JPS59143908A - Surface roughness detecting device - Google Patents

Surface roughness detecting device

Info

Publication number
JPS59143908A
JPS59143908A JP1867983A JP1867983A JPS59143908A JP S59143908 A JPS59143908 A JP S59143908A JP 1867983 A JP1867983 A JP 1867983A JP 1867983 A JP1867983 A JP 1867983A JP S59143908 A JPS59143908 A JP S59143908A
Authority
JP
Japan
Prior art keywords
optical system
light
optical
light receiving
divider
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1867983A
Other languages
Japanese (ja)
Other versions
JPH0151124B2 (en
Inventor
Narikata Oota
成賢 太田
Hiroya Fukatsu
拡也 深津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsutoyo Manufacturing Co Ltd
Original Assignee
Mitsutoyo Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsutoyo Manufacturing Co Ltd filed Critical Mitsutoyo Manufacturing Co Ltd
Priority to JP1867983A priority Critical patent/JPS59143908A/en
Publication of JPS59143908A publication Critical patent/JPS59143908A/en
Publication of JPH0151124B2 publication Critical patent/JPH0151124B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/303Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces using photoelectric detection means

Abstract

PURPOSE:To detect surface roughness highly sensitively, by constituting a device, by a first optical system and a second optical system, whose light axes are intersected each other, a divider, which obtains the ratios of the outputs of a light source device and first and second light receiving devices, and an operator, which performs the inverse logarithm operation of the output of the divider, and correcting the difference in surface reflectivity caused by the quality of the surface of a material to be measured, the state of the surface, and the like, even though light projecting and receiving angles, distance between the surface to be measured, and the like are fluctuated. CONSTITUTION:The optical fibers of a first optical system 11 and a second optical system 12 are formed by bundling the light projecting fibers in a circular shape in the inside and bundling the light receiving fibers in a concentric shape at the outside thereof. The area ratio of the optical fibers is 1:1. A first light receiving device 15 and a second light receiving device 16 are phototransistors, which perform photoelectric conversion of the received reflected light beams into electric signals. The output electric signals are outputted to a divider 17 through amplifiers 19. An operator 18 is an inverse logarithm operator, which operates a central-line average roughness Ra based on the ratio between the output Fo from the first light receiving device 15 and the output Fe from the second light receiving device 16.

Description

【発明の詳細な説明】 この発明は表面粗さ検出装置の改良に係り、特に、検査
表面に投光して、眩光の検査表面における反射率から表
面粗さを検出するようにした表面ネロざ検出装置の改良
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement of a surface roughness detection device, and more particularly, to a surface roughness detection device that detects surface roughness from the reflectance of the dazzling light on the inspection surface by projecting light onto the inspection surface. This invention relates to improvements in detection devices.

従来、表面粗さ検出装置の一つとしχ、触針式表面粗さ
検出装置があるが、これは、例えば、被測定物表面か鏡
面に近い状態の場合1ま、測定子か被測定物表面に接触
することによつ′C表面状態を悪化ざUてしまい、且つ
、正確な測定か圃yhとなるという問題点があった。
Conventionally, there is a stylus-type surface roughness detection device as one of the surface roughness detection devices. There is a problem in that contact with the surface deteriorates the surface condition and makes it impossible to make accurate measurements.

これに対して、物体表面を傷つりることなく光学的に非
接触−(表面粗さを測定する装置が採用されている。
In contrast, devices have been adopted that optically non-contact (surface roughness measurement) without damaging the surface of the object.

かかる光学的手段による非接触の表向粗さ検出装置は、
−9シに、例え(,11光〕jフイバ等からなる光学系
を介し−C,被測定物表向に投光し、その反射光線を4
;Cえ、物体表面の反則イ之から表面粗さを検出リ−る
ものである。
This non-contact surface roughness detection device using optical means is
For example, (, 11 light) is projected onto the surface of the object to be measured through an optical system consisting of a fiber, etc., and the reflected light beam is
;C: The surface roughness is detected from the irregularities on the surface of the object.

かかる表面粗さ検出装置は、非接触で測定できるという
利点があるが、被測定物表面にお()る反Q’J光線の
出力が微細どなることがある等の理由によって、光学系
からの投光角度、光学系による受光角度、光学系と測定
面との距11j J3J:び光学系の光軸と測定面との
角度が固定的とされていて、実用化か回動−Cあった。
Such surface roughness detection devices have the advantage of being able to perform non-contact measurements, but the output of the anti-Q'J rays on the surface of the object to be measured may be slightly distorted. Projection angle, angle of light reception by the optical system, distance between the optical system and the measurement surface11j .

