JPH01219041A - Composite powder for powder coating - Google Patents

Composite powder for powder coating

Info

Publication number
JPH01219041A
JPH01219041A JP4550488A JP4550488A JPH01219041A JP H01219041 A JPH01219041 A JP H01219041A JP 4550488 A JP4550488 A JP 4550488A JP 4550488 A JP4550488 A JP 4550488A JP H01219041 A JPH01219041 A JP H01219041A
Authority
JP
Japan
Prior art keywords
powder
coating
composite powder
frit
thermally decomposable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4550488A
Other languages
Japanese (ja)
Other versions
JP2652188B2 (en
Inventor
Keisuke Sumida
隅田 啓介
Seiji Oguro
整二 大黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASAI BUSSAN KK
Original Assignee
ASAI BUSSAN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASAI BUSSAN KK filed Critical ASAI BUSSAN KK
Priority to JP63045504A priority Critical patent/JP2652188B2/en
Publication of JPH01219041A publication Critical patent/JPH01219041A/en
Application granted granted Critical
Publication of JP2652188B2 publication Critical patent/JP2652188B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Paints Or Removers (AREA)

Abstract

PURPOSE:To improve the electrostatic coating property, deposition efficiency on a metal to be coated, and retainability after deposition of the subject powder without deteriorating the characteristic of a glazed surface by coating the surface of inorg. powder with a thermally decomposable org. material. CONSTITUTION:100pts.wt. of the inorg. powder, appropriately frit for producing enamel, other ceramic powder for producing ceramics, and metal powder in certain circumstances is coated with 1-30pts.wt., or preferably 3-25pts.wt., thermally decomposable org. material to obtain composite powder for powder coating. A thermally decomposable org. material, which can be completely thermally decomposed and dissipated without leaving any carbon in the course of calcination at a temp. preferably more than 100 deg.C lower than the calcination temp., is used, and polymethyl methacrylate, etc., can be exemplified. The org. material is advantageously added to coat the inorg. powder, when inorg. mate rial is milled to a specified particle size. The calcination after coating is carried out at 700-920 deg.C in case of an enameled steel sheet and at 500-600 deg.C in case of an aluminum sheet.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、対象物への付着効率が良好でかつ付着後の保
持性も良好であるパウダーコーティング用複合粉体、殊
にほうろう製造用の複合粉体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention provides a composite powder for powder coating, which has good adhesion efficiency to objects and good retention after adhesion, especially a composite powder for the production of enamel. It's about the body.

従来の技術 はうろう製品は、フリットと称されるセラミック原料を
ミル添加乳濁剤と共にボールミル等で粉砕してスリップ
状のほうろう釉薬組成物となし、このスリップを予め施
釉準備を行った金属素地表面あるいはすでに下釉を行っ
た面にディッピングまたはスプレーにより・施釉し、乾
燥後、焼成することにより製造される。
The conventional technology for making enamel products is to create a slip-like enamel glaze composition by pulverizing a ceramic raw material called frit with a mill-added emulsifier using a ball mill, etc., and use this slip as a metal base prepared in advance for glazing. It is manufactured by applying glaze to the surface or a surface that has already been underglazed by dipping or spraying, drying, and then firing.

この方法は古くから広〈実施されている方法であるが、
最近この伝統的な方法に代えて、フリット粉体を静電気
的に金属表面に付着させるパウダーコーティング法が注
目さ些ている。
This method has been widely used since ancient times, but
Recently, as an alternative to this traditional method, a powder coating method in which frit powder is electrostatically attached to a metal surface has been attracting attention.

すなわち、特開昭51−7005号公報には、オルガノ
ポリシロキサンを表面に有するセラミッり粉末を静電噴
射銃を用いて金属パネル上に付着させ、ついで焼成する
技術が示されている。
That is, JP-A-51-7005 discloses a technique in which ceramic powder having organopolysiloxane on the surface is deposited on a metal panel using an electrostatic spray gun, and then fired.

特開昭52−98721号公報には、はうろうフリット
をメチルトリメトキシシランなどのアルコキシシランと
反応させた後、その反応フリットを基体に静電噴霧する
技術が示されている。
Japanese Unexamined Patent Publication No. 52-98721 discloses a technique in which a waxy frit is reacted with an alkoxysilane such as methyltrimethoxysilane, and then the reacted frit is electrostatically sprayed onto a substrate.

特開昭61−178440号公報、特開昭61−178
441号公報および特開昭61−178442号公報に
は、フリットの組成を工夫したパウダーコーティング用
フリットにつき開示があり、このフリットを粉体化して
金属素地表面に静電的に付着させる技術が示されている
JP-A-61-178440, JP-A-61-178
No. 441 and Japanese Unexamined Patent Publication No. 178442/1987 disclose a frit for powder coating with an improved composition of the frit, and a technique for pulverizing this frit and electrostatically attaching it to the surface of a metal base is disclosed. has been done.

