JPH0121628B2 - - Google Patents

Info

Publication number
JPH0121628B2
JPH0121628B2 JP58047061A JP4706183A JPH0121628B2 JP H0121628 B2 JPH0121628 B2 JP H0121628B2 JP 58047061 A JP58047061 A JP 58047061A JP 4706183 A JP4706183 A JP 4706183A JP H0121628 B2 JPH0121628 B2 JP H0121628B2
Authority
JP
Japan
Prior art keywords
heat dissipation
resin layer
dissipation container
silicone resin
silicon chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58047061A
Other languages
Japanese (ja)
Other versions
JPS59172749A (en
Inventor
Kazuyoshi Naito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP4706183A priority Critical patent/JPS59172749A/en
Publication of JPS59172749A publication Critical patent/JPS59172749A/en
Publication of JPH0121628B2 publication Critical patent/JPH0121628B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/16Fillings or auxiliary members in containers or encapsulations, e.g. centering rings
    • H01L23/18Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device
    • H01L23/24Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device solid or gel at the normal operating temperature of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3135Double encapsulation or coating and encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 この発明は半導体整流素子にかかり、特に車輛
用交流発電機の三相全波整流装置に用いられる半
導体整流素子(以降整流素子と略称)の改良構造
に関する。 〔発明の背景技術〕 従来の三相全波整流装置に第1図に示される構
造のものがある。これは6個の整流素子
を、放熱容器2と配線条を装着した電気絶縁板3
とで構成される外囲器に内装させて第2図に示す
整流回路が構成されるものである。上記整流素子
の構造を第3図によつて説明する。4はニツケル
めつき銅板でわん型に形成された放熱容器で、そ
の内底にメサ型のシリコンチツプ5が一方の主面
に形成された電極、たとえば陽極6ではんだ接合
されている。また、他方の電極、たとえば陰極7
にはこのシリコンチツプの主面に垂直なリード線
8がはんだ接合されており、9,9はいずれも上
記はんだ接合のためのはんだ層であり、叙上の如
く組立された放熱容器4には、接合被覆用のシリ
コーン樹脂10(J.C.R)が充填封止され整流素
子1が構成される。なお、リード線8には上記シ
リコーン樹脂による封止部分の外側の一部に扁平
折曲部8aを設け、リード線の外側端に不所望に
印加される応力によりはんだ接合に生じやすい剥
離を防止する。この扁平折曲部は一例としてリー
ド線の径が1.5mmのとき、0.3mm厚の板状部として
適した。 〔背景技術の問題点〕 背景技術の整流素子の構造は次に述べる欠点が
ある。 まず、熱疲労特性についてみると、封止に用い
られるシリコーン樹脂は純度が良好に得られる利
点があつて多く用いられるが、熱膨張率が大き
く、整流素子の動作によつて膨張、収縮を繰返
し、リード線にシリコンチツプの主面に対し垂直
の力を印加する。この力によつてはんだ層内のき
裂を生じさせ、かつ、急速にき裂を進展させ熱疲
労による整流素子のダメージが大きい。この熱疲
労は特に熱疲労試験によつて判定される。すなわ
ち、この試験は一例のIO=30Aを印加しTCを50℃
150℃で1サイクルとして供試し、破壊に到つ
たサイクル数によつて判定する。このデータは本
発明の効果を述べる時点で比較して説述するが、
短寿命とばらつきが大きい点が大きな問題にされ
ている。さらに、シリコーン樹脂は通気性が大で
雰囲気の酸素を容易にはんだ層にまで通達させ
る。これにより、昇温した際はんだ層の酸化を促
すので、熱疲労が進行し、同時に熱疲労特性を劣
化させる。 次に耐湿性についてみると、上述したシリコー
ン樹脂の通気性が大きいことから雰囲気の水蒸気
の通過を許し、シリコンチツプに到達することに
より、特に逆方向洩れ電流の増大などの電気的特
性を不良にする。 さらに、耐候性についてみると、シリコーン樹
脂は金属との接着力が弱いために、ガソリン浸
漬、塩水噴霧、電解試験等の環境試験においてシ
リコーン樹脂と放熱容器との界面に剥離を生じ、
この剥離はさらに進行し電気的特性が不良にな
る。 〔発明の目的〕 この発明は従来の整流素子の欠点の熱疲労特
性、耐湿性、耐候性等を向上させるための改良構
造を提供する。 〔発明の概要〕 この発明は車輛に搭載される半導体整流装置に
用いられる整流素子に関するので、最近の著しい
傾向になつている使用電力の増大に伴ないて整流
素子に対し、耐熱疲労を向上させる要望、車輛の
移動に伴ない高温、高湿に対する耐性を向上させ
る要望、また、車輛の移動に伴ない特に海浜地帯
における塩水耐性を向上させる要望等が高まつて
いる。叙上の要望に応えるために、本発明の半導
体整流素子は、椀型の放熱容器の内底面に1主面
の電極ではんだ接合させ他主面の電極にリード線
をはんだ接合させたシリコンチツプと、前記放熱
容器の底部に充填されて前記シリコンチツプ側面
のメサ面を被覆し放熱容器内に充填されたをシリ
コーン樹脂層と、前記シリコーン樹脂層に積層し
放熱容器を封止するエポキシ樹脂層とを具備した
半導体整流素子において、前記放熱容器の解放端
面にこの端面に沿つて形成された断面V字型の溝
を有し、かつこの溝内に放熱容器を封止する前記
エポキシ樹脂層の一部を充填したことを構造上の
特徴とするものである。 〔発明の実施例〕 次のこの発明にかかる1実施例の整流素子の構
造を第4図によつて従来との相違点を詳述する。
なお、従来と変らない部分は図中に同じ符号を付
けて示し説明を省略する。 図示の構造において、この半導体整流素子11
は、円形の底面から側面に延長して一体の椀型に
なる金属の放熱容器4と、この放熱容器の解放端
面4aにこの端面に沿つて形成された断面V字型
の溝4bと、前記放熱容器4の内底面に1主面の
電極7aではんだ9接合させ他主面の電極7bに
リード線8をはんだ9で接合させたシリコンチツ
プ5と、前記放熱容器4の底部に充填されて前記
シリコンチツプ5側面のメサ面を被覆するシリコ
ーン樹脂層13と、前記シリコーン樹脂層13に
積層しかつ前記放熱容器の解放端面4aの溝4b
内に充填し放熱容器4を封止するエポキシ樹脂層
14とを具備している。したがつて、前記シリコ
ーン樹脂層13とこれに積層したエポキシ樹脂層
14の複合された樹脂層12によつて封止された
半導体整流素子11は、放熱容器の解放端面の溝
によつて樹脂層と立体的に接続して強固な機械的
接合と、良好な気密性を得ている。また、前記エ
ポキシ樹脂層14はエポキシ樹脂にSiO2パウダ
を50〜70%(重量%)添加したもので、例えば
ME−266(商品名、信越化学製)がよい。シリコ
ーン樹脂は東芝シリコーンKK製を200℃で16時
間キユアして用い、上記エポキシ樹脂層は150℃
で16時間キユアして固化させて好適である。な
お、エポキシ層の露出面の位置、形状は従来の単
1層のシリコーン樹脂層と同じで、放熱容器4の
開端縁とリード線の扁平折曲部8a下端とを結ぶ
円錐形に形成してよい。 〔発明の効果〕 この発明には次にあげる顕著な効果がある。 まず、耐熱疲労性についてエポキシ樹脂層より
もシリコーン樹脂は膨張係数が約1桁低い。因み
にエポキシ樹脂は2.0×10-5(20〜150℃の範囲)、
シリコーン樹脂は2.7×10-4である。整流素子の
動作によつて温度上昇による膨張や、動作停止に
伴なう収縮を繰り返し、リード線の縦方向の応力
が発生する。この発明によればシリコーン樹脂層
を薄くしているが、シリコンチツプのメサ面は、
良好な純度に形成できかつ不純物のイオンも通し
にくい特性を有するシリコーン樹脂層で被覆され
ているので従来と同様に安定であり、シリコン樹
脂層に積層して表層になつているエポキシ樹脂層
は膨張係数が低くかつ遮蔽性能にすぐれ硬質であ
るなどからしてリード線に発生する上記応力を低
減するとともに、リード線に加わる外力に対して
もリード線と電極とのはんだ接合を防護しうる利
点がある。次にこの発明によればエポキシ樹脂層
がガスの遮蔽性にすぐれているため、雰囲気から
はんだ層への酸素の通気が少なくなり、はんだ層
の酸化が抑えられ熱疲労特性が向上する。熱疲労
試験の結果を次にあげる。IO=30A、TC:50℃
150℃にて1サイクルとして破壊に至るサイクル
数にて従来と比較して次の第1表に示す。また、
第5図には上記サイクル数をワイブル確率紙にプ
ロツトしてF10、F50を求めている。
[Technical Field of the Invention] The present invention relates to a semiconductor rectifier, and more particularly to an improved structure of a semiconductor rectifier (hereinafter abbreviated as rectifier) used in a three-phase full-wave rectifier for a vehicle alternator. [Background of the Invention] A conventional three-phase full-wave rectifier has a structure shown in FIG. This consists of six rectifying elements 1 , 1 ...