この発明は上記従来の問題点にSにみてなされたもので
あって、投光および受光角度、被測定面と光学系との距
El11、被測定面と光学系の光軸どの角1文等の変動
があっても、感度よく表面粗さを検出することができる
表面粗さ検出装置を提供することを目的どする。
This invention has been made in view of the above-mentioned conventional problems, and includes such things as the angle of light projection and reception, the distance El11 between the surface to be measured and the optical system, the angle of the optical axis between the surface to be measured and the optical system, etc. It is an object of the present invention to provide a surface roughness detection device that can detect surface roughness with high sensitivity even if there is a variation in surface roughness.

又この発明(よ、被測定物表面の1/J日、大面状態等
によって生じる表面反則串のjaい4耐i 、iL L
、て、(両度よく表面用さを検出することか℃きるよう
に]ノだ表向粗さ検出装置を提供す゛ること4目的とり
る。
In addition, this invention (1/J day, large surface condition, etc. of the surface of the object to be measured, etc.)
The following four objectives are provided: to provide a surface roughness detection device that can detect surface roughness at both temperatures.

この発明は、光軸が相りに交差する第1光学系および第
2光学系と、前記第1光学系および第2光学系の少なく
とも−hを介して検査面に投光する光源装置と、前記検
査面からの反Q’l光を前記第1光学系を介し゛C受光
する第1受光器と、前記検査面からの反射光を前記第2
光学系をfF Lで受光する第2受光器と、前記第1受
光器、l−5よび第2受光器の出ツノの比を求める割算
器と、この割算器による割算器量ツノを逆対数演算リ−
るための)山詐装置と、により表11“I粗さ検出装置
を(に成りることにより上記目的を達成するしのである
This invention includes a first optical system and a second optical system whose optical axes intersect with each other, and a light source device that projects light onto an inspection surface through at least -h of the first optical system and the second optical system. a first light receiver that receives the anti-Q′l light from the inspection surface via the first optical system;
A second light receiver that receives light from the optical system at fF L, a divider that calculates the ratio of the output horns of the first light receiver, l-5, and the second light receiver, and a divider quantity horn by this divider. Anti-logarithm calculation
The above object is achieved by forming a surface roughness detection device (for detecting roughness) and a roughness detection device (Table 11).

又この発明は、前記表面粗さ検出具u7fにおいて、前
記第1光学系および第2光学系の一力を、その光軸が前
記検査面に対し垂直となるよ−うに配置することにより
上記目的を)構成づるちのである。
Further, the present invention achieves the above object by arranging the forces of the first optical system and the second optical system in the surface roughness detection tool u7f so that their optical axes are perpendicular to the inspection surface. ) It is composed of Zuruchino.

父この発明は、前記表面′!lIさ検出S置に、Jヲい
て、  1前記第1光学系A3 J:び第2光?系を、
その光軸の交差角度Oか、該検査面の状態にI、i>し
で、O〈θ・て90°どなるように配置して上記目的を
達成するものである。
The father of this invention is the surface'! 1. The first optical system A3 and the second light beam are placed in the first optical system A3 and the second light beam. system,
The above objective is achieved by arranging the optical axes at an intersection angle of 0 or 90° with respect to the state of the inspection surface.

又この発明L1. 、 ii?j記表面粗表面出装置に
、15いて、前記第1)1C学系および第2光学系の少
なくとも一方を、往路i1Jよび復路を備えた光ファイ
バーから構成づ−ることにより上記目的を達成するもの
である。
Also, this invention L1. , ii? The above object is achieved by 15 in the surface roughening device j, wherein at least one of the first) 1C optical system and the second optical system is composed of an optical fiber having an outgoing path i1J and a returning path. It is.

以F本発明の実施例を図面を参照して説明する。Hereinafter, embodiments of the present invention will be described with reference to the drawings.

この実施1シリは、第1図に示されるように、光軸か(
1:l !j−に30゛′の角1良で交差する第1光学
系11J3よび第2光学系12ど、前記第1光・学系1
1J5」:び第2光学系12を介して検査面13に投光
する光源装置14と、前記検査向13力冒らの反射光を
前記第1光学系11を介して受光する第1受光器15ど
、前記検査面13からの反則光を前記第2光学系12を
介して受光りる第2受光器16と、前記第1受光器15
および第2受光器16の出力り比を求める割算器17と
、この割算器、17による割算器出力を逆対数II−る
ための演粋装;イ18ど、により表面粗さ検出装置を構
成したものである。
As shown in Fig. 1, this first series has an optical axis (
1:l! The first optical/optical system 1, such as the first optical system 11J3 and the second optical system 12, which intersect with J- at an angle of 30'
1J5'': a light source device 14 that emits light onto the inspection surface 13 via the second optical system 12; and a first light receiver that receives reflected light from the inspection surface 13 via the first optical system 11. 15, a second light receiver 16 that receives reflected light from the inspection surface 13 via the second optical system 12; and a first light receiver 15.
and a divider 17 for calculating the output ratio of the second light receiver 16, and an arithmetic device for calculating the inverse logarithm of the divider output by this divider and 17; This is the configuration of the device.