発明が解決しようとする課題 しかしながら、従来の水懸濁糸のスリップを用いて金属
素地表面にディッピングまたはスプレーにより施釉を行
う方法は、スリップ調製工程が複雑である上、焼成前に
予備乾燥が必要であり、工程が多段階になるという不利
がある。加えて、乾燥時の水や溶剤の蒸発により粒子が
2次凝集を起こすおそれがあり、一定膜厚以上でないと
焼成後に平滑な面が得られ難く、また膜厚が厚くなると
重量が大になることを免かれない。さらに、スプレーミ
ストやディッピング廃液による公害の問題も解決するこ
とが必要である。
Problems to be Solved by the Invention However, the conventional method of dipping or spraying glaze onto the surface of a metal substrate using a water-suspended thread slip requires a complicated slip preparation process and requires preliminary drying before firing. This has the disadvantage that the process is multi-step. In addition, there is a risk of secondary agglomeration of particles due to evaporation of water and solvent during drying, and it is difficult to obtain a smooth surface after firing unless the film thickness is above a certain level, and the thicker the film, the heavier it becomes. I can't escape it. Furthermore, it is necessary to solve the problem of pollution caused by spray mist and dipping waste liquid.

これに対し、フリット粉体を静電気的に金属表面に付着
させるパウダーコーティング法は、工程の短縮化、薄膜
化、無公害化の要求に沿う方法ではあるが、なお下記の
ような問題点があり、その根本的な改良が望まれている
On the other hand, the powder coating method, in which frit powder is electrostatically attached to the metal surface, meets the requirements for shortening the process, thinning the film, and making it non-polluting, but it still has the following problems. , fundamental improvements are desired.

(1)セラミック質は比重が大きく帯電量が小さいため
、高電圧を印加する必要がある。ところが高電圧の印加
は、クーロン力による付着粒子間の反発力が大きくなる
ことを意味し、その結果、付着後のパウダーの保持時間
が短かくなる。
(1) Since ceramic material has a large specific gravity and a small amount of charge, it is necessary to apply a high voltage. However, the application of a high voltage means that the repulsive force between the adhered particles due to Coulomb force increases, and as a result, the retention time of the powder after adhesion becomes shorter.

(2)殊に小粒径の粉体をパウダーコーティングする場
合は、付着後の反発力が極端に大きいため、付着面にお
いていわゆるパックエミッシ式ンが起こり、塗膜異状を
起こしやすい。
(2) Particularly in the case of powder coating with powder of small particle size, the repulsive force after adhesion is extremely large, so that a so-called pack-emission phenomenon occurs on the adhesion surface, which tends to cause abnormalities in the coating film.

(3)2成分以上の単純混合系にすると各成分がばらば
らに挙動するため、比重の異なる顔料や添加剤の後入れ
(後配合)ができない。そこで均一組成とするために、
混合系を均相に溶融した後、粉体化することが必須とな
る。
(3) When a simple mixed system of two or more components is used, each component behaves separately, making it impossible to add pigments or additives with different specific gravities later (post-blending). Therefore, in order to have a uniform composition,
It is essential to melt the mixed system into a homogeneous phase and then pulverize it.

(4)フリットの融点を下げることは、金属との密着性
を上げるために有利である。ところが、フリットの低融
点化のためにアルカリ成分を添加して高アルカリ化する
場合、その添加量が大きくなるほど通電量が大きくなる
ため、ある限度を越えると静電塗装自体が不可能になる
。たとえば、酸化物組成に占めるNazOlK、Oおよ
びLiz Oの合計量が15重量%程度、多くとも20
重量%程度までは静電塗装が可能であるが、30重量%
というように高アルカリ化することはできない、また静
電塗装が可能な範囲でも、アルカリ成分量を上げていく
と保存性が悪くなるという問題も生ずる。
(4) Lowering the melting point of the frit is advantageous in order to increase its adhesion to metal. However, when adding an alkaline component to make the frit highly alkaline in order to lower its melting point, the greater the amount added, the greater the amount of current applied, and if a certain limit is exceeded, electrostatic coating itself becomes impossible. For example, the total amount of NazOlK, O and Liz O in the oxide composition is about 15% by weight, at most 20% by weight.
Electrostatic painting is possible up to about 30% by weight.
As such, it is not possible to make the product highly alkaline, and even if electrostatic coating is possible, increasing the amount of alkaline components causes the problem of poor storage stability.

