.) Effects According to the present invention, (fluctuations in) the induced magnetic field in the path of the electron beam and diffracted electron beam of high-speed electron diffraction (RHEEI) used in thin film manufacturing equipment is reduced, and accurate electron beam diffraction images are obtained. In addition, since a normal commercial power source can be directly used as the power source for the filament, the device configuration can be simplified, which is an excellent effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の薄膜製造装置の一実施例を示す構成図
、第2図は第2の実施例を示す要部構成図、第3図は従
来の薄膜製造装置を示ず構成図、第4図(a)、  (
L+)は夫々第3第4の実施例を示す要部構成図である
。 J・・・・・・真空チェンバ  2.3・・・・・・噴
射口4.5・・・・・・るつぼ   8・・・・・・試
料台9・・・・・・基板      JO・・・・・・
電子銃】】・・・・・・電子ビーム  12・・・・・
・回折電子線13・・・・・・蛍光板    34.3
5・・・・・・電源16.17,26,27.36゜ 37.46.56・・・・・・フィラメント14.24
,44.54・・・・・・交流電源図面の浄と甲1容に
変更なし〉 第1図 第 3 凹 弔 2 図 手続補正書目氏) 昭和63年6月ユ2日 2、発明の名称 薄膜製造装置 3、補正をする者 事件との関係  特許出願人 京都市中京区西ノ京桑原町1番地 (199)  株式会社 島津製作所 代表者 取締役社長 西へ條 實 4、代理人 別紙の通り浄書した図面を提出する。
FIG. 1 is a configuration diagram showing an embodiment of the thin film manufacturing apparatus of the present invention, FIG. 2 is a configuration diagram of main parts showing the second embodiment, and FIG. 3 is a configuration diagram without showing a conventional thin film manufacturing apparatus. Figure 4(a), (
L+) are main part configuration diagrams showing third and fourth embodiments, respectively. J... Vacuum chamber 2.3... Injection port 4.5... Crucible 8... Sample stage 9... Substrate JO...・・・・・・
Electron gun】】・・・Electron beam 12・・・・・・
・Diffraction electron beam 13... Fluorescent screen 34.3
5...Power supply 16.17, 26, 27.36°37.46.56...Filament 14.24
, 44.54...No changes to the AC power supply drawings and contents of A1> Fig. 1 No. 3 Concave condolence 2 Drawing procedure amendment) June 2, 1988 2, Title of the invention Thin film manufacturing equipment 3, relationship with the case of the person making the amendment Patent applicant: 1 (199) Kuwabara-cho, Nishinokyo, Nakagyo-ku, Kyoto City Shimadzu Corporation Representative Director and President Minoru Nishihejo 4, agent The drawings that have been engraved as shown in the attached document submit.

Claims (1)

【特許請求の範囲】[Claims] (1)るつぼの外部に配置したフィラメントに電流を流
しるつぼの中に収容した材料を加熱蒸発させて基板上に
堆積させるとともに、堆積した薄膜に電子ビームを照射
し回折電子線を検知して前記薄膜の状態を観察する装置
において、少なくとも一部の前記フィラメントに流す電
流の旋回方向を他の部分と逆にしたことを特徴とする薄
膜製造装置。
(1) Electric current is passed through a filament placed outside the crucible to heat and evaporate the material contained in the crucible and deposit it on the substrate, and the deposited thin film is irradiated with an electron beam and the diffracted electron beam is detected to detect the A thin film manufacturing apparatus for observing the state of a thin film, characterized in that the swirling direction of the current flowing through at least a portion of the filament is reversed from that of the other portion.
JP4481388A 1988-02-26 1988-02-26 Device for producing thin film Pending JPH01219097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4481388A JPH01219097A (en) 1988-02-26 1988-02-26 Device for producing thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4481388A JPH01219097A (en) 1988-02-26 1988-02-26 Device for producing thin film

Publications (1)

Publication Number Publication Date
JPH01219097A true JPH01219097A (en) 1989-09-01

Family

ID=12701869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4481388A Pending JPH01219097A (en) 1988-02-26 1988-02-26 Device for producing thin film

Country Status (1)

Country Link
JP (1) JPH01219097A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007148539A1 (en) * 2006-06-23 2007-12-27 Ulvac, Inc. Take up type vacuum vapor deposition device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007148539A1 (en) * 2006-06-23 2007-12-27 Ulvac, Inc. Take up type vacuum vapor deposition device
JP4850905B2 (en) * 2006-06-23 2012-01-11 株式会社アルバック Winding type vacuum evaporation system

Similar Documents

Publication Publication Date Title
Soldatov et al. Selective sensitivity in Kerr microscopy
FR2397064A1 (en) PROCESS FOR THE REALIZATION OF A TUBE OF COLOR IMAGES AND TUBE THUS REALIZED
EP0133016A3 (en) Multi-gap magnetic image lens for charged particle beams
JP2528161B2 (en) Securities inspection equipment
JPS5961763A (en) Apparatus for generating uniform magnetic field
JPH01219097A (en) Device for producing thin film
JP2000353487A (en) Control of image position and lens field in electron beam
JPS63229037A (en) Nuclear magnetic resonance apparatus
Den Broeder Layered magnetic domains in Fe‐Cu multilayer films imaged by Schlieren–Lorentz microscopy
Nuida et al. Colored magnetic films composed of cyano-bridged metal assemblies and magneto-optical functionalities
JPS60189845A (en) Deflection york
JPS6384537A (en) Magnetic resonance imaging apparatus
JPH0566726A (en) Landing correcting device
RU2047170C1 (en) Magnetooptical device to test articles
JPH0463269A (en) Magnetron sputtering device
Daykin et al. Mapping the magnetic induction in Co/Cr/Co trilayers using Foucault images formed in the transmission electron microscope
SU1741204A1 (en) Magnet antenna
Buravikhin et al. Domain structures of ferromagnetic films examined with the EM-7 microscope
JPS5455496A (en) Current seam
JPH09145374A (en) Geomagnetic bearing sensor
JPH0626804A (en) Method for exciting gap sensor
TAKASU Polarizing-Microscopic Observations of “Opaque” Minerals with Transmuted Infrared Light
SU1675808A1 (en) Pickup of magnetic dissipation fields over a flaw
JPH08248003A (en) Magnetooptic defect inspection equipment
JPS61210632A (en) Reduction projection type exposure apparatus