前記第1光学系11および第2光学系12は、それぞれ
往路および復路を備えた尤ツノフィバ−から構成されて
いる。
The first optical system 11 and the second optical system 12 are each composed of a horn fiber having an outgoing path and a returning path.

これら第1光学系11J3よひ第2光学系12の光ファ
イバは、共に内側に投光用の光ノアイバを円形に束ね、
又その外側に同心リング状に受光用の光ツノフィバを束
ねたものであり、投光用および受光用の光フッフィバの
面積比は1:1とされている。。
These optical fibers of the first optical system 11J3 and the second optical system 12 have optical fibers for projecting light bundled in a circle inside,
Moreover, light receiving optical horn fibers are bundled in a concentric ring shape on the outside thereof, and the area ratio of the light projecting and light receiving optical horn fibers is 1:1. .

前記第1受光器15および第2受光器16は、それぞれ
、受光した反射光線を電気信号に光電変換する)711
へ1〜ランジスタとされ、その出力電気信−号をアンプ
19を介してそれぞれ前記割吐器17に出力りるように
されている。
The first light receiver 15 and the second light receiver 16 each photoelectrically convert the received reflected light beam into an electric signal) 711
1 to 1 are transistors, and their output electric signals are outputted to the splitter 17 via an amplifier 19, respectively.

前記演β装’+ti 181ま、前記第1受光器15か
らの出力Foと第2受光器16からの出力F eのjt
F o = 「−’ e =” I−oに基づぎ、中心
線平均粗さl’(a=1o(へ八) を何りンリーる逆対数演算装置とされ Cいる1、ここでM、Kは測定物の(A買加工条件等に
」:って異なる定故文ある。。
181, jt of the output Fo from the first light receiver 15 and the output F e from the second light receiver 16.
F o = "-' e =" Based on I-o, it is considered to be an anti-logarithm calculation device that calculates the center line average roughness l' (a = 1o (h8)), where M , K is for the object to be measured (A for processing conditions, etc.): There are different definite sentences.

−に記第1図に小される表面(i]さ検出装置ににつて
検査面13の表1f11相さを測定す゛る場合は、同図
に;J′Xされるように、第1光学系11を、その光軸
か検査+f+i 13ど直交づ−るように配置り−るど
ともに、第2光学系12を、その光軸が検査面13にあ
いく前記第1光学系11と交差角度θをもって交ηりる
ように配置する。
- When measuring the phase height of the inspection surface 13 using the surface (i) size detection device shown in FIG. 11 is arranged so that its optical axis is perpendicular to the inspection surface 13, and the second optical system 12 is arranged at an intersection angle with the first optical system 11 whose optical axis meets the inspection surface 13. They are arranged so that they intersect with θ.

次に、上記実施例装置によ゛つて検査ifi’i 13
の表面粗さを測定り−る原理およG・その原理における
理論61樟式ならひにこの理論iI幹式を実証覆る実験
(1白;こ一ついて畠2明りる。
Next, an inspection is performed using the above-mentioned embodiment apparatus.
The principle of measuring the surface roughness of G and the theory on that principle.

実験は、第1光学系゛11および第2光学系12)しに
、内側に自律0 、8’ 11mの投光用の光ファイバ
を、又、その外側にリング状に外径か1.2北の光ファ
イバを各々300本束ねたものであって、面積化は1:
1とした。又、第1光学系11と第2光学系12の交差
角度θ=30′とした。
In the experiment, the first optical system 11 and the second optical system 12) were equipped with an optical fiber for light projection with an autonomous diameter of 0.8' and 11 m on the inside, and a ring-shaped optical fiber with an outer diameter of 1.2 m on the outside. Each bundle of 300 optical fibers in the north has an area of 1:
It was set to 1. Further, the intersection angle θ between the first optical system 11 and the second optical system 12 was set to 30'.