パウダーコーティング法のうち上述の特開昭51−70
05号公報や特開昭52−98721号公報に記載のも
のは、フリット粉体をケイ素化合物で被覆しているため
高い抵抗率を有するように工夫されているが、焼成時に
内部とは異なる結晶形態で表面にケイ素酸化物が析出す
るため、施釉面の耐薬品性、耐熱水性あるいは透明性な
どの性質が低下することがある。
Among the powder coating methods, the above-mentioned JP-A-51-70
The ones described in JP-A No. 05 and JP-A-52-98721 are designed to have high resistivity because the frit powder is coated with a silicon compound, but during firing, crystals different from those inside are formed. Because silicon oxide precipitates on the surface, properties such as chemical resistance, hot water resistance, or transparency of the glazed surface may deteriorate.

本発明は、このような状況に鑑み、施釉面の特性を損な
うことなく、しかもすぐれた静電塗装性および付着効率
を有するパウダーコーティング用複合粉体を提供するこ
とを目的になされたものである。
In view of these circumstances, the present invention was made for the purpose of providing a composite powder for powder coating that has excellent electrostatic coating properties and adhesion efficiency without impairing the characteristics of the glazed surface. .

課題を解決するための手段 本発明のパウダーコーティング用複合粉体は、無機質粉
体の表面を熱分解性有機物質で被覆してなるものである
Means for Solving the Problems The composite powder for powder coating of the present invention is made by coating the surface of an inorganic powder with a thermally decomposable organic substance.

無機質粉体としては、はうろう製造用のフリットが特に
好適であり、予め耐熱顔料、その他の副次的成分を配合
しておくこともできる。
As the inorganic powder, a frit for manufacturing wax is particularly suitable, and a heat-resistant pigment and other secondary ingredients may be added in advance.

このようなフリットの原料源としては、珪石、長石など
の強火性原料;ホウ酸、ホウ酸、炭酸リチウム、ソーダ
灰、チリ硝石、硝石、炭酸カリウム、フッ化ソーダ、珪
フッ化ソーダ、氷晶石、フフ化アルミニウム、はたる石
、石灰石、消石灰、骨灰、炭酸マグネシウム、マグネシ
ア、亜鉛華、炭酸亜鉛、炭酸バリウム、鉛丹、鉛白、密
陀僧などの弱火性原料;金属アンチモン、酸化アンチモ
ン、アンチモン酸ソーダ、酸化スズ、酸化ジルコニウム
、二酸化チタン、酸化セリウム、酸化モリブデン、亜ヒ
酸などの乳白原料;AlzO,?、5nO1、Zr0Z
、 TiO2,Crz03等の酸化物系顔料、スピネル
型、パイロクロア型等の複合酸化物系顔料、ZrSiO
4,3CaOCrz033SiO2,Ca03n04S
iOz、22nO5i01.2Mg0Si02.等のケ
イ酸塩系顔料、あるいはこれらの混焼系顔料をはじめと
する各種のセラミックス顔料;などが例示できる。
Raw materials for such frits include flammable materials such as silica and feldspar; boric acid, boric acid, lithium carbonate, soda ash, chili saltpeter, saltpeter, potassium carbonate, sodium fluoride, sodium silicofluoride, and cryolite. Low-flammability raw materials such as aluminum fufluoride, rubble, limestone, slaked lime, bone ash, magnesium carbonate, magnesia, zinc white, zinc carbonate, barium carbonate, lead red, lead white, Mitsudasho; antimony metal, antimony oxide, Milky white raw materials such as sodium antimonate, tin oxide, zirconium oxide, titanium dioxide, cerium oxide, molybdenum oxide, arsenite; AlzO, ? ,5nO1,Zr0Z
, oxide pigments such as TiO2 and Crz03, complex oxide pigments such as spinel type and pyrochlore type, ZrSiO
4,3CaOCrz033SiO2,Ca03n04S
iOz, 22nO5i01.2Mg0Si02. Examples include silicate-based pigments such as, and various ceramic pigments including these co-fired pigments.

フリットの酸化物組成は、たとえば、鋼板はうろうであ
れば、下釉(黒下釉、白下釉)か、上釉(酸化スズ、フ
ッ化物、アンチモン上自軸、チタン上白釉)か、あるい
は着色釉か、斑点釉かにより、鋳鉄はうろうであれば下
釉か、上釉かにより、種々の組成となしうる。どのよう
な酸化物組成であっても熱分解性有機物質で被覆してそ
の静電塗装性および塗装効率を顕著に改善しうるところ
が本発明の特長でもある。
The oxide composition of the frit is, for example, if the steel plate is opaque, is it a bottom glaze (black bottom glaze, white bottom glaze) or a top glaze (tin oxide, fluoride, antimony top glaze, titanium top glaze)? Or, depending on whether the glaze is colored or spotted, cast iron can have various compositions depending on whether it is underglazed or overglazed. A feature of the present invention is that any oxide composition can be coated with a thermally decomposable organic substance to significantly improve its electrostatic coating properties and coating efficiency.