, a heat dissipation container 2 and an electrical insulating board 3 equipped with wiring strips.
The rectifier circuit shown in FIG. 2 is constructed by being housed in an envelope consisting of the following. The structure of the above rectifying element will be explained with reference to FIG. Reference numeral 4 denotes a bowl-shaped heat dissipation container made of a nickel-plated copper plate, and a mesa-shaped silicon chip 5 is soldered to the inner bottom of the container with an electrode, such as an anode 6, formed on one main surface. Also, the other electrode, for example, the cathode 7
A lead wire 8 perpendicular to the main surface of this silicon chip is soldered to , and both 9 and 9 are solder layers for the solder joint, and the heat dissipation container 4 assembled as described above has a , a silicone resin 10 (JCR) for bonding and coating is filled and sealed to form a rectifying element 1. Note that the lead wire 8 is provided with a flat bent portion 8a on a part of the outside of the silicone resin sealed portion to prevent peeling that is likely to occur in the solder joint due to undesired stress applied to the outer end of the lead wire. do. For example, when the diameter of the lead wire is 1.5 mm, this flat bent portion is suitable as a plate-shaped portion with a thickness of 0.3 mm. [Problems of the background art] The structure of the rectifying element of the background art has the following drawbacks. First, regarding thermal fatigue characteristics, silicone resin used for sealing is often used because it has the advantage of obtaining good purity, but it has a high coefficient of thermal expansion and expands and contracts repeatedly due to the operation of the rectifying element. , a force perpendicular to the main surface of the silicon chip is applied to the lead wire. This force causes cracks in the solder layer and rapidly propagates, resulting in significant damage to the rectifying element due to thermal fatigue. This thermal fatigue is determined in particular by a thermal fatigue test. In other words, this test applies an example of I O = 30 A and T C of 50°C.
One cycle is tested at 150°C, and judgment is made based on the number of cycles that reach failure. This data will be compared and explained when describing the effects of the present invention, but
The short lifespan and large dispersion are major problems. Furthermore, silicone resin has high air permeability and allows oxygen in the atmosphere to easily pass through to the solder layer. This promotes oxidation of the solder layer when the temperature rises, so that thermal fatigue progresses and at the same time the thermal fatigue characteristics deteriorate. Next, regarding moisture resistance, the high air permeability of the silicone resin mentioned above allows water vapor in the atmosphere to pass through and reach the silicon chip, causing poor electrical properties such as an increase in reverse leakage current. do. Furthermore, regarding weather resistance, silicone resin has a weak adhesive strength with metals, so peeling occurs at the interface between the silicone resin and the heat dissipation container during environmental tests such as gasoline immersion, salt water spray, and electrolytic tests.
This peeling progresses further, resulting in poor electrical characteristics. [Object of the Invention] The present invention provides an improved structure for improving thermal fatigue characteristics, moisture resistance, weather resistance, etc., which are disadvantages of conventional rectifying elements. [Summary of the Invention] The present invention relates to a rectifying element used in a semiconductor rectifying device mounted on a vehicle.The present invention improves the thermal fatigue resistance of the rectifying element in response to the recent increase in power consumption, which has become a significant trend. There is an increasing demand to improve resistance to high temperatures and high humidity associated with the movement of vehicles, and a desire to improve resistance to salt water, especially in coastal areas, as vehicles move. In order to meet the above-mentioned demands, the semiconductor rectifying element of the present invention is made of a silicon chip in which an electrode on one main surface is soldered to the inner bottom surface of a bowl-shaped heat dissipation container, and a lead wire is soldered to an electrode on the other main surface. a silicone resin layer filled in the bottom of the heat dissipation container to cover