光源装置14どしては、タンゲスTンランブを、又第1
光学系11a5よび第2光学系12により照’JJ サ
#’L ル4q査jki 13 ニd3 t−Jル、、
7.ボ’/ l’ ?41J、 約1.5瓦、第1光学
系゛1および第2光・¥”系12先端ど検M1η〕13
とのキャップを約2乃至3開とし ノこ 。
The light source device 14 includes a tongue lamp and a first lamp.
The optical system 11a5 and the second optical system 12 illuminate
7. Bo'/l'? 41J, about 1.5 tiles, 1st optical system ゛1 and 2nd optical system 12 tip inspection M1η] 13
Open the cap of the saw about 2 to 3 times.

一般にl])1削而の場合そのlO1面曲線曲線ilら
れる表面傾斜角か正規分イliとなることが知られてい
るが、中心線平均粗さ1でaが0.2μm A3よび0
.8L1mの表面粗さ標準片を測定した丈、験の結果、
その断面曲線にiF)ける表面傾斜角の分イb1.1.
第2図(a)J5よひ(0)に示されるヒストダラムの
ようになった。
In general, it is known that in the case of 1 grinding, the surface inclination angle of the 1O1 surface curve il is the normal component li, but if the center line average roughness is 1 and a is 0.2 μm A3 and 0
.. The length of the surface roughness standard piece of 8L1m, the result of the experiment,
The surface inclination angle b1.1.
It became like the histodaram shown in Figure 2 (a) J5 Yohi (0).

第2図(a)おにび(1)〉のヒスI−グラムは正規分
布を示し、理論値と実験値が略−敗しtいることがわか
る。
It can be seen that the Hiss I-gram shown in FIG. 2(a) (1) shows a normal distribution, and that the theoretical value and the experimental value are approximately equal to each other.

従って、表面1lJ1斜角をO5とし、表if+11L
貞r1角分イ11の標準4に+!差をσesとり−ると
、分イ1」関数f (θS)は、 2πσes          ・・・・・・ (1)
−(表わされることになる、。
Therefore, let the surface 1lJ1 oblique angle be O5, and the table if+11L
+ to the standard 4 of sada r1 kakumin i 11! Taking the difference as σes, the function f (θS) is 2πσes... (1)
−(to be expressed,.

従って2系統の光学系′11および12−(−受光され
る倹’N?ii+i 13からの反射光についてらl1
il係に正規分布するbのと占えられろう ここで光ノノノイバは開口VI N 、△による固有の
受光角(光])ノイバが受光可能な入射角)を有するた
め、検出有効化1川か限定される。実検に使用した第1
光学系11(υよび第2光学系12の垂直光−ノノ′イ
バFoおよび(lji斜光ツノフィバF eは八にN、
/10.26であり、有効受光角は約7″とイ劣る。測
定物からの総反射光量をΦとづると、となる。又又ノア
イバが受光可能な反射光量をΦ(3)式における定数a
 、ll lユ光シアイバの有効受光角C゛決定れる。
Therefore, regarding the reflected light from the two optical systems '11 and 12-(-)'N?ii+i13, which is received, l1
Here, the optical neutron beam has a unique acceptance angle (light) due to the aperture VIN, △ (incident angle at which the neutron can receive light), so the detection activation is limited to one river or be done. The first one used for the actual test
The optical system 11 (υ) and the vertical light fiber Fo of the second optical system 12 and the oblique light horn fiber Fe are 8 to N,
/10.26, and the effective acceptance angle is about 7", which is inferior. If the total amount of reflected light from the measurement object is expressed as Φ, then the amount of reflected light that Noaiba can receive can be expressed as constant a
, Ill The effective acceptance angle C' of the optical shear bar is determined.

ここ(゛、光ファイバが受光できる反射光量を検出!(
を率Qと呼ぶことにすると Q−Φ Φ          ・・・・・・(/I)となる。
Here (゛, Detect the amount of reflected light that the optical fiber can receive!
If we call this the rate Q, then it becomes Q-Φ Φ (/I).

第3図に小されるように、測定物の反則角θSの表面で
反則される光の反射角θrは θr”2O5・・・・・・(5) となる。
As shown in FIG. 3, the reflection angle θr of the light reflected on the surface of the object with the deflection angle θS is θr”2O5 (5).

よって垂直フ))イバFoの検出111i1串Qoは、
第4図に小されるように正規分布の中心に対して±3.
5’  、  又θ−30’  の傾斜−ノノ仁イハ1
− θの検出確率Qeは、正規分布の中心から1り’ず
れた位置を中心に士3.5°の範囲の積分1泊どして求
められる。
Therefore, the detection 111i1 of the vertical rivet Fo is
±3 relative to the center of the normal distribution as shown in Figure 4.
5', and the slope of θ-30' - Nononi Iha 1
- The detection probability Qe of θ is obtained by performing integration over a range of 3.5° around a position deviated by 1 from the center of the normal distribution.

