JPH0121613B2 - - Google Patents

Info

Publication number
JPH0121613B2
JPH0121613B2 JP57105968A JP10596882A JPH0121613B2 JP H0121613 B2 JPH0121613 B2 JP H0121613B2 JP 57105968 A JP57105968 A JP 57105968A JP 10596882 A JP10596882 A JP 10596882A JP H0121613 B2 JPH0121613 B2 JP H0121613B2
Authority
JP
Japan
Prior art keywords
capacitor
electrode
fuse
vapor
deposited film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57105968A
Other languages
Japanese (ja)
Other versions
JPS58222517A (en
Inventor
Mitsumasa Oku
Takeshi Hamabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57105968A priority Critical patent/JPS58222517A/en
Publication of JPS58222517A publication Critical patent/JPS58222517A/en
Publication of JPH0121613B2 publication Critical patent/JPH0121613B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、メタリコン処理により電極を取り出
すコンデンサに関する。さらに詳しくは、対向す
る2極の電極のうち少なくとも1極が蒸着電極で
しかも分割電極構造であるコンデンサに関する。 これまでに分割電極構成のコンデンサは種々考
案され、実用化されてきている。その一つが第1
図に示すような積層形のコンデンサである。 図において、1は誘電体フイルム、2,2′は
蒸着電極、3は誘電体フイルム、4,4′はメタ
リコン電極である。一方、巻回形のコンデンサに
おいても、特公昭31−4271号公報におけるような
分割電極構成のコンデンサが公知となつており、
その概略は第2図に示すようである。図において
5,5′は誘電体フイルム、6はマージン部、7
は分割電極を構成するための蒸着膜の分割線で蒸
着膜のない部分、8は蒸着膜で形成された分割電
極の一つである。 これらのコンデンサはいずれもA方向からのメ
タリコン処理により電極の取り出しを行つてい
る。 ところが、これらのコンデンサに高電圧または
高温度の条件を与えた場合には、コンデンサが破
壊し、発煙したり、最悪の場合には発火に至る場
合があつた。 本発明の目的は、上記のような破壊に伴なう発
煙や発火の起きないコンデンサを提供することに
ある。 第3図は複数個の分割電極のうちの1つの分割
電極を表わしたものである。本発明では、分割電
極を構成している蒸着電極9のメタリコン電極1
0との接触部近傍に、他の部分と比べて電流容量
の小さい部分、すなわちヒユーズ部11を形成
し、コンデンサ破壊時にこのヒユーズを働らかせ
ることにより、発煙・発火の起きないコンデンサ
を得ることができる。なお、12はマージン部で
ある。ここで『分割電極のヒユーズ電流』を定義
する。第3図に示すように直流電源13と直流電
流計14を用意し、メタリコン電極10と分割電
極9の間に1mA/secのスピードで電流iを上昇
し、ヒユーズ部11が断路するときの電流値をも
つて分割電極のヒユーズ電流と定義する。 本発明者は、研究の結果、分割電極のヒユーズ
電流を10mAから1Aの間に設定することにより、
コンデンサとしての十分な特性を備え、しかもコ
ンデンサの破壊時に発煙や発火の起きないコンデ
ンサが得られることを見出した。 ヒユーズ部の形成方法としては、次の種々の方
法が用いられる。(1)メタリコン電極の接触部に沿
つて、蒸着膜空白部を設け電流を制限する方法、
(2)比較的薄い高抵抗値の蒸着膜を用いて電流を制
限する方法。(3)メタリコン電極の接触部に沿つて
特殊なローラ等で蒸着膜に傷やクラツクを付けて
電流を制限する方法、(4)メタリコン電極と蒸着膜
の電気的接触を弱く設定して、接触部分の電流容
量を下げ、電流を制限する方法等が上げられる。 まず初めに、従来の分割電極構成のコンデンサ
の特性を示す。第4図aに示すような片面だけに
分割した蒸着電極15を設けたアルミニウム両面
蒸着のポリエチレンテレフタレート(以下PET
と略す)フイルム16(幅70mm、厚さ6μm)を用
意し、第4図bに断面図を示す通り厚さ5μmのポ
リプロピレン(以下PPと略す)フイルム17と
重ねて巻回し、メタリコン処理をして巻回形のコ
ンデンサを作成した。なお、15′は分割されて
いない蒸着電極、18は分割線、19はマージン
部、Wは分割幅である。 さらに第5図aに示すようにアルミニウムを蒸
着電極20,20′として両面蒸着したPETフイ
ルム21(長さ70mm、厚さ6μm)の分割電極片を
用意し、第5図bに断面図を示す通り、厚さ5μm
のPPフイルム22と交互に重ね、メタリコン処
理をして積層形のコンデンサを作成した。巻回形
および積層形のコンデンサともに何種類かの電極
構成のものを作り、その特性を調べた結果を次の
第1表に示す。
The present invention relates to a capacitor whose electrodes are taken out by metallization treatment. More specifically, the present invention relates to a capacitor in which at least one of two opposing electrodes is a vapor-deposited electrode and has a split electrode structure. Various capacitors with split electrode configurations have been devised and put into practical use. One of them is the first
It is a multilayer capacitor as shown in the figure. In the figure, 1 is a dielectric film, 2 and 2' are vapor deposited electrodes, 3 is a dielectric film, and 4 and 4' are metallicon electrodes. On the other hand, among wound-type capacitors, a capacitor with a split electrode structure as disclosed in Japanese Patent Publication No. 31-4271 is well known.
