JPH0121884B2 - - Google Patents

Info

Publication number
JPH0121884B2
JPH0121884B2 JP4887281A JP4887281A JPH0121884B2 JP H0121884 B2 JPH0121884 B2 JP H0121884B2 JP 4887281 A JP4887281 A JP 4887281A JP 4887281 A JP4887281 A JP 4887281A JP H0121884 B2 JPH0121884 B2 JP H0121884B2
Authority
JP
Japan
Prior art keywords
light
fiber
receiving
measured
central axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4887281A
Other languages
Japanese (ja)
Other versions
JPS57163851A (en
Inventor
Ichiro Inazaki
Sakae Yonezu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MITSUTOYO KK
Original Assignee
MITSUTOYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MITSUTOYO KK filed Critical MITSUTOYO KK
Priority to JP4887281A priority Critical patent/JPS57163851A/en
Publication of JPS57163851A publication Critical patent/JPS57163851A/en
Publication of JPH0121884B2 publication Critical patent/JPH0121884B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/303Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces using photoelectric detection means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Description

【発明の詳細な説明】 この発明は光フアイバーを利用した光線反射方
式による物体表面の状態等を測定するために使用
される光フアイバーの改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement of an optical fiber used to measure the condition of an object surface by a light reflection method using an optical fiber.

光フアイバーを利用した光線反射方式による測
定方法は、被測定物の表面に測定用光線を投光用
フアイバーによつて照射し、被測定物表面からの
前記測定用光線の反射光を受光フアイバーによつ
て受光し、この受光光量の変化から被測定物の表
面の状態等を検知するものである。
A measurement method using a light reflection method using an optical fiber is to irradiate the surface of the object to be measured with a measuring beam through a light emitting fiber, and then transmit the reflected light of the measuring beam from the surface of the object to a receiving fiber. Therefore, light is received, and the condition of the surface of the object to be measured is detected from changes in the amount of received light.

例えば切削加工中の被削材の切削面の荒さを測
定する場合、受光フアイバーを通して検出される
反射光の割合は、切削表面の傾斜角分布に応じて
変化し、表面荒さは傾斜角の分布と相関性がある
ため、反射光出力によつて荒さを測定することが
できる。
For example, when measuring the roughness of the cut surface of a workpiece during cutting, the proportion of reflected light detected through the receiving fiber changes depending on the slope angle distribution of the cutting surface, and the surface roughness depends on the slope angle distribution. Because of the correlation, roughness can be measured by the reflected light output.

ここで前記反射光出力は被測定物の表面の反射
率によつて異なり、またその反射率は被測定物の
材質によつて異なる。従つて表面荒さを正確に測
定するためには反射率の相違の影響を何らかの方
法で除去する必要がある。
Here, the reflected light output varies depending on the reflectance of the surface of the object to be measured, and the reflectance also varies depending on the material of the object to be measured. Therefore, in order to accurately measure surface roughness, it is necessary to remove the influence of the difference in reflectance by some method.

このための方法として、一般に光フアイバーを
被測定面に対して垂直に配置した場合と傾斜させ
て配置した場合について、それぞれの位置での受
光用フアイバーによつて受光された反射光出力の
比を求め、これから材料の反射率の影響を除去す
るようにした方法がある。
As a method for this purpose, the ratio of the output of the reflected light received by the receiving fiber at each position is generally calculated when the optical fiber is placed perpendicular to the surface to be measured and when it is placed at an angle. There is a method that removes the influence of the reflectance of the material.

しかしながらこのような方法の場合、投光フア
イバーと受光フアイバーが測定面に対して垂直お
よび傾斜位置をとり、二つの投光された光が互い
に干渉をし合うことになり正確な測定が困難にな
るという不都合がある。
However, in this method, the transmitting fiber and the receiving fiber are perpendicular to and inclined to the measurement surface, and the two emitted lights interfere with each other, making accurate measurement difficult. There is this inconvenience.

本発明はかかる不都合を解消すべく成されたも
のであつて、小型でかつ正確に測定でき取扱いに
便利な光フアイバーを提供することを目的とす
る。
The present invention was made in order to eliminate such inconveniences, and it is an object of the present invention to provide an optical fiber that is small in size, can be accurately measured, and is convenient to handle.

この目的は被測定物表面に垂直に配置された投
光用フアイバーと、この投光用フアイバーに平行
かつ隣接する受光用フアイバーおよび前記投光用
フアイバーと一定の角度を有する第2の受光フア
イバーと、を一体的に設けることによつて達成さ
れる。
This purpose consists of a light-emitting fiber arranged perpendicular to the surface of the object to be measured, a light-receiving fiber parallel to and adjacent to the light-emitting fiber, and a second light-receiving fiber having a certain angle with the light-emitting fiber. This is achieved by integrally providing the following.