無機質粉体としては、はうろう製造用のフリット粉体の
ほか、セラミック基板製造用セラミック粉体、その他種
々のセラミック粉体があげられる。耐熱顔料を無機質粉
体として用いることもでき、場合により金属粉体など非
セラミック粉体を用いることもできる。
Examples of the inorganic powder include frit powder for manufacturing waxes, ceramic powder for manufacturing ceramic substrates, and various other ceramic powders. The heat-resistant pigment can also be used as an inorganic powder, and in some cases, a non-ceramic powder such as a metal powder can also be used.

上述の無機質粉体表面を被覆するための熱分解性有機物
質としては、複合粉体の焼成時にその焼成温度に至るま
での温度で炭素を残すことなく実質的に完全に熱分解し
て消散するものであれば任意の有機物質が用いられる。
The pyrolyzable organic substance for coating the surface of the above-mentioned inorganic powder is one that pyrolyzes and dissipates substantially completely without leaving any carbon at a temperature up to the sintering temperature when the composite powder is sintered. Any organic substance can be used.

より好ましくは焼成温度よりも100℃以上低い温度で
完全に熱分解して消散するものが用いられる。熱分解性
有機物質の熱分解挙動は、示差熱分析計を用いて一定昇
温速度(たとえば10℃/5in)で加熱していくこと
により容易に知ることができる。
More preferably, one is used that completely thermally decomposes and dissipates at a temperature 100° C. or more lower than the firing temperature. The thermal decomposition behavior of a thermally decomposable organic substance can be easily determined by heating it at a constant temperature increase rate (for example, 10° C./5 inches) using a differential thermal analyzer.

このような熱分解性有機物質としては、熱可塑性高分子
、熱硬化性高分子、低分子量高分子(プレポリマー、オ
リゴマーを含む)、非高分子系有機物質などがあげられ
る。最適の熱分解性有機物質としては、アルキル基の炭
素数が1〜4のポリメタクリル酸アルキルエステル、な
かんづくポリメタクリル酸メチルがあげられる。熱分解
性有機物質の他の例としては、ポリビニルアルコール、
ポリビニルブチラール、ポリアセタール、硝化綿、シュ
クロースエステル、シュクロース、パラフィンなどがあ
げられる。
Examples of such thermally decomposable organic substances include thermoplastic polymers, thermosetting polymers, low molecular weight polymers (including prepolymers and oligomers), and non-polymer organic substances. The most suitable thermally decomposable organic substances include polymethacrylic acid alkyl esters in which the alkyl group has 1 to 4 carbon atoms, especially polymethyl methacrylate. Other examples of thermally decomposable organic substances include polyvinyl alcohol,
Examples include polyvinyl butyral, polyacetal, nitrified cotton, sucrose ester, sucrose, and paraffin.

無機質粉体の表面を熱分解性有機物質で被覆するには種
々の方法が採用される。
Various methods are employed to coat the surface of inorganic powder with a pyrolyzable organic substance.

そのうち最も有利な方法は、無機質を所定の粒度にまで
摩砕するときに、熱分解性有機物質を粉体で共存させる
方法である。このような方法を採用すると、無機質の摩
砕時に活性な裸のイオンやラジカルが存在する新生面(
破砕面)が発現し、また熱分解性有機物質も摩砕時に切
断を受けてラジカルが生ずる。そのため、無機質粉体と
有機物質との間にグラフト化が起こり、無機質粉体表面
に熱分解性有機物質粉体が融合して、無機質粉体が熱分
解性有機物質粉体でカプセル化されるようになる。この
場合、系を閉鎖系にして、粒度の大きいものや小さいも
のを取り出すことなく必要粒度のものを取り出すように
すると、粒度の大きいものはざらに摩砕を受け、粒度の
小さいものは造粒するので、粒度分布の狭いものを取得
することができる。
The most advantageous method is to coexist with a pyrolyzable organic material in the form of powder when the inorganic material is ground to a predetermined particle size. When such a method is adopted, when the inorganic material is triturated, a new surface (
During grinding, pyrolyzable organic substances are also cut and radicals are generated. Therefore, grafting occurs between the inorganic powder and the organic substance, the pyrolytic organic substance powder fuses to the surface of the inorganic powder, and the inorganic powder is encapsulated with the pyrolytic organic substance powder. It becomes like this. In this case, if the system is closed and the required particle size is taken out without taking out large or small particles, the large particles will be coarsely ground, and the small particles will be granulated. Therefore, particles with a narrow particle size distribution can be obtained.

そのほか、貧溶剤に分散した熱分解性有機物質粉体を無
機質粉体に添加して適宜摩砕することも有効である。
In addition, it is also effective to add a thermally decomposable organic substance powder dispersed in a poor solvent to an inorganic powder and grind it appropriately.