第5図に検出確率Qo、Qeの4詩結果を小り。Figure 5 shows the results of the four poems with detection probabilities Qo and Qe.

Qo、QeおよびQ o −Q e 、□Qo fこ−
1)い−(’ z−I Pi近似を最小自乗法により求
めると、 Qo =1.09−0.081ogσθs −(6)Q
e  −−0,11+0.  191og   0t3
6−  (7)Q  o  −−−1、671−1、7
2loリ σe  s  −(F3  )(’I”a関
係数γ=o、 97> どなる。
Qo, Qe and Qo -Qe, □Qo fko-
1) I-(' z-I Find the Pi approximation using the least squares method, Qo = 1.09-0.081ogσθs - (6)Q
e −−0, 11+0. 191og 0t3
6- (7) Q o ---1, 671-1, 7
2lo Ri σe s − (F3) ('I”a relation coefficient γ=o, 97> roar.

916図に1.2<面相さ標r% J ’+につぃで測
定した結尿を小づ。ここ(゛は、Htl lll仙は尤
フッ′イハの出力1直(ある。このlI、l、の、F 
o 、 F e it>よびl:o = F B’ l
” o ’I:′)対数関数近似を最小自乗法により求
めると、 L−o=8.90−6.2710!J  σes−<9
ントe−〇、 ′l 6+’l、221ogσes・・
・(1o)に o  =−!3 、  484 11.
  591og  σ θ S・・・(11) く相関係数γ−0,95) どなった。
Figure 916 shows the urine condensation measured with 1.2 < face value r% J' + Nitsui. Here (゛ is Htl
o , F e it> and l: o = F B' l
” o 'I:') Obtaining the logarithmic function approximation using the least squares method, L-o=8.90-6.2710!J σes-<9
nt e-〇, 'l 6+'l, 221ogσes...
・For (1o), o =-! 3, 484 11.
591og σ θ S...(11) Correlation coefficient γ-0,95) I yelled.

1ス」二のj由り、表面(頃お1直分子1」θSの(票
県(幅差σθSに対りる2系統の光7]Iイバ出力の比
FoとのtlIJ関性は、第j)図の検出確率の]!l
!論計棹叫と比較して明らかなJ:うに、定性的に一致
性が高い、3表面1頃斜角分ηiの(票準1幅差σes
により表面粗ざをA!’J >mジるのは大川的−(な
い□1ぞこ−C1σe5− Raの関係式を実験的に求
め、(の結果を第1図に示1 、最小自乗法により対教
近(1ソをt−jい、σe 5−−−11.03+6.
961og l犬a・・・・・・(12) (相関係数γ−0,99) を 得 1c  。
The tlIJ relationship between the surface (circle 1 direct numerator 1' θS) and the ratio Fo of the two systems of light 7 for the width difference σθS is as follows: ]!l of the detection probability in Figure j)
! It is clear that compared with Ronkei Sakusho, there is a qualitatively high degree of consistency.
The surface roughness is reduced to A! 'J > m is Okawa-(not □1zoko-C1σe5-Ra). t−j, σe 5−−−11.03+6.
961og l dog a...(12) Obtained (correlation coefficient γ-0,99) 1c.

同作に、[oRaの関係式を求めると、Fo−−6,0
7+4.221o<+ l’<a・・・・・・(13) (’lfJ間関数r=0.99) を得た(第8図参照)、1 以上の帖里から、光ファイバにょるi、lllIJII
 Lir+iの中心線平均粗ざRaの測定の場合、次の
一般ゴ(で表わすことができる。
In the same work, [When finding the relational expression of oRa, Fo--6,0
7+4.221o<+l'<a...(13) ('lfJ function r=0.99) was obtained (see Figure 8). i,lllIJII
In the case of measuring the center line average roughness Ra of Lir+i, it can be expressed by the following general equation.

F o =M+ K 1ofJ Ra     −(1
4)故に、 1ぺ a   −1o”p−’) ・・・・・・(I E) ) どなる。ただし、fvl、には測定物の(イljj、加
」条件等により異なる定数である、1 よって、ソCツノ′イハ出カド0どRaの関係を直れ?
化させるにに11、逆勾、2′!演ε仝による疫模を?
Iえはよいことになる。
F o =M+ K 1ofJ Ra −(1
4) Therefore, 1pe a -1o"p-') ...... (I E) ). However, fvl is a constant that varies depending on the conditions of the measured object, etc. 1 So, should we fix the relationship between SoC Tsuno'Iha and Outkado0 Ra?
11, reverse gradient, 2'! A demonstration of the epidemic?
It will be a good thing.