Its outline is shown in FIG. In the figure, 5 and 5' are dielectric films, 6 is a margin part, and 7 is a dielectric film.
8 is a parting line of a vapor deposited film for forming a divided electrode, and is a portion without a vapor deposited film, and 8 is one of the divided electrodes formed of the vapor deposited film. In all of these capacitors, the electrodes are taken out by metallization treatment from the A direction. However, when high voltage or high temperature conditions are applied to these capacitors, the capacitors may break down, emit smoke, or in the worst case, ignite. An object of the present invention is to provide a capacitor that does not emit smoke or catch fire due to destruction as described above. FIG. 3 shows one of the plurality of divided electrodes. In the present invention, the metallicon electrode 1 of the vapor deposition electrode 9 constituting the divided electrode
To obtain a capacitor that does not generate smoke or ignite by forming a part having a smaller current capacity than other parts, that is, a fuse part 11, near the contact part with 0 and activating this fuse when the capacitor breaks down. Can be done. Note that 12 is a margin portion. Here, "fuse current of divided electrodes" is defined. As shown in FIG. 3, a DC power supply 13 and a DC ammeter 14 are prepared, and a current i is increased between the metallic contact electrode 10 and the divided electrode 9 at a speed of 1 mA/sec, and the current when the fuse part 11 is disconnected is The value is defined as the fuse current of the split electrode. As a result of research, the inventor found that by setting the fuse current of the split electrode between 10mA and 1A,
It has been discovered that it is possible to obtain a capacitor that has sufficient characteristics as a capacitor and does not emit smoke or catch fire when the capacitor is destroyed. The following various methods can be used to form the fuse portion. (1) A method of limiting the current by providing a blank space of the vapor deposited film along the contact part of the metallicon electrode,
(2) A method of limiting current using a relatively thin vapor-deposited film with high resistance. (3) A method of limiting the current by creating scratches or cracks on the vapor deposited film along the contact area of the metallicon electrode with a special roller, etc.; (4) A method of making weak electrical contact between the metallicon electrode and the vapor deposited film to make contact. Methods include lowering the current capacity of a portion and limiting the current. First, we will show the characteristics of a capacitor with a conventional split electrode configuration. As shown in Figure 4a, polyethylene terephthalate (hereinafter referred to as PET
A film 16 (width: 70 mm, thickness: 6 μm) was prepared, and as shown in the cross-sectional view in FIG. A wound capacitor was created using the following method. Note that 15' is an undivided vapor deposition electrode, 18 is a dividing line, 19 is a margin portion, and W is a dividing width. Furthermore, as shown in FIG. 5a, split electrode pieces of PET film 21 (70 mm in length, 6 μm in thickness) with aluminum vapor-deposited on both sides as electrodes 20 and 20' are prepared, and a cross-sectional view is shown in FIG. 5b. 5μm thick
A multilayer capacitor was fabricated by layering the PP films 22 alternately and applying metallicon treatment. Both wound type and laminated type capacitors were manufactured with several types of electrode configurations, and their characteristics were investigated, and the results are shown in Table 1 below.