the mesa surface of the side surface of the silicon chip and filled in the heat dissipation container; and an epoxy resin layer laminated on the silicone resin layer to seal the heat dissipation container. In the semiconductor rectifying element, the epoxy resin layer has a groove having a V-shaped cross section formed along the open end surface of the heat dissipation container, and the heat dissipation container is sealed in the groove. Its structural feature is that it is partially filled. [Embodiment of the Invention] Next, the structure of a rectifying element according to an embodiment of the present invention will be described in detail with reference to FIG. 4, with respect to differences from the conventional one.
Incidentally, parts that are the same as those of the prior art are denoted by the same reference numerals in the drawings, and explanations thereof will be omitted. In the illustrated structure, this semiconductor rectifying element 11
A metal heat dissipation container 4 extending from a circular bottom surface to a side surface to form an integral bowl shape, a groove 4b having a V-shaped cross section formed on an open end surface 4a of the heat dissipation container along this end surface; The bottom of the heat dissipation container 4 is filled with a silicon chip 5 having an electrode 7a on one main surface connected to the inner bottom surface of the heat dissipation container 4 with a solder 9 and a lead wire 8 bonded to the electrode 7b on the other main surface with a solder 9. A silicone resin layer 13 covering the mesa surface on the side surface of the silicon chip 5, and a groove 4b laminated on the silicone resin layer 13 and on the open end surface 4a of the heat dissipation container.
The heat dissipation container 4 is filled with an epoxy resin layer 14 to seal the heat dissipation container 4. Therefore, the semiconductor rectifying element 11 sealed by the composite resin layer 12 of the silicone resin layer 13 and the epoxy resin layer 14 laminated thereon is sealed by the resin layer 12 by the groove in the open end surface of the heat dissipation container. It is three-dimensionally connected to provide a strong mechanical bond and good airtightness. The epoxy resin layer 14 is made of epoxy resin with SiO 2 powder added at 50 to 70% (wt%), for example.
ME-266 (trade name, manufactured by Shin-Etsu Chemical) is good. The silicone resin used was made by Toshiba Silicone KK and was cured at 200℃ for 16 hours, and the epoxy resin layer was heated at 150℃.
It is preferable to cure it for 16 hours to solidify it. The position and shape of the exposed surface of the epoxy layer is the same as that of a conventional single-layer silicone resin layer, and is formed into a conical shape connecting the open end edge of the heat dissipation container 4 and the lower end of the flat bent portion 8a of the lead wire. good. [Effects of the Invention] This invention has the following remarkable effects. First, regarding thermal fatigue resistance, silicone resin has an expansion coefficient that is about one order of magnitude lower than that of the epoxy resin layer. By the way, epoxy resin has a temperature of 2.0×10 -5 (range of 20 to 150℃),
The silicone resin is 2.7×10 −4 . As the rectifying element operates, it repeatedly expands due to temperature rise and contracts due to stoppage of operation, generating stress in the vertical direction of the lead wire. According to this invention, the silicone resin layer is made thin, but the mesa surface of the silicon chip is
It is coated with a silicone resin layer that can be formed with good purity and is difficult for impurity ions to pass through, so it is as stable as before, and the epoxy resin layer that is laminated on the silicone resin layer and forms the surface layer does not expand. Because it has a low coefficient, excellent shielding performance, and is hard, it reduces the stress generated in the lead wire, and has the advantage of protecting the solder joint between the lead wire and the electrode from external forces applied to the lead wire. be. Next, according to the present invention, since the epoxy resin layer has excellent gas shielding properties, oxygen permeation from the atmosphere to the solder layer is reduced, oxidation of the solder layer is suppressed, and thermal fatigue characteristics are improved. The results of the thermal fatigue test are listed below. I O = 30A, T C : 50℃
The following Table 1 shows the number of cycles leading to failure at 150°C compared to conventional products. Also,
In FIG. 5, F 10 and F 50 are determined by plotting the above cycle numbers on Weibull probability paper.