従って、上記実施例に係るに面1uさ検出装置において
は、演い装置18における計陣条件として、1)1j記
(1/′I)式および(15)式におりる定数Mお」;
びK ’a’測定物のtlA買、加[条件等に応じて予
め設定し′Cお(〕は、第1光学系11および第2光学
系12をfp して第′1支・光器、l13よび第2受
光器に受光された2系統の反則光出力の比に基づき、表
面粗(’51Raを検出づ−ることがてきる。
Therefore, in the surface 1u height detection device according to the above embodiment, the measurement conditions in the performance device 18 are as follows: 1) the constant M in the expression (1/'I) and the expression (15) in 1j;
and K 'a' of the object to be measured, addition [set in advance according to the conditions, etc.'C] is the first optical system 11 and the second optical system 12 fp and the first branch/optical device. , l13 and the second optical receiver, the surface roughness ('51Ra) can be detected.

前記実1横条1″F−(、上記実施(リリ装凹によって
表面第1[ざ標準1゛lを測定した結果(ま第9図に小
さ4′するようになった。
As a result of measuring the surface first horizontal strip 1"F- (1" F-), the above-mentioned method (refer to Figure 9 shows that the surface first [standard 1"1") was measured by recessing.

この第9図からも明らかなように、実験結果は、実際の
表1a1相さと略一致している。
As is clear from FIG. 9, the experimental results substantially match the actual phase of Table 1a1.

尚上記実施例装置は、第1光学系11および第2光学R
N12の両方から検査面13に光源装置14を介しC投
光!jるようにしχいるが、これはとららか一方の光学
系のみから投光するようにしでもよい。
It should be noted that the above embodiment device has a first optical system 11 and a second optical system R.
C light is projected from both N12 onto the inspection surface 13 via the light source device 14! However, it is also possible to project light from only one of the optical systems.

又、」:記実施例は、第1光学系11の光軸か検査面1
3に対して垂直となり、Ji゛つ、第2 、>E ”i
゛系12の光軸が第1光学系11の光軸に対しく30°
の角+aで交差り”るように配置し【いるが、本ブそ明
はこれに限定されるものでなく、検査面13に対する(
頃斜角1文および両光学系11およσ12の交差角喚θ
1.L検査面13の状態に1.仁、しくO/θ〈90°
の範囲て任意である(θ≧90°となると反則光を受光
できない)。
In addition, in the embodiment described above, the optical axis of the first optical system 11 or the inspection surface 1
is perpendicular to 3, and Ji
゛The optical axis of the system 12 is 30° with respect to the optical axis of the first optical system 11.
are arranged so that they intersect at the angle +a of the inspection surface 13. However, the present invention is not limited to this;
The angle of oblique angle 1 and the intersection angle θ of both optical systems 11 and σ12
1. 1. In the state of the L inspection surface 13. Jin, Shiku O/θ〈90°
The range is arbitrary (if θ≧90°, no reciprocal light can be received).

又、l′+6 #L第1光学系(bよび第2光学系11
.12は、)(に往路お」:び復路を1iftえた九)
“ノ′イバより416成され−(いるが、本発明はこれ
にIP定されるものでなく、例えば、第1光学系は往路
と復路、第2光学系は5ISi路のみどしてもよく、史
に、ソCノアイハ以外によって光学系を構成4“るよう
にし−(もにい、 本発明は一ヒ記のように構成したので、−゛つの)に学
系からの出力の比によって表面粗ざを検出りることがで
き、従って、光学系の投光、bよひ受)を角1哀、光パ
、′・糸と)リミ査面との距8(1、検査面との角度等
の変動かあ“つて、二つの光′ン系からの出力信号が微
細となってし、感麻よく表面粗さを検出することができ
、叉、前記条件の変化に対する適用範囲を拡大づること
か1.きるという援れた効果を有する。
Also, l'+6 #L first optical system (b and second optical system 11
.. 12 is ) (outward trip o': and return trip plus 1ift)
"There are 416 neu-bars" (although the present invention is not limited to this, for example, the first optical system may be used for forward and return paths, and the second optical system may be used for 5ISi paths). In the history, the optical system was constructed by a system other than the one described in Section 1. The surface roughness can be detected, and therefore the light emitted by the optical system, b-receiver) is adjusted to the angle 1, the optical path, ', the distance between the limit inspection surface and the inspection surface. When the angle of It has the helpful effect of being able to expand.