無機質粉体に対する熱分解性有機物質の割合は、無機質
粉体100重量部に対し1〜30重量部、特に3〜25
重量%とすることが望ましい。
The ratio of the thermally decomposable organic substance to the inorganic powder is 1 to 30 parts by weight, particularly 3 to 25 parts by weight, per 100 parts by weight of the inorganic powder.
It is desirable to set it as weight%.

熱分解性有機物質の使用量が余りに少ないときは改良効
果が不足し、一方余りに多いときは、焼成時に未分解の
有機物質が残ったり、焼成製品の特性が低下することが
ある。
If the amount of thermally decomposable organic material used is too small, the improvement effect will be insufficient, while if it is too large, undecomposed organic material may remain during firing or the properties of the fired product may deteriorate.

上記のようにして得られた複合粉体は、適当な静電的手
段を用いて対象物表面へのコーティングに供される。対
象物の代表例としては金属面があげられる、−旦上記複
合粉体をコーティングした後、さらに別の種類の複合粉
体をコーティングしてもよい、金属面のほか、セラミッ
ク基板、タイル面、ガラス面、コンクリート面、木材面
などにもコーティングを行うことができる。
The composite powder obtained as described above is coated onto the surface of an object using appropriate electrostatic means. Typical examples of objects include metal surfaces; - after coating with the above composite powder, another type of composite powder may be further coated; in addition to metal surfaces, ceramic substrates, tile surfaces, Coating can also be applied to glass surfaces, concrete surfaces, wood surfaces, etc.

コーテイング後の複合粉体は、静電的に対象物の表面に
付着しているだけであるから、これを定着させるために
次に焼成工程に供する。
Since the coated composite powder is only electrostatically attached to the surface of the object, it is then subjected to a firing process to fix it.

焼成は、酸化性ガス雰囲気(空気など)あるいは不活性
ガス雰囲気(窒素ガスなど)下に行う。
Firing is performed under an oxidizing gas atmosphere (such as air) or an inert gas atmosphere (such as nitrogen gas).

ガス中の水分や炭酸ガスも製品の品質に影響を与えるの
で、目的に合せて管理する。焼成温度は、はうろう鋼板
の場合で700〜920℃程度であり、一般には焼成温
度を下釉〉上釉〉絵付けのように設定する。アルミニウ
ム板の場合は500〜600℃程度で焼成することが多
い。
Moisture and carbon dioxide in the gas also affect the quality of the product, so they should be managed according to the purpose. The firing temperature is about 700 to 920°C in the case of a steel plate, and generally the firing temperature is set as follows: lower glaze, upper glaze, and painting. In the case of an aluminum plate, it is often fired at about 500 to 600°C.

作   用 熱分解性有機物質を被覆していない通常のほうろうフリ
ットの抵抗率は106〜10とΩ・cmのオーダーにあ
り、完全な絶縁物ではない、これに対し本発明の複合粉
体にあっては、無機質粉体の表面が熱分解性有機物質で
被覆されているため、その抵抗率はたとえばlO″〜1
0″Ω・cmのオーダーにあり、絶縁性が高い。
Function: The resistivity of ordinary enamel frit that is not coated with a pyrolyzable organic substance is on the order of 106 to 10 Ωcm, and is not a perfect insulator. Since the surface of the inorganic powder is coated with a thermally decomposable organic substance, its resistivity is, for example, 1O'' to 1
It is on the order of 0''Ω・cm and has high insulation properties.

そして本発明の複合粉体によるコーティングを施した対
象物を焼成に供すると、付着した複合粉体の表面の熱分
解性有機物質は、焼成温度に達する前に熱分解して炭素
を残すことなく完全に消散してしまう。
When an object coated with the composite powder of the present invention is subjected to firing, the pyrolyzable organic substances on the surface of the composite powder that have adhered to it are thermally decomposed before the firing temperature is reached, leaving no carbon behind. It will completely dissipate.

実施例 次に実施例をあげて本発明をさらに説明する。Example Next, the present invention will be further explained with reference to Examples.

以下1部」、1%」とあるのは重量基準で表わしたもの
である。
Hereinafter, "1 part" and "1%" are expressed on a weight basis.

実施例1、比較例1 第1表の組成を有するフリットをボールミルにて粉砕し
、粒径10〜20牌■のフリット粉体を得た。得られた
粉体の抵抗率はいずれも10’〜10?Ω・cmのオー
ダーの範囲内にあった。
Example 1, Comparative Example 1 A frit having the composition shown in Table 1 was ground in a ball mill to obtain a frit powder having a particle size of 10 to 20 square meters. The resistivity of the obtained powders was 10' to 10? It was within the order of Ωcm.

