JPH01218062A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH01218062A
JPH01218062A JP63044801A JP4480188A JPH01218062A JP H01218062 A JPH01218062 A JP H01218062A JP 63044801 A JP63044801 A JP 63044801A JP 4480188 A JP4480188 A JP 4480188A JP H01218062 A JPH01218062 A JP H01218062A
Authority
JP
Japan
Prior art keywords
device formation
recessed
region
regions
protruding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63044801A
Other languages
Japanese (ja)
Inventor
Hiroyuki Wakayama
若山 博之
Yuichiro Ito
雄一郎 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63044801A priority Critical patent/JPH01218062A/en
Publication of JPH01218062A publication Critical patent/JPH01218062A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To obtain an infrared-rays detection apparatus where the crosstalk is caused little by a method wherein regions to be used for device formation are formed in a compound semiconductor substrate to be alternately recessed and protruding and an impurity layer for device formation use is formed in the recessed and protruding region or in the recessed region. CONSTITUTION:An epitaxial layer 12 of P-type Hg1-xCdxTe is formed on a substrate 11 of CdTe; regions 13A, 13B, 13C to be used for device formation of the epitaxial layer 12 are formed in a row to be mutually recessed and protruding; an impurity for device formation use is introduced into the recessed region 13B to be used for device formation or into both of the protruding regions 13A, 13C to be used for device formation; N-type layers 14B and 14A, 14C as impurity introduction layers are formed. In addition, an insulating film 15 composed of zinc sulfide (ZnS) is formed on side walls of the recessed regions 13B to be used for device formation; in addition, an In metal pillar 16 is filled and formed in the recessed region 13B to be used for device formation; an In metal pillar 17 is formed in the protruding region 13A to be used for device formation.

Description

【発明の詳細な説明】 〔概 要〕 赤外線検知素子と該検知素子の信号を信号処理する電荷
結合素子とを金属柱で接続した半導体装置に関し、 検知素子の信号がクロストークを生じるのを防止するの
を目的とし、 化合物半導体基板に形成した光電変換素子と、他方の半
導体基板に形成した半導体素子を金属柱にて接続形成し
た装置に於いて、前記化合物半導体基板に素子形成予定
領域を交互に凹凸状に形成し該凹凸状領域、或いは凹部
状領域に素子形成用不純物層を設けたことで構成する。
[Detailed Description of the Invention] [Summary] A semiconductor device in which an infrared sensing element and a charge-coupled device that processes the signal of the sensing element are connected by a metal pillar, and the generation of crosstalk in the signals of the sensing element is prevented. For the purpose of It is constructed by forming a concavo-convex shape in the convex-concave region and providing an element-forming impurity layer in the concave-convex region or the concave region.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体装置に係り、特に光電変換素子と該素子
の信号を処理する電荷結合素子とを金属柱で一体化した
ハイブリッド型赤外線検知装置に関する。
The present invention relates to a semiconductor device, and more particularly to a hybrid infrared detection device in which a photoelectric conversion element and a charge-coupled device for processing a signal from the element are integrated with a metal pillar.

赤外線に高感度を有し、エネルギーバンドギャップの狭
い水銀・カドミウム・テルル(Ilg + −1+Cd
 XTe)のような化合物半導体基板に赤外線検知素子
のような光電変換素子を形成し、シリコン基板に該検知
素子で得られた信号を処理する電荷結合素子を形成し、
この赤外線検知素子と電荷結合素子とをインジウム等の
金属柱で接続形成したハイブリッド型赤外線検知装置は
周知である。
Mercury, cadmium, tellurium (Ilg + -1+Cd) has high sensitivity to infrared rays and has a narrow energy band gap.
A photoelectric conversion element such as an infrared detection element is formed on a compound semiconductor substrate such as XTe), a charge-coupled device for processing a signal obtained by the detection element is formed on a silicon substrate,
A hybrid infrared detection device in which an infrared detection element and a charge-coupled device are connected by a metal column such as indium is well known.