【表】 次に耐湿性について、一般にエポキシ樹脂はシ
リコーン樹脂よりも透水率が低い。叙上を確める
ため純水煮沸試験を施し、1時間にて発生する不
良率は次表のように顕著に向上している。
[Table] Regarding moisture resistance, epoxy resins generally have lower water permeability than silicone resins. In order to confirm the above, a pure water boiling test was conducted, and the defective rate after one hour was significantly improved as shown in the table below.

【表】 次に耐候性について、一般にエポキシ樹脂はシ
リコーン樹脂に比し金属との接着性がすぐれてい
る。これにより、この発明では放熱容器の開端に
これに沿う溝が設けられており、接着形状面でも
平面よりも優れている点と相俟つてきわめて優れ
た成績を示す。叙上の耐候性の試験方法としては
ガソリンに浸漬する方法、オイルに浸漬する方
法、塩水噴霧等の方法が知られているが、電解試
験は最もきびしい評価ができる。これは整流素子
に逆方向に直流電圧7.5ボルトを印加したまま食
塩水に浸漬し10秒後に引き上げ30分間空気中に放
置することを1サイクルとし、電気的特性の特に
IRと、外観の特に封止部の剥れとを検査するもの
である。整流素子の放熱部材は銅板に2〜8ミク
ロン厚のニツケルめつきを施しわん型に成形加工
を施してあるが、従来その開端でシリコン樹脂層
が剥離し急速に進行するのが視認できた。しかし
本発明によるものは、放熱容器の解放端面の溝に
よつて樹脂層と立体的に接続して強固な機械的接
合と、良好な気密性を得ているので、前記複合の
樹脂層による構成との相乗効果により、次の第3
表に示すように30サイクルに至るも全く不良品の
発生が認められなかつた。
[Table] Regarding weather resistance, epoxy resins generally have better adhesion to metals than silicone resins. As a result, in this invention, a groove is provided along the open end of the heat dissipation container, and the bonding shape is also superior to that of a flat surface, and together with this, the present invention exhibits extremely excellent results. As mentioned above, methods such as immersion in gasoline, immersion in oil, and salt water spraying are known as methods for testing weather resistance, but the electrolytic test allows for the most severe evaluation. One cycle of this is to immerse the rectifier in saline solution while applying a DC voltage of 7.5 volts in the opposite direction, and then lift it up after 10 seconds and leave it in the air for 30 minutes.
This is to inspect IR and external appearance, especially peeling of the sealing part. The heat dissipating member of the rectifying element is made of a copper plate plated with nickel with a thickness of 2 to 8 microns and molded into a bowl shape, but in the past, it was visible that the silicone resin layer peeled off at the open end and progressed rapidly. However, in the present invention, the grooves on the open end surface of the heat dissipation container are three-dimensionally connected to the resin layer to achieve strong mechanical bonding and good airtightness. Due to the synergistic effect with
As shown in the table, no defective products were observed even after 30 cycles.