第1表中、No、1〜No、4は鋼板はうろう上釉組成
、No、5〜No18はアルミはうろう用上釉組成であ
る。
In Table 1, No. 1 to No. 4 are the upper glaze compositions for steel plates, and No. 5 to No. 18 are upper glaze compositions for aluminum.

また同じ組成のフリット100部に分子量約10万のポ
リメタクリル酸メチル粉体lO部を加え、特殊攪拌表面
融合装置(ホソカワミクロン株式会社製)にて表面融合
によるカプセル化の粒子設計を′行い1表面がポリメタ
クリル酸メチル微粉で被覆された粒径lO〜20終畷の
複合粉体を得た。得られた複合粉体の抵抗率はいずれも
lO′2〜10″Ω・cmのオーダーの範囲内にあった
In addition, 10 parts of polymethyl methacrylate powder with a molecular weight of about 100,000 was added to 100 parts of frit of the same composition, and particles were designed for encapsulation by surface fusion using a special stirring surface fusion device (manufactured by Hosokawa Micron Corporation). A composite powder coated with polymethyl methacrylate fine powder and having a particle size of 10 to 20 mm was obtained. The resistivities of the resulting composite powders were all within the range of the order of lO'2 to 10'' Ω·cm.

なお上記のポリメタクリル酸メチルは、示差熱分析計を
用いて昇温速度lO℃/winで加熱していくと、40
0℃までに炭素を残すことなく完全に熱分解して消散す
る。
In addition, when the above polymethyl methacrylate is heated at a temperature increase rate of 10°C/win using a differential thermal analyzer, the temperature rises to 40°C.
It completely thermally decomposes and dissipates without leaving any carbon behind by 0°C.

第  1  表 静電粉体塗装用ガンを用い、上記のフリット粉体および
複合粉体を、N001〜N004の組成のものは所定の
下処理がなされた接地されたほうろう用鋼板に、No、
5〜No、8の組成のものはアルミニウム板に、電圧6
0KVで静電的に付着させた。
Table 1 Using an electrostatic powder coating gun, the above-mentioned frit powder and composite powder were applied to a grounded enameled steel plate that had been subjected to a predetermined preparation for compositions of No. 001 to No. 004.
Those with compositions 5 to No. 8 are applied to an aluminum plate at a voltage of 6.
Deposition was done electrostatically at 0 KV.

このとき、フリット粉体はいずれも付着効率が50%未
満、保持時間が10分以内であったのに対し、複合粉体
はいずれも付着効率が80%以上、保持時間は6時間以
上であった。
At this time, the adhesion efficiency of all frit powders was less than 50% and the holding time was less than 10 minutes, whereas the adhesion efficiency of all the composite powders was more than 80% and the holding time was more than 6 hours. Ta.

ついで電気炉を用いて、N011〜N004の組成のも
のを用いた場合は800℃で5分間、No、5〜No、
8の組成のものを用いた場合は550℃で10分間焼成
を行った。
Then, using an electric furnace, if the compositions of No. 11 to No. 004 were used, they were heated at 800° C. for 5 minutes.
When the composition No. 8 was used, firing was performed at 550° C. for 10 minutes.

複合粉体を用いた場合は、被覆層は鏡面状で、その厚さ
は100−150JL11であった。
When the composite powder was used, the coating layer was mirror-like and had a thickness of 100-150 JL11.

一方フリット粉体を用いた場合は、粉体の脱落などが見
られ、均一なホウロウ外観が得られなかった。なお、N
o、Elの組成のものを用いた場合は、粉体塗装自体が
不可能であった。
On the other hand, when frit powder was used, falling off of the powder was observed, and a uniform enamel appearance could not be obtained. In addition, N
Powder coating itself was impossible when using a composition having a composition of o and El.

実施例2 実施例1のNO31の組成のフリッ)100部に、Ti
ozlO部、Co−A1系ブルー顔料3部、分子量lO
万のポリメタクリル酸メチル粉体10部を添加し、これ
らの共存下に特殊攪拌衣゛面融合装置を用いて粉砕を行
い、粒径10〜20JL層の複合粉体を得た。
Example 2 To 100 parts of the composition of NO31 in Example 1, Ti
ozlO part, Co-A1 blue pigment 3 parts, molecular weight lO
10 parts of polymethyl methacrylate powder was added thereto, and pulverization was carried out in the coexistence of these powders using a special stirring cloth surface fusion device to obtain a composite powder having a particle size of 10 to 20 JL.

静電粉体塗装用ガンを用い、上記の複合粉体を接地され
たほうろう用アルミニウム板に電圧60KVで静電的に
付着させた。
Using an electrostatic powder coating gun, the above composite powder was electrostatically applied to a grounded enamel aluminum plate at a voltage of 60 KV.