このような赤外線検知装置を構成する検知素子は、その
解像度を高めるために高密度で形成することが要求され
ているが、該素子の高密度化を図ると素子で検知された
信号がクロストークを発生する問題があり、素子を高密
度で形成した場合でもクロストークを発生しないハイプ
リント型赤外線検知装置が望まれる。
The detection elements that make up such an infrared detection device are required to be formed at high density in order to increase their resolution, but increasing the density of the elements causes crosstalk between the signals detected by the elements. Therefore, there is a need for a high-print type infrared detection device that does not cause crosstalk even when elements are formed at high density.

〔従来の技術〕[Conventional technology]

従来のハイブリッド型赤外線検知装置の要部の構造を第
4図に示す。
FIG. 4 shows the structure of the main parts of a conventional hybrid infrared detection device.

図示するようにカドミウムテルル(CdTe)の基板l
上に形成したP型のHgI−x Cd、 Teのエピタ
キシャル層2の所定領域にボロン(B)原子をイオン注
入してN型層3を形成して光起電力型のホトダイオード
のような赤外線検知素子4をアレイ状に形成する。次い
でエピタキシャル層2上に硫化亜鉛(ZnS)よりなる
表面保護膜5を形成し、この保1!膜5のN型層3上を
開口してインジウム(In)を蒸着により形成してIn
金属柱6を形成する。
As shown in the figure, a cadmium tellurium (CdTe) substrate l
Boron (B) atoms are ion-implanted into a predetermined region of the P-type HgI-x Cd, Te epitaxial layer 2 formed above to form an N-type layer 3, which is used for infrared detection such as a photovoltaic photodiode. The elements 4 are formed in an array. Next, a surface protection film 5 made of zinc sulfide (ZnS) is formed on the epitaxial layer 2, and this protection 1! An opening is formed on the N-type layer 3 of the film 5 and indium (In) is formed by vapor deposition.
A metal column 6 is formed.

一方、図示しないがP型のシリコン(Si)基板にこの
赤外線検知素子4で得られた信号を処理する電荷結合装
置を形成する。そして該Si基板に燐等のN型の不純物
をイオン注入して形成したN型層、つまりこのP−N接
合部で形成される電荷結合素子の人力ダイオードに前記
したようにIn金属柱を形成し、この金属柱と前記形成
したIn金属柱6とを圧着接合して、前記化合物半導体
基板に形成した光電変換素子とSi基板に形成した電荷
結合素子を一体化してハイブリッド型赤外線検知装置を
形成している。
On the other hand, although not shown, a charge coupled device for processing the signal obtained by the infrared sensing element 4 is formed on a P-type silicon (Si) substrate. Then, an N-type layer formed by ion-implanting N-type impurities such as phosphorus into the Si substrate, that is, an In metal pillar is formed as described above in the charge-coupled device artificial diode formed at this P-N junction. Then, this metal column and the formed In metal column 6 are bonded together by pressure bonding, and the photoelectric conversion element formed on the compound semiconductor substrate and the charge coupled element formed on the Si substrate are integrated to form a hybrid infrared detection device. are doing.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

然し、このようなハイブリッド型赤外線検知装置に於い
ては、CdTeの基板1の背面側より赤外線を入射し、
そのCdTeの基板より導入された光が更にHgI−x
 CdXTeのエピタキシャルN2に導入され、CdT
e1板11との界面付近(数μm)でキャリアが発生し
、このキャリアは拡散により検知素子4に到達する。
However, in such a hybrid infrared detection device, infrared rays are incident on the back side of the CdTe substrate 1, and
The light introduced from the CdTe substrate is further HgI-x
introduced into the epitaxial N2 of CdXTe, CdT
Carriers are generated near the interface (several μm) with the e1 plate 11, and these carriers reach the sensing element 4 by diffusion.

従って第4図に示すように、ホトダイオードのような素
子4A、4Bの中間の位置に導入された少数キャリア7
は検知素子4^、4Bの両方にまたがって導入されるよ
うになり、素子で検知される信号にクロストークを生じ
るようになり、検知装置の解像度が悪くなって精度良く
基板に入射された赤外線を検知することは困難である。
Therefore, as shown in FIG.
is now introduced across both detection elements 4^ and 4B, causing crosstalk in the signals detected by the elements, and the resolution of the detection device deteriorates, causing infrared rays incident on the board to be accurately detected. is difficult to detect.