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図aは従来の半導体整流装置の平面図、第
1図bは図aのXX′線に沿う断面図、第2図は3
相整流回路図、第3図aは従来の整流素子の斜視
図、第3図bは第3図aの整流素子の断面図、第
4図aはこの発明の1実施例の整流素子の斜視
図、第4図bは第4図aに示す整流素子の断面
図、第5図は耐熱疲労性の1つの試験結果を示す
線図である。 4……放熱容器、5……シリコンチツプ、6,
7……シリコンチツプの電極、8……リード線、
9……はんだ層、11……整流素子、12……樹
脂層、13……シリコン樹脂層、14……エポキ
シ樹脂層。
Figure 1a is a plan view of a conventional semiconductor rectifier, Figure 1b is a sectional view taken along line XX' in Figure a, and Figure 2 is a 3
Phase rectifier circuit diagram, FIG. 3a is a perspective view of a conventional rectifier, FIG. 3b is a sectional view of the rectifier in FIG. 3a, and FIG. 4a is a perspective view of a rectifier according to an embodiment of the present invention. Figure 4b is a sectional view of the rectifying element shown in Figure 4a, and Figure 5 is a diagram showing the results of one test of thermal fatigue resistance. 4... Heat dissipation container, 5... Silicon chip, 6,
7... Silicon chip electrode, 8... Lead wire,
9... Solder layer, 11 ... Rectifying element, 12 ... Resin layer, 13... Silicone resin layer, 14... Epoxy resin layer.