ついで電気炉中で550℃で10分間焼成し、鏡面外観
のスカイブルーのほうろうを得た。
Then, it was fired in an electric furnace at 550° C. for 10 minutes to obtain sky blue enamel with a mirror-like appearance.

さらに、スプレーミーストを回収し、2回目の塗装に供
したところ、第1回目と同様の好ましい結果が得られた
Furthermore, when the spray meest was collected and subjected to a second coating, favorable results similar to those of the first coating were obtained.

これにより、フリットと顔料とが均一な割合で強固にカ
プセル化されていることが判明した。
This revealed that the frit and pigment were firmly encapsulated in a uniform ratio.

実施例3 実施例1のN006の組成のフリットは、高比重、高ア
ルカリ型フリットであり、一般には粉体塗装が困難であ
る。
Example 3 The frit of composition N006 in Example 1 is a high specific gravity, high alkaline type frit, and is generally difficult to powder coat.

このフリット100部に、Co−An系ブルー顔料10
部と分子量10万のポリメタクリル酸メチル粉体10部
を添加し、これらの共存下に特殊攪拌表面融合装置を用
いて粉砕を行い、粒径10〜20 graの複合粉体を
得た。
To 100 parts of this frit, add 10 parts of Co-An blue pigment.
and 10 parts of polymethyl methacrylate powder with a molecular weight of 100,000 were added, and pulverization was performed using a special stirring surface fusion device in the coexistence of these powders to obtain a composite powder with a particle size of 10 to 20 gra.

静電粉体塗装用ガンを用い、上記の複合粉体を下処理の
施された接地されたほうろう用鋼板に電圧60KVで静
電的に付着させた。
Using an electrostatic powder coating gun, the above composite powder was electrostatically applied to a grounded enameled steel plate that had been pretreated at a voltage of 60 KV.

ついで電気炉中で800℃で5分間焼成したところ、鏡
面外観のスカイブルーのほうろうが得られた。
Then, when it was fired for 5 minutes at 800° C. in an electric furnace, a sky blue enamel with a mirror-like appearance was obtained.

発明の効果 本発明の複合粉体は、最近注目を浴びているパウダーコ
ーティング法の持つ利点(工程の短縮化、薄膜化、無公
害化など)に加え、次に列挙するようなすぐれた効果を
奏する。
Effects of the Invention In addition to the advantages of the powder coating method, which has been attracting attention recently (shortening of the process, thinning of the film, pollution-free, etc.), the composite powder of the present invention also has the following excellent effects: play.

1、絶縁性が高いので、すでに技術が確立している静電
粉体塗装の場合と同様の取扱いを行うことができる。
1. Since it has high insulation properties, it can be handled in the same way as electrostatic powder coating, for which the technology has already been established.

2、そして比較的低電圧でもコーティングが可能である
ため、対象物表面に付着した粒子間の反発力が小さく、
たとえ小粒径の複合粉体を用いても良好な付着性を有す
るようになる。また付着量を厚塗りから薄塗りまで広い
範囲に設定できる。
2. Since coating is possible even at a relatively low voltage, the repulsive force between particles attached to the surface of the object is small.
Even if a composite powder with a small particle size is used, it will have good adhesion. Also, the amount of coating can be set in a wide range from thick coating to thin coating.

3、比重の異なる顔料や添加剤の後入れ(後配合)が可
能であり、均相溶融化は必須ではなくなる。
3. Pigments and additives with different specific gravity can be added later (post-compounding), and homogeneous melting is no longer essential.

4、無機質粉体がたとえば高アルカリのフリットのよう
に通電量が大きいものでであっても、静電噴霧が可能で
かつ対象物に付着後も電荷が逃げない。従って、どのよ
うな酸化物組成の無機質粉体にも適用できる。
4. Even if the inorganic powder is one that receives a large amount of current, such as a highly alkaline frit, it can be electrostatically sprayed and the charge will not escape even after it adheres to the object. Therefore, it can be applied to inorganic powder of any oxide composition.

5、焼成中に熱分解性有機物質が消散するので、焼成製
品の特性に何らの悪影響を与えない。
5. Pyrolytic organic substances dissipate during firing, so they do not have any negative effect on the properties of the fired product.