【表】 これらの結果はすべて、コンデンサをエポキシ
樹脂で外装した後のものであり、自己保安機能と
はコンデンサに80℃の雰囲気中でAC400Vの電圧
を印加し、瞬時あるいは所定時間後にコンデンサ
を破壊させた場合の発火および発煙の有無によつ
て調べたものである。第1表の結果より明らかな
ように従来の分割電極構成のコンデンサでは自己
保安機能がなく、いずれも破壊時に発炎または発
火するのがわかる。ここで用いている『コンデン
サの破壊』とは、コンデンサの容量(μF)が定
格値の80%以下に減少してコンデンサとしての正
常な機能をなくした状態のことをさしている。次
に本発明を実施例を用いて具体的に説明する。 実施例 1 片面に第6図に示すような分割した蒸着電極2
3を持つたアルミニウム両面蒸着のPETフイル
ム24(幅70mm、厚さ6μm)を用意し、厚さ5μm
のPPフイルムと重ねて巻回し、メタリコン処理
をして巻回形のコンデンサを作成した。なお、2
5は蒸着膜空白部、26は分割線、27はヒユー
ズ部である。 次に、第7図に示すようにアルミニウムを蒸着
電極28,28′として両面蒸着したPETフイル
ム29(長さ70mm、厚さ6μm)の分割電極片を用
意し、厚さ5μmのPPフイルムと交互に重ね、メ
タリコン処理をして積層形のコンデンサを作成し
た。30は蒸着電極28にのみ設けた蒸着膜空白
部、31はヒユーズ部であり、dで表わされたヒ
ユーズ部31の幅はこの場合いずれも2.2mmであ
つた。巻回形および積層形のコンデンサともに何
種類かの電極構成のものを作り、その特性を調べ
た結果を次の第2表に示す。
[Table] All of these results are after the capacitor is coated with epoxy resin.The self-safety function means that a voltage of 400 VAC is applied to the capacitor in an atmosphere of 80°C, and the capacitor is destroyed either instantaneously or after a predetermined period of time. This study was conducted to determine whether or not ignition and smoke were produced. As is clear from the results in Table 1, capacitors with conventional split electrode configurations do not have a self-protection function, and all of them ignite or ignite when destroyed. "Capacitor destruction" as used here refers to a state in which the capacitance (μF) of a capacitor has decreased to less than 80% of its rated value, and the capacitor no longer functions normally. Next, the present invention will be specifically explained using examples. Example 1 Divided vapor deposition electrode 2 as shown in FIG. 6 on one side
Prepare a PET film 24 (width 70 mm, thickness 6 μm) with double-sided aluminum evaporation with a thickness of 5 μm.
A rolled capacitor was created by wrapping it with a PP film and treating it with metallicon. In addition, 2
5 is a vapor deposited film blank area, 26 is a dividing line, and 27 is a fuse part. Next, as shown in Fig. 7, divided electrode pieces of PET film 29 (70 mm in length, 6 μm in thickness), which are double-sided vapor-deposited with aluminum as vapor-deposited electrodes 28 and 28', are prepared, alternating with 5-μm-thick PP film. A multilayer capacitor was created by layering the capacitors on top of each other and applying metallicon treatment. Reference numeral 30 indicates a vapor deposition film blank area provided only on the vapor deposition electrode 28, and 31 indicates a fuse portion.The width of the fuse portion 31, represented by d, was 2.2 mm in each case. Both wound type and laminated type capacitors were manufactured with several types of electrode configurations, and their characteristics were investigated, and the results are shown in Table 2 below.

【表】 これらの結果はすべてエポキシ樹脂で外装した
後のものである。以上のように蒸着膜空白部によ
り電流パスを制限したコンデンサでは自己保安機
能が得られることがわかつた。一方、同じフイル
ムを用いて、分割幅Wが36mm、dが8mm、アルミ
ニウム蒸着膜抵抗値3.1Ω/□(蒸着膜厚さ240
Å)の分割電極構成では分割電極のヒユーズ電流
値が1.08Aとなつた。この両面蒸着PETフイルム
(厚さ6μm)をPPフイルム(厚さ5μm)と重ねて
得られたコンデンサでは、巻回形および積層形と
もに自己保安機能が働かず、発火・発煙した。こ
の時のコンデンサの容量はいずれも50μFであつ
た。 実施例 2 誘電体の構成、寸法、および電極の配置は第4
図および第5図に示したものと同じで、分割電極
を構成する蒸着電極の膜抵抗値が高抵抗値である
巻回形および積層形のコンデンサを作成した。メ
タリコン処理の後、エポキシ樹脂で外装して特性
を調べた結果を次の第3表に示す。
[Table] All of these results are after being coated with epoxy resin. As described above, it was found that a capacitor in which the current path is restricted by a vapor-deposited film blank area can provide a self-protection function. On the other hand, using the same film, the dividing width W is 36 mm, d is 8 mm, and the resistance value of the aluminum vapor deposited film is 3.1 Ω/□ (the vapor deposited film thickness is 240 mm).
In the split electrode configuration shown in Å), the fuse current value of the split electrode was 1.08A. In capacitors obtained by stacking this double-sided vapor-deposited PET film (thickness 6 μm) with PP film (thickness 5 μm), the self-protection function of both the wound type and laminated type did not work, and the capacitors caught fire and emitted smoke. The capacitance of each capacitor at this time was 50 μF. Example 2 The configuration, dimensions, and arrangement of electrodes of the dielectric were as described in the fourth example.