Claims (1)

【特許請求の範囲】[Claims] 1 円形の底面から側面に延長して一体の椀型に
なる金属の放熱容器と、この放熱容器の解放端面
にこの端面に沿つて形成された断面V字型の溝
と、前記放熱容器の内底面に1主面の電極ではん
だ接合させ他主面の電極にリード線をはんだ接合
させたシリコンチツプと、前記放熱容器の底部に
充填されて前記シリコンチツプ側面のメサ面を被
覆するシリコーン樹脂層と、前記シリコーン樹脂
層に積層しかつ前記放熱容器の解放端面の溝内に
充填し放熱容器を封止するエポキシ樹脂層とを具
備した半導体整流素子。
1. A metal heat dissipation container extending from a circular bottom surface to a side surface to form an integral bowl shape, a groove having a V-shaped cross section formed along the open end surface of the heat dissipation container, and an inner surface of the heat dissipation container. A silicon chip having an electrode on one main surface soldered to the bottom surface and a lead wire soldered to an electrode on the other main surface, and a silicone resin layer filled in the bottom of the heat dissipation container and covering the mesa surface on the side surface of the silicon chip. and an epoxy resin layer that is laminated on the silicone resin layer and filled in a groove in the open end surface of the heat dissipation container to seal the heat dissipation container.
JP4706183A 1983-03-23 1983-03-23 Semiconductor rectifying element Granted JPS59172749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4706183A JPS59172749A (en) 1983-03-23 1983-03-23 Semiconductor rectifying element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4706183A JPS59172749A (en) 1983-03-23 1983-03-23 Semiconductor rectifying element

Publications (2)

Publication Number Publication Date
JPS59172749A JPS59172749A (en) 1984-09-29
JPH0121628B2 true JPH0121628B2 (en) 1989-04-21

Family

ID=12764634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4706183A Granted JPS59172749A (en) 1983-03-23 1983-03-23 Semiconductor rectifying element

Country Status (1)

Country Link
JP (1) JPS59172749A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2858166B2 (en) * 1990-10-08 1999-02-17 株式会社日立製作所 Semiconductor rectifier and full-wave rectifier using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS534866B2 (en) * 1973-08-06 1978-02-21
JPS534867B2 (en) * 1974-04-17 1978-02-21

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS534867U (en) * 1976-06-30 1978-01-17
JPS534866U (en) * 1976-06-30 1978-01-17
JPS615812Y2 (en) * 1981-01-10 1986-02-21

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS534866B2 (en) * 1973-08-06 1978-02-21
JPS534867B2 (en) * 1974-04-17 1978-02-21

Also Published As

Publication number Publication date
JPS59172749A (en) 1984-09-29

Similar Documents

Publication Publication Date Title
KR0154111B1 (en) Aluminum alloy semiconductor package
US7868465B2 (en) Semiconductor device with a metallic carrier and two semiconductor chips applied to the carrier
US5013871A (en) Kit for the assembly of a metal electronic package
JP5602077B2 (en) Semiconductor device
EP0537162A4 (en) Metal electronic package having improved resistance to electromagnetic interference
JPWO2014128899A1 (en) Resin-sealed electronic control unit
JP6540326B2 (en) Semiconductor device and method of manufacturing the same
US20150332982A1 (en) Metal base substrate, power module, and method for manufacturing metal base substrate
EP0645812A1 (en) Resin-sealed semiconductor device
JPH04146655A (en) Semiconductor rectifying element and full-wave rectifying device using same
US5099397A (en) Fuzed solid electrolyte capacitor
JPH0121628B2 (en)
US6791182B2 (en) Semiconductor device
US4974052A (en) Plastic packaged semiconductor device
JPS60224237A (en) Semiconductor device and manufacture thereof
US20210335691A1 (en) Method of manufacturing semiconductor having double-sided substrate
JPS6233747B2 (en)
CN110718508A (en) Electronic element packaging structure, electrical equipment and electronic element packaging method
JPS59208763A (en) Resin sealed type electronic device
JPS60165745A (en) Resin-sealed semiconductor device
JPS6118157A (en) Semiconductor device
CN117577596A (en) Power semiconductor module
JPH0568860B2 (en)
JPH03150866A (en) Semiconductor device and manufacture thereof
JPS6130429B2 (en)