以下本発明の実施例を図面を参照して説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明にかかる光フアイバーの実施例
を示す正面図である。
FIG. 1 is a front view showing an embodiment of the optical fiber according to the present invention.

この図に示されるように、本発明にかかる光フ
アイバー1は、被測定物2の表面に対して垂直に
測定用光線を照射するようにされた投光用フアイ
バー3と、受光光束の中心軸線が前記投光用フア
イバー3の投光光束の中心軸線と平行でありかつ
隣接して配置された受光用フアイバー4と、前記
投光用フアイバー3の投光光束の中心軸線と受光
光束の中心軸線が被測定物2の表面において角度
θをなして交差する第2の受光用フアイバーと、
が一体的に設けられている。図の符号6は光源7
からの光を投光用フアイバーに導くためのレン
ズ、符号8は受光用フアイバー4からの光を受け
る受光素子、符号9は第2の受光用フアイバーの
ための受光素子をそれぞれ示す。
As shown in this figure, the optical fiber 1 according to the present invention includes a light emitting fiber 3 that emits a measuring light beam perpendicularly to the surface of an object to be measured 2, and a central axis of the received light beam. is parallel to the central axis of the emitted light beam of the light emitting fiber 3 and arranged adjacent to the light receiving fiber 4, and the central axis of the emitted light beam of the light emitting fiber 3 and the central axis of the received light beam. a second light-receiving fiber that intersects at an angle θ on the surface of the object to be measured 2;
are integrally provided. Reference numeral 6 in the figure is the light source 7
Reference numeral 8 indicates a light-receiving element for receiving light from the light-receiving fiber 4, and reference numeral 9 indicates a light-receiving element for the second light-receiving fiber.

ここにおいて前記角度θは15度ないし40度とす
るのが理想的である。これは第2図に示されるよ
うに投光用および受光用のフアイバーの中心軸が
平行な光フアイバーを、その光束の中心軸線と被
測定2の表面に垂直な線とのなす角度ψに対する
反射光出力との関係を実験的に求めた結果による
ものである。
Here, the angle θ is ideally between 15 degrees and 40 degrees. As shown in Figure 2, this is a reflection of an optical fiber whose central axes are parallel to each other, with respect to the angle ψ between the central axis of the light beam and a line perpendicular to the surface of the object to be measured. This is based on the results of experimentally determining the relationship with optical output.

すなわち、第2図は角度ψを横軸に、また縦軸
には、ψ=0の場合の反射光出力を1とした場合
の各ψにおける比出力を示すものであり、4種類
の異なる表面荒さ(Rz)の材料についての実測
値を示している。これによるとψの絶対値が15度
ないし20度のとき、各試料の出力比は、表面荒さ
の変化に対して最も感度が高いことが判つた。し
たがつてθを15度ないし40度に設定すれば最も高
度が高くなる。
In other words, Figure 2 shows the angle ψ on the horizontal axis, and the vertical axis shows the specific output at each ψ when the reflected light output when ψ = 0 is 1. It shows the actual measured value of the roughness (Rz) of the material. According to this, it was found that when the absolute value of ψ was between 15 degrees and 20 degrees, the output ratio of each sample was most sensitive to changes in surface roughness. Therefore, setting θ between 15 degrees and 40 degrees will give you the highest altitude.

本発明は上記のように被測定物の表面に測定用
光線を照射するための投光用フアイバーと、前記
被測定物表面からの前記測定用光線の反射光を受
光するための受光用フアイバーとを有し、受光光
量の変化から被測定物の表面の状態等を検知する
ための光フアイバーにおいて、前記受光用フアイ
バーの受光光束の中心軸線を、前記投光用フアイ
バーの投光光束の中心軸線と平行にするととも
に、受光光束の中心軸線が前記投光用フアイバー
の中心軸線と一定角度をなす第2の受光用フアイ
バーを前記投光用フアイバーおよび受光用フアイ
バーと一体的に設けて光フアイバーを構成したの
で、2つの投光が干渉し合うことなく正確に被測
定物表面を測定できるとともに小型一体化により
取扱に便利となつたという優れた効果を有する。
As described above, the present invention includes a light projecting fiber for irradiating a measurement light beam onto the surface of an object to be measured, and a light receiving fiber for receiving reflected light of the measurement beam from the surface of the object to be measured. In an optical fiber for detecting the state of the surface of an object to be measured from changes in the amount of received light, the central axis of the received light beam of the light receiving fiber is defined as the central axis of the light emitted by the light emitting fiber. A second light-receiving fiber is provided integrally with the light-emitting fiber and the light-receiving fiber, and the central axis of the light-receiving light beam forms a certain angle with the center axis of the light-emitting fiber. This configuration has excellent effects in that the surface of the object to be measured can be accurately measured without the two light beams interfering with each other, and the compactness and integration make it convenient to handle.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかる光フアイバーの実施例
を示す正面図、第2図は光フアイバーの被測定面
と垂直な線に対する傾斜角と反射光出力との関係
を示すグラフである。 1……光フアイバー、2……被測定物、3……
投光用フアイバー、4……受光用フアイバー、5
……第2の受光用フアイバー。
FIG. 1 is a front view showing an embodiment of the optical fiber according to the present invention, and FIG. 2 is a graph showing the relationship between the inclination angle of the optical fiber with respect to a line perpendicular to the surface to be measured and the reflected light output. 1... Optical fiber, 2... Measured object, 3...
Light emitting fiber, 4...Light receiving fiber, 5
...Second light receiving fiber.