又この発明は、甲に表面粗さに関連する抽象的な出力を
tc+るにうにされたjIl来の表面粗さ検出装置に幻
し−(、具体的な中心線平均粗さを検出することがでさ
るという1公れた効果を有する。
Moreover, this invention is capable of detecting a concrete center line average roughness, which is different from the conventional surface roughness detection device which is designed to provide an abstract output related to surface roughness. It has one obvious effect: it increases the amount of water.

【図面の簡単な説明】[Brief explanation of drawings]

第′1図は本発明に係る表面第1」ざ(尖出装置の実施
例を示すブロック図、第2図(a ttlt削面にJ5
ける断面曲線の表面傾斜角分布を小ナヒストダラム、第
3図は測定1r11の断面曲線における表面IC+4斜
角と該傾斜表1f11における光の反射角どの関係を示
す光学図、第4図は測定面の断面曲れi目こJ3りる表
面傾斜角の分イロを小額線図、第5図は2系統の光ファ
イバにおける検出確率およびこれらの検出1i’ff率
の比の理論も1神賄を示す線図、第6図は2系絖の光フ
ァイバの出力値およびこれらの比の天、l1lIIll
′Iを小づ線図、第7図は不特定面の表面ILnふ!1
角分(1+のイ♂;準偏差と該表面の中心線平均粗さど
の関係を実験的に求めた結果を示す線図、第8図は2糸
Uc’り尤ツノフィバ出力の比と中心線平均粗さとの関
係4実験的に求めた結果を示す線図、第9図は本発明に
係る表面粗さ検出装置による測定軸1.1と実際の1・
−面相さとの関係を示づ一線図である。 11・・・第1光学系、   12・・・第?光学系、
I3・・・検査面、      14・・・)し湧(装
置N、15・・・第゛1受光器、   16・・・第2
受光器、17 ・・・ 割 bK  :jj÷ 、  
            18 ・・・ イリ4 [)
′ン 肢 1灯 、θ・・・反差角度。 代 」1)  人   )公   l1l−:i−1イ
。 <+、、1か1名) 第1図 第2図 第3図     第4図 第5 f:a   2  第6図 藏 麟
Fig. 1 is a block diagram showing an embodiment of the surface cutting device according to the present invention;
Figure 3 is an optical diagram showing the relationship between the surface IC+4 slope angle in the cross-sectional curve of measurement 1r11 and the light reflection angle in the slope table 1f11. Figure 5 shows the detection probabilities in two optical fibers and the theory of the ratio of these detection 1i'ff rates. The diagram, Figure 6, shows the output values of the two-system optical fiber and their ratios, l1lllllll
'I is a small scale diagram, and Figure 7 is the surface ILnfu! of an unspecified surface. 1
A diagram showing the experimental results of the relationship between the standard deviation and the average roughness of the center line of the surface. Figure 8 shows the ratio of the output of the two threads Uc' to the average horn fiber output and the center line. Relationship with average roughness 4 A diagram showing the experimentally determined results, Figure 9 shows the relationship between the measurement axis 1.1 and the actual 1.
- It is a line diagram showing the relationship with appearance. 11...1st optical system, 12...1st? Optical system,
I3...Inspection surface, 14...) (device N, 15...1st receiver, 16...2nd
Receiver, 17... divided bK: jj÷,
18... Iri 4 [)
'n limb 1 light, θ...reverse angle. 1) person) public l1l-: i-1i. <+,, 1 or 1 person) Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 f: a 2 Figure 6 Kurin

Claims (1)

【特許請求の範囲】 (1)光軸が相互に交差する第1光学系および第2光学
系と、前記第1光学系および第2光学系の少なくとも一
方を介して検査面に投光する光源装置と、前記検査面か
らの反射光を前記第1光学系を介して受光する第1受光
器と、前記検査面からの反射光を前記第2光学系を介し
て受光する第2受光器と、前記第1受光器および第2受
光器の出力の比を求める割紳器と、この割算器による割
算器出力を逆対数滴り)するための演算装置と、を有し
てなる表面Inさ検出装置。 (2〉前記第1光学系および第2光学系の一方を、その
光軸が前記検査面に対し垂直となるように配置したこと
を特徴とする特許請求の範囲第1項記載の表面第11さ
検出装置。 (3)前記第1光学系a3よび第2光学系は、その先軸
の交停角1すθが、該検査面の状態に応じ(、O〈θ〈
90°となるように配置ぺされたことを特徴とする特8
′f請求の範囲第1項記載の表面第11ざ検出装置。 (4)前記第1光学系および第2光学系の少なくとも一
方を、往路および復路を備えた光ファイバーから構成し
たことを特徴とする特6′I請求の範囲第1項、第2項
又は第3項記載の表面粗さ検出装置。
[Scope of Claims] (1) A first optical system and a second optical system whose optical axes intersect each other, and a light source that projects light onto the inspection surface via at least one of the first optical system and the second optical system. a first light receiver that receives reflected light from the inspection surface via the first optical system; and a second light receiver that receives reflected light from the inspection surface via the second optical system. , a divider for calculating the ratio of the outputs of the first light receiver and the second light receiver, and an arithmetic device for calculating the output of the divider by the divider using an anti-logarithm. Detection device. (2) One of the first optical system and the second optical system is arranged such that its optical axis is perpendicular to the inspection surface. (3) The first optical system a3 and the second optical system have an intersecting angle 1 θ of their front axes depending on the state of the inspection surface (, O〈θ〈
Special 8 characterized by being arranged at 90°
'f A surface roughness detection device according to claim 1. (4) At least one of the first optical system and the second optical system is constructed from an optical fiber having an outgoing path and a returning path. The surface roughness detection device described in .
JP1867983A 1983-02-07 1983-02-07 Surface roughness detecting device Granted JPS59143908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1867983A JPS59143908A (en) 1983-02-07 1983-02-07 Surface roughness detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1867983A JPS59143908A (en) 1983-02-07 1983-02-07 Surface roughness detecting device