本発明は上記した問題点を解決し、検知信号のクロスト
ークの発生を少なくした新規な半導体装置の提供を目的
する。
An object of the present invention is to solve the above-mentioned problems and provide a novel semiconductor device that reduces the occurrence of crosstalk of detection signals.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するための本発明の半導体装置は、第1
図に示すように化合物半導体基板に形成した光電変換素
子と、他方の半導体基板に形成した半導体素子を金属柱
にて接続形成した装置に於いて、前記化合物半導体基板
12に素子形成予定領域13A、 13B、 13Gを
交互に凹凸状に形成し該凹凸状領域、或いは凹部状領域
に素子形成用不純物層14八。
A semiconductor device of the present invention for achieving the above object includes a first
As shown in the figure, in a device in which a photoelectric conversion element formed on a compound semiconductor substrate and a semiconductor element formed on the other semiconductor substrate are connected by a metal pillar, an area 13A where an element is to be formed on the compound semiconductor substrate 12, 13B and 13G are alternately formed in a concave and convex shape, and an impurity layer 148 for forming an element is formed in the concavo-convex region or the concave region.

14B、 14Cを設ける。14B and 14C are provided.

〔作 用〕[For production]

本発明の半導体装置は、化合物半導体基板に形成される
素子形成予定領域を一列状に交互に凹凸状に形成するか
、或いは素子形成予定領域を基板表面に千鳥状に凹凸状
に形成し、素子間に導入された少数キャリアが、該キャ
リアに近接する凹部素子形成領域の不純物導入層に導入
されるようにしてクロストークの発生を少なくする。
In the semiconductor device of the present invention, the regions where the elements are to be formed on the compound semiconductor substrate are formed in a concave and convex shape alternately in a row, or the regions where the elements are to be formed are formed in a staggered manner on the surface of the substrate. The minority carriers introduced between the carriers are introduced into the impurity-introduced layer in the concave element formation region adjacent to the carriers, thereby reducing the occurrence of crosstalk.

〔実施例〕〔Example〕

以下、図面を用いて本発明の半導体装置の一実施例につ
き詳細に説明する。
Hereinafter, one embodiment of the semiconductor device of the present invention will be described in detail with reference to the drawings.

第1図は本発明の半導体装置の第1の実施例に於ける光
電変換素子側の断面図である。
FIG. 1 is a sectional view of the photoelectric conversion element side in a first embodiment of the semiconductor device of the present invention.

図示するようにCdTeの基板11上にP型のHgI−
xCd、 Teのエピタキシャル層12が形成され、該
エピタキシャル層12の素子形成予定領域13A、 1
3B、 13Cが交互に列状に凹凸状に形成され、その
凹部の素子形成予定領域13B、或いは凸部の素子形成
予定領域13A、13Gの両方に素子形成用不純物を導
入して不純物導入層としてのN型層14Bおよび14A
、14Cが形成されている。更に凹部の素子形成予定領
域13Bの側壁部には硫化亜鉛(ZnS)よりなる絶縁
膜15が形成され、更に四部の素子形成予定領域13A
にはIn金属柱16が埋設形成され、凸部の素子形成予
定領域13HにIn金属柱17が形成されている。
As shown in the figure, a P-type HgI-
An epitaxial layer 12 of xCd, Te is formed, and device formation regions 13A and 1 of the epitaxial layer 12 are formed.
3B and 13C are formed alternately in rows in a concave and convex shape, and an impurity for forming an element is introduced into both the concave part of the region 13B where the element is to be formed, or the convex part of which is intended to be the element formation region 13A and 13G, to form an impurity-introduced layer. N-type layers 14B and 14A of
, 14C are formed. Further, an insulating film 15 made of zinc sulfide (ZnS) is formed on the side wall of the concave element formation area 13B, and furthermore, an insulating film 15 made of zinc sulfide (ZnS) is formed on the side wall of the element formation area 13B of the concave portion.
An In metal column 16 is embedded in the area, and an In metal column 17 is formed in a region 13H where an element is to be formed in the convex portion.