Claims (1)

【特許請求の範囲】 1、無機質粉体の表面を熱分解性有機物質で被覆してな
るパウダーコーティング用複合粉体。 2、複合粉体における無機質粉体の表面を被覆している
熱分解性有機物質が、複合粉体の焼成時にその焼成温度
に至るまでの温度で炭素を残すことなく実質的に完全に
熱分解して消散するものである請求項1記載の複合粉体
。 3、熱分解性有機物質が、複合粉体の焼成時にその焼成
温度よりも100℃以上低い温度で炭素を残すことなく
実質的に完全に熱分解して消散するものである請求項2
記載の複合粉体。 4、無機質粉体100重量部に対する熱分解性有機物質
の割合が1〜30重量部である請求項1記載の複合粉体
。 5、無機質粉体がほうろう製造用のフリット粉体である
請求項1記載の複合粉体。
[Claims] 1. A composite powder for powder coating, which is formed by coating the surface of an inorganic powder with a thermally decomposable organic substance. 2. The pyrolyzable organic substance coating the surface of the inorganic powder in the composite powder is virtually completely pyrolyzed without leaving any carbon at temperatures up to the firing temperature when the composite powder is fired. The composite powder according to claim 1, wherein the composite powder is dissipated as a result of dissipation. 3. Claim 2, wherein the thermally decomposable organic substance is one that thermally decomposes and dissipates substantially completely without leaving any carbon at a temperature 100°C or more lower than the firing temperature during firing of the composite powder.
Composite powder as described. 4. The composite powder according to claim 1, wherein the ratio of the thermally decomposable organic substance to 100 parts by weight of the inorganic powder is 1 to 30 parts by weight. 5. The composite powder according to claim 1, wherein the inorganic powder is a frit powder for producing enamel.
JP63045504A 1988-02-27 1988-02-27 Composite powder for powder coating Expired - Lifetime JP2652188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63045504A JP2652188B2 (en) 1988-02-27 1988-02-27 Composite powder for powder coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63045504A JP2652188B2 (en) 1988-02-27 1988-02-27 Composite powder for powder coating

Publications (2)

Publication Number Publication Date
JPH01219041A true JPH01219041A (en) 1989-09-01
JP2652188B2 JP2652188B2 (en) 1997-09-10

Family

ID=12721237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63045504A Expired - Lifetime JP2652188B2 (en) 1988-02-27 1988-02-27 Composite powder for powder coating

Country Status (1)

Country Link
JP (1) JP2652188B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010195640A (en) * 2009-02-26 2010-09-09 Ikebukuro Horo Kogyo Kk Glass lining composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4855916A (en) * 1971-11-16 1973-08-06
JPS5059425A (en) * 1973-09-26 1975-05-22
JPS5425484A (en) * 1977-07-27 1979-02-26 Fujikura Ltd Manufacture of heat resistant inorganic insulated wire
JPS5635770A (en) * 1980-09-01 1981-04-08 Fujikura Ltd Manufacture of half-finished enameled ware

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4855916A (en) * 1971-11-16 1973-08-06
JPS5059425A (en) * 1973-09-26 1975-05-22
JPS5425484A (en) * 1977-07-27 1979-02-26 Fujikura Ltd Manufacture of heat resistant inorganic insulated wire
JPS5635770A (en) * 1980-09-01 1981-04-08 Fujikura Ltd Manufacture of half-finished enameled ware

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010195640A (en) * 2009-02-26 2010-09-09 Ikebukuro Horo Kogyo Kk Glass lining composition

Also Published As

Publication number Publication date
JP2652188B2 (en) 1997-09-10

Similar Documents

Publication Publication Date Title
CA1049337A (en) Coated-ceramic powder and electrostatic deposition thereof
CA1069349A (en) Metallizing compositions
JPH06191884A (en) Method of decorating lead-free glass coating composition and base material
EP0598199A1 (en) Bismuth-containing lead-free glass enamels and glazes of low silica content
US4410598A (en) Process for preparation of insulating coatings upon steel
KR100815416B1 (en) Process for producing a conductive coating on glass or on enamelled steel and substrates coated by this process
KR920005649B1 (en) An overglaze ink
JPH06287468A (en) Coating to protect material from reaction with air at high temperature
US3044901A (en) Process for the production of electrical resistors and resulting article
US3927238A (en) Lead-free glaze for high density alumina
US3932681A (en) Ceramic masking method
US3782989A (en) Polymeric based composition
US3625733A (en) Substrate coating process
Green et al. Electrically conducting glasses
JP5842561B2 (en) Low expansion glass and pasty glass composition
EP1401966B1 (en) Method of preparation of an electrically conductive paint
JPH01219041A (en) Composite powder for powder coating
US4264679A (en) Durable ceramic decorating enamels based on thermally stable cadmium red colors
CN107417118A (en) A kind of good antibacterial of wearability and the ceramic glaze of antistatic and the preparation method of ceramic tile
US3806362A (en) Coating for thermoelectric materials
US3470002A (en) Glaze for high density alumina
RU2159475C2 (en) Compound for producing resistive film
US3957497A (en) Polymeric based composition
JPH09132427A (en) Lead-free frit glaze and lead-free frit pigment
RU2052398C1 (en) Composition of enamel coating