Publications (2)

Publication Number Publication Date
JPS59143908A true JPS59143908A (en) 1984-08-17
JPH0151124B2 JPH0151124B2 (en) 1989-11-01

Family

ID=11978291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1867983A Granted JPS59143908A (en) 1983-02-07 1983-02-07 Surface roughness detecting device

Country Status (1)

Country Link
JP (1) JPS59143908A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02196912A (en) * 1988-01-11 1990-08-03 United Technol Corp <Utc> Optical measurement method and apparatus
JPH03211406A (en) * 1990-01-16 1991-09-17 Masanori Kurita Instrument and method for measuring surface roughness
JP2016517019A (en) * 2013-04-26 2016-06-09 ゼネラル・エレクトリック・カンパニイ Surface roughness measuring device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57163851A (en) * 1981-04-01 1982-10-08 Mitsutoyo Mfg Co Ltd Optical fiber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57163851A (en) * 1981-04-01 1982-10-08 Mitsutoyo Mfg Co Ltd Optical fiber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02196912A (en) * 1988-01-11 1990-08-03 United Technol Corp <Utc> Optical measurement method and apparatus
JPH03211406A (en) * 1990-01-16 1991-09-17 Masanori Kurita Instrument and method for measuring surface roughness
JP2016517019A (en) * 2013-04-26 2016-06-09 ゼネラル・エレクトリック・カンパニイ Surface roughness measuring device

Also Published As

Publication number Publication date
JPH0151124B2 (en) 1989-11-01

Similar Documents

Publication Publication Date Title
Jellison Jr Optical functions of silicon determined by two-channel polarization modulation ellipsometry
US4453828A (en) Apparatus and methods for measuring the optical thickness and index of refraction of thin, optical membranes
CN105387933B (en) A kind of broadband Brewster window regulating device and method
JPH0726806B2 (en) Distance measuring device
EP3537100A1 (en) Method and apparatus for refractive index measurement of transparent tube
CN1057832C (en) Appts. for non-contact measurement of body thickness made of transparent material
JPS59143908A (en) Surface roughness detecting device
US3619070A (en) Method and apparatus for measuring thickness
US4976543A (en) Method and apparatus for optical distance measurement
CN108872386A (en) Concrete strength ultrasound wave angle surveys the bearing calibration of method detection
CN210664764U (en) High-precision laser power sampling and measuring device
JPH0153722B2 (en)
JPS61260113A (en) Detector for tilt angle of plane
KR20130080269A (en) Displacement measuring apparatus, and displacement measuring method using the same
CN111780721B (en) Laser beam splitter grid line perpendicularity detection device and detection method
JPS6343340A (en) Apparatus for tensting epitaxial surface
JP2008051662A (en) Measuring method and measuring instrument for absolute reflection factor
JP2532922B2 (en) Object shape measurement method
JPS6358134A (en) Pipe inner surface shape measuring apparatus
Charalambous et al. On the optical contrast of particle tracks in nuclear track detectors
JP2666495B2 (en) Refractive index distribution measuring method and refractive index distribution measuring device
JPS57182604A (en) Interference measuring device
Zrelov A simple method (double reflection method) for measuring the average proton energy by Vavilov-Cherenkov radiation
JPS62130306A (en) Optical measuring method for quartz-based optical waveguide
RU2146355C1 (en) Method measuring thickness of sheet glass and device for its realization