また図示しないが他方のSt基板に電荷結合素子を形成
し、その入力ダイオードにIn金属柱を形成し、前記し
たIn金属柱16.17と圧着接合して赤外線検知装置
を得る。
Further, although not shown, a charge-coupled device is formed on the other St substrate, and an In metal column is formed on its input diode, and the infrared detection device is obtained by pressure bonding with the aforementioned In metal columns 16 and 17.

このようにすれば、検知素子間に発生する少数キャリア
7は凹部の素子形成予定領域に形成されたN型層14B
が距離が近いために、該N型層14Bに導入されること
になり、隣接する凸部素子形成予定領域13Aと凹部素
子形成予定領域13Bで形成された画素子間に跨がって
導入されることが無くなり、クロストークを発生するこ
とが無くなる。
In this way, the minority carriers 7 generated between the sensing elements are removed from the N-type layer 14B formed in the concave element formation area.
Since the distance is short, it is introduced into the N-type layer 14B, and is introduced across the pixel elements formed in the adjacent convex element formation area 13A and concave element formation area 13B. This eliminates the occurrence of crosstalk.

尚、本実施例の他に凹部素子形成予定領域13Bにのみ
、不純物導入層1413を設けても良い。
In addition to this embodiment, the impurity-introduced layer 1413 may be provided only in the region 13B where the concave element is to be formed.

第2図に本発明の赤外線検知装置の第2実施例の平面図
を示す。
FIG. 2 shows a plan view of a second embodiment of the infrared detection device of the present invention.

図で斜線を施した四角の箇所は化合物半導体基板21の
表面に形成した凹部素子形成予定領域22で、斜線を施
さない四角の箇所は凸部素子形成予定領域23で図示す
るように凹部素子形成予定領域22、および凸部素子形
成予定領域23が二次元的に千鳥状に交互に形成されて
いる。
In the figure, the square area with diagonal lines is a region 22 where a concave element will be formed on the surface of the compound semiconductor substrate 21, and the square area without diagonal lines is the area where a convex element will be formed, as shown in the figure. The planned regions 22 and the planned convex element formation regions 23 are two-dimensionally formed alternately in a staggered manner.

このようにすれば素子間に導入されたキャリアが画素子
間に跨がって導入されず、凹部素子形成領域にのみ導入
されるのでクロストークを発生しない高信軌度の赤外線
検知装置が得られる。
In this way, the carrier introduced between the elements will not be introduced across the pixels, but will be introduced only into the concave element formation region, resulting in a high-fidelity infrared detection device that does not cause crosstalk. It will be done.

このような本発明の半導体装置の製造方法に付いて述べ
る。
A method of manufacturing such a semiconductor device of the present invention will be described.

第3図(a)に示すようにCdTeの基板11上に厚さ
が20 a m程度のt1g+−x Cdx Teのエ
ピタキシャル層12をMOCVD法(有機金属気相成長
方法)等を用いて形成する。このエピタキシャル層12
上に所定のパターンのレジスト膜31を形成し、該レジ
スト膜31をマスクとしてブロム(Brz)とメチルア
ルコールを主体とせるエツチング液を用いてエピタキシ
ャル層12を深さがIOμm程度にエツチングし、凹部
素子形成予定領域13Bを形成する。
As shown in FIG. 3(a), an epitaxial layer 12 of t1g+-x Cdx Te with a thickness of about 20 am is formed on a CdTe substrate 11 using MOCVD (metal organic chemical vapor deposition) or the like. . This epitaxial layer 12
A resist film 31 with a predetermined pattern is formed thereon, and using the resist film 31 as a mask, the epitaxial layer 12 is etched to a depth of about IO μm using an etching solution mainly containing bromine (Brz) and methyl alcohol to form recesses. An element formation planned region 13B is formed.

この凹部素子形成予定領域13Bは第4図に示した従来
の赤外線検知素子に示した素子形成領域4A。
This concave element forming area 13B is the element forming area 4A shown in the conventional infrared sensing element shown in FIG.

4B間のピッチ2の2倍の寸法に対応した寸法とする。The dimension corresponds to twice the dimension of pitch 2 between 4B.