Claims (1)

【特許請求の範囲】 1 被測定物の表面に測定用光線を照射するため
の投光用フアイバーと、前記被測定物表面からの
前記測定用光線の反射光を受光するための受光用
フアイバーとを有し、受光光量の変化から被測定
物の表面の状態等を検知するための光フアイバー
において、前記受光用フアイバーの受光光束の中
心軸線を、前記投光用フアイバーの投光光束の中
心軸線と平行にするとともに、受光光束の中心軸
線が前記投光用フアイバーの中心軸線と一定角度
をなす第2の受光用フアイバーを前記投光用フア
イバーおよび受光用フアイバーと一体的に設けた
ことを特徴とする光フアイバー。 2 前記第2の受光用フアイバーの中心軸線と投
光用フアイバーの中心軸線とのなす角度は、15度
ないし40度とされた特許請求の範囲第1項記載の
光フアイバー。
[Scope of Claims] 1. A light projecting fiber for irradiating a measuring beam onto the surface of an object to be measured, and a light receiving fiber for receiving reflected light of the measuring beam from the surface of the object to be measured. In an optical fiber for detecting the surface condition of an object to be measured from changes in the amount of light received, the central axis of the received light beam of the light receiving fiber is defined as the central axis of the light emitted by the light emitting fiber. A second light-receiving fiber is provided integrally with the light-emitting fiber and the light-receiving fiber, and the center axis of the light-receiving light beam forms a certain angle with the center axis of the light-emitting fiber. optical fiber. 2. The optical fiber according to claim 1, wherein the angle between the central axis of the second light-receiving fiber and the central axis of the light-emitting fiber is 15 degrees to 40 degrees.
JP4887281A 1981-04-01 1981-04-01 Optical fiber Granted JPS57163851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4887281A JPS57163851A (en) 1981-04-01 1981-04-01 Optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4887281A JPS57163851A (en) 1981-04-01 1981-04-01 Optical fiber

Publications (2)

Publication Number Publication Date
JPS57163851A JPS57163851A (en) 1982-10-08
JPH0121884B2 true JPH0121884B2 (en) 1989-04-24

Family

ID=12815373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4887281A Granted JPS57163851A (en) 1981-04-01 1981-04-01 Optical fiber

Country Status (1)

Country Link
JP (1) JPS57163851A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59143908A (en) * 1983-02-07 1984-08-17 Mitsutoyo Mfg Co Ltd Surface roughness detecting device
JPS59143909A (en) * 1983-02-07 1984-08-17 Mitsutoyo Mfg Co Ltd Surface roughness detecting method
GB201718699D0 (en) 2017-11-13 2017-12-27 Rolls-Royce Ltd Measuring surface roughness

Also Published As

Publication number Publication date
JPS57163851A (en) 1982-10-08

Similar Documents

Publication Publication Date Title
EP0102189B1 (en) Reflectometer
US4816670A (en) Optical measuring head
JPS6410104A (en) Detection optical system
DE3567273D1 (en) Device for detecting differences in color
ES2034453T3 (en) MEASUREMENT OF THE CURVATURE OF TRANSPARENT OR TRANSLUCENT MATERIAL.
US3610756A (en) Apparatus for determining the color of cut diamonds
JPH0121884B2 (en)
JPH07209079A (en) Optical device
JP2002048730A (en) Optical automatic measurement method
JPS60142204A (en) Dimension measuring method of object
JPS5630724A (en) Inspecting device of substrate surface
JPS5752807A (en) Device for measuring film thickness
JP2737554B2 (en) Method and apparatus for measuring emissivity and surface temperature
JPH0712514A (en) Optical fiber displacement sensor
JPH0153722B2 (en)
ATE360811T1 (en) GLOSS SENSOR WITH DIRT COMPENSATION DEVICE AND METHOD
JPS62189889U (en)
US5497228A (en) Laser bevel meter
JPH0151124B2 (en)
JPS62116204A (en) Method and apparatus for measuring contact area
JPH0262184B2 (en)
JPH0416346U (en)
JPH058965B2 (en)
JPS57179606A (en) Optical displacement gage
JPS6446183A (en) Method for measuring hole by light