次いで第3図ら)に示すように、上記したレジスト膜3
1を除去した後、蒸着方法によりZnSよりなる絶縁膜
32をエピタキシャル層120表面に形成する。
Next, as shown in FIG. 3, etc., the resist film 3 described above is
1, an insulating film 32 made of ZnS is formed on the surface of the epitaxial layer 120 by a vapor deposition method.

次いでN型の不純物の導入用マスクとなるレジスト膜3
3を所定のパターンに形成する。
Next, a resist film 3 is formed to serve as a mask for introducing N-type impurities.
3 into a predetermined pattern.

次いで第3図(C)に示すように、該レジスト膜33を
マスクとして用いて例えばボロンイオン(B“)のイオ
ン注入によりN型層14A、および14Bを形成する。
Next, as shown in FIG. 3C, N-type layers 14A and 14B are formed by implanting, for example, boron ions (B'') using the resist film 33 as a mask.

次いでレジスト膜33をマスクとして基板上よりInの
金属膜34を蒸着により形成した後、該レジスト膜33
を除去するとともに、その上のIn#L属膜34をもリ
フトオフ法で除去して第1図に示したような赤外線検知
素子を得る。
Next, an In metal film 34 is formed on the substrate by vapor deposition using the resist film 33 as a mask, and then the resist film 33 is
At the same time, the In#L metal film 34 thereon is also removed by a lift-off method to obtain an infrared sensing element as shown in FIG.

このような本発明の装置によれば隣接する画素子間に導
入されたキャリアは、最も近接する四部素子形成領域に
導入されるので、隣接する画素子間に跨がって導入され
ることが無くなり、クロストークを発生することが無く
なる。
According to the apparatus of the present invention, carriers introduced between adjacent pixel elements are introduced into the nearest four-part element formation region, so that carriers cannot be introduced across adjacent pixel elements. This eliminates the occurrence of crosstalk.

尚、本実施例ではCdTeの化合物半導体基板の上にf
ig、、 Cd、 Teのエピタキシャル層を形成し、
該エピタキシャル層に検知素子を形成したが、Hg+−
xCdx Teの基板を用いて、該基板に素子形成用の
不純物原子を導入する構造を採っても良い。
In this example, f is placed on a CdTe compound semiconductor substrate.
Form an epitaxial layer of ig, Cd, Te,
A sensing element was formed in the epitaxial layer, but Hg+-
A structure may be adopted in which an xCdx Te substrate is used and impurity atoms for element formation are introduced into the substrate.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように本発明によれば、クロス
トークの発生が少ない高信頼度の赤外線検知装置が得ら
れる。
As is clear from the above description, according to the present invention, a highly reliable infrared detection device with less occurrence of crosstalk can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体装置の第1実施例を示す断面図
、 第2図は本発明の半導体装置の第2実施例を示す平面図
、 第3図(a)より第3図(C)までは、本発明の装置の
製造方法を説明するための断面図、 第4図は従来の半導体装置の要部を示す断面図である。 図において、 11はCdTe基板、12はl1g+−x Cdx T
eのエピタキシャル層、13A、 13B、 13Cは
素子形成領域、14A、 14B。 14Cは不純物導入層(N型層)、15は絶縁膜、16
.17はIn金属柱、21は化合物半導体基板、22は
凹部素子形成予定領域、23は凸部素子形成予定領域、
31゜33はレジスト膜、32はZnS膜、34はIn
金属膜を示す。 不発萌司暮シクT宅膨副っ折面m 手ネaNn装ジオ2史腕例I号子面m 第2図 440月n111tp+aLX;*乞bAt>yt+ 
はQσ第3図 従来/l装置ら断面図 第4図
1 is a sectional view showing a first embodiment of the semiconductor device of the present invention, FIG. 2 is a plan view showing a second embodiment of the semiconductor device of the present invention, and FIGS. ) are sectional views for explaining the method of manufacturing the device of the present invention, and FIG. 4 is a sectional view showing the main parts of a conventional semiconductor device. In the figure, 11 is a CdTe substrate, 12 is l1g+-x Cdx T
epitaxial layer 13A, 13B, 13C are element formation regions 14A, 14B; 14C is an impurity introduced layer (N-type layer), 15 is an insulating film, 16
.. 17 is an In metal column, 21 is a compound semiconductor substrate, 22 is a concave element formation area, 23 is a convex element formation area,
31° 33 is a resist film, 32 is a ZnS film, 34 is an In
Shows a metal film. Unexploited Moeshi Kurashiku T house expansion sub-folding surface m Handne aNn Sojio 2 history arm example I No. child surface m Fig. 2 440 month n111tp+aLX; *beggar bAt>yt+
is Qσ Fig. 3 Cross-sectional view of conventional/l device Fig. 4

Claims (2)

【特許請求の範囲】[Claims] (1)化合物半導体基板に形成した光電変換素子と、他
方の半導体基板に形成した半導体素子を金属柱にて接続
形成した装置に於いて、 前記化合物半導体基板(12)に素子形成予定領域(1
3A、13B、13C)を交互に凹凸状に形成し、該凹
凸状領域、或いは凹部状領域に素子形成用不純物層(1
4A、14B、14C)を設けたことを特徴とする半導
体装置。
(1) In an apparatus in which a photoelectric conversion element formed on a compound semiconductor substrate and a semiconductor element formed on the other semiconductor substrate are connected by a metal pillar, an area (1) where the element is to be formed is formed on the compound semiconductor substrate (12).
3A, 13B, 13C) are alternately formed in a concave and convex shape, and an impurity layer for element formation (1
4A, 14B, 14C).
(2)前記素子形成予定領域(13A、13B、13C
)を化合物半導体基板(12)に列状、或いは千鳥状に
設けたことを特徴とする請求項1記載の半導体装置。
(2) The planned element formation areas (13A, 13B, 13C)
) are provided on the compound semiconductor substrate (12) in rows or in a staggered manner.
JP63044801A 1988-02-26 1988-02-26 Semiconductor device Pending JPH01218062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63044801A JPH01218062A (en) 1988-02-26 1988-02-26 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63044801A JPH01218062A (en) 1988-02-26 1988-02-26 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH01218062A true JPH01218062A (en) 1989-08-31

Family

ID=12701529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63044801A Pending JPH01218062A (en) 1988-02-26 1988-02-26 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH01218062A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60158206U (en) * 1984-03-30 1985-10-21 日本電気株式会社 taxiway
JPS6330913A (en) * 1986-07-24 1988-02-09 Nec Corp Guide path for unmanned car

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60158206U (en) * 1984-03-30 1985-10-21 日本電気株式会社 taxiway
JPS6330913A (en) * 1986-07-24 1988-02-09 Nec Corp Guide path for unmanned car

Similar Documents

Publication Publication Date Title
US9029686B2 (en) Strain-enhanced silicon photon-to-electron conversion devices
JPH027417B2 (en)
JPH022692A (en) Infrared detecting trenched schottky barrier photodiode
US11742449B2 (en) Single photon avalanche diode device
JPH05267695A (en) Infrared image sensing device
JPH04246860A (en) Photoelectric conversion device
JPH0828493B2 (en) Light detector
JPS6343366A (en) Infrared detector
JPH01218062A (en) Semiconductor device
EP0075924A2 (en) Solid state image pick-up device having a high resolution and a high sensitivity
US5075748A (en) Photodetector device
US5156980A (en) Method of making a rear surface incident type photodetector
JPH01201971A (en) Infra-red ray detector
JPS60182764A (en) Semiconductor light receiving device
JPH0964402A (en) Hybrid infrared detector
JPH02159761A (en) Infrared detector
JPH0319377A (en) Infrared detector
JPS63273365A (en) Infrared-ray detector
KR100215869B1 (en) Solid-state image pick-up device and manufacturing method of the same
JPH01147875A (en) Infra-red ray detector
JPH0385762A (en) Photodetector
JPS6086975A (en) Solid-state image pickup device
JPH0286177A (en) Photoelectric converter
JPH02155269A (en) Infrare-ray detector
JPS6146071B2 (en)