Wound type and laminated type capacitors, which were the same as those shown in FIG. 5 and FIG. 5, were prepared in which the film resistance value of the vapor-deposited electrodes constituting the divided electrodes was high. After metallicon treatment, the test pieces were covered with epoxy resin and their characteristics were investigated. The results are shown in Table 3 below.

【表】 この結果より、高抵抗値の蒸着膜と分割幅を適
当に選定して、分割電極のヒユーズ電流を1A以
下にすればコンデンサの自己保安機能が得られる
ことがわかる。一方、試料No.35、試料No.36、試料
No.41、試料No.42のように高抵抗値の蒸着膜を用い
ても分割幅の選定が不十分な場合には、分割電極
のヒユーズ電流が大きくなり、自己保安機能が得
られなくなる。この実施例では分割電極を構成す
る蒸着電極の全面が高抵抗値の蒸着膜であるコン
デンサの例を示したが、これは勿論、ヒユーズ部
のみに高抵抗値蒸着膜が配置されたコンデンサに
おいても同一の効果が得られる。すなわち、第8
図に示すような分割電極構成のコンデンサを作成
したが、第3表と全く同一の結果が得られた。こ
の場合、低抵抗値蒸着部の膜抵抗値はすべて2.3
〜3.0Ω/□であつた。なお、図において、32
は低抵抗値蒸着膜、33は高抵抗値蒸着膜(ヒユ
ーズ部)、34は分割線、35はメタリコン接触
部、d1は1.0mm、d2は1.5mm、全体の幅は70mmであ
る。 実施例 3 第9図に示すステンレス製の金属ローラ36を
用いて、第10図に示す通りゴムローラ37上を
両面蒸着PETフイルム38を通す際に、この金
属ローラ36で圧力を加えて蒸着面に微細なクラ
ツクまたは傷をつけた。この処理は分割電極が形
成されている蒸着面に対して実施され、金属ロー
ラに加える力は5Kgである。金属ローラの形状は
厚さ1mmで直径が30mmであり、端部は断面が半円
状に処理してある。第11図に示したように、片
面に分割電極構造を備えた両面蒸着PETフイル
ム39(厚さ5μm)を用意し、その分割電極側に
上記の処理により微細なクラツク40をつけ、
PPフイルム(厚さ5μm)と重ねて巻回し、巻回
形のコンデンサを得た。 一方、同様の処理により、第12図に示すよう
な片面のみに微細なクラツク41をつけた両面蒸
着のPETフイルム(厚さ5μm)片42を用意し、
PPフイルム(厚さ5μm)と交互に重ねて積層形
のコンデンサを得た。巻回形および積層形のコン
デンサともに種々の蒸着膜抵抗値のフイルムを用
いて検討した結果を次の第4表に示す。
[Table] From this result, it can be seen that the self-safety function of the capacitor can be obtained by appropriately selecting a vapor deposited film with a high resistance value and the division width, and by setting the fuse current of the division electrode to 1A or less. On the other hand, sample No. 35, sample No. 36, sample
Even if a deposited film with a high resistance value is used as in No. 41 and Sample No. 42, if the division width is insufficiently selected, the fuse current of the division electrode becomes large and the self-protection function cannot be obtained. This example shows an example of a capacitor in which the entire surface of the vapor-deposited electrode constituting the divided electrode is a vapor-deposited film with a high resistance value, but this also applies to a capacitor in which a vapor-deposited film with a high resistance value is placed only in the fuse part. The same effect can be obtained. That is, the eighth
A capacitor with a split electrode configuration as shown in the figure was created, and the results exactly the same as those shown in Table 3 were obtained. In this case, the film resistance value of the low resistance value evaporated part is all 2.3
It was ~3.0Ω/□. In addition, in the figure, 32
33 is a low resistance vapor deposited film, 33 is a high resistance vapor deposited film (fuse part), 34 is a dividing line, 35 is a metallicon contact part, d 1 is 1.0 mm, d 2 is 1.5 mm, and the overall width is 70 mm. Example 3 Using a stainless steel metal roller 36 shown in FIG. 9, when passing a double-sided vapor-deposited PET film 38 over a rubber roller 37 as shown in FIG. 10, the metal roller 36 applies pressure to the vapor-deposited surface. Minor cracks or scratches. This treatment was carried out on the vapor deposition surface on which the divided electrodes were formed, and the force applied to the metal roller was 5 kg. The shape of the metal roller is 1 mm thick and 30 mm in diameter, and the end is processed to have a semicircular cross section. As shown in FIG. 11, a double-sided vapor-deposited PET film 39 (thickness 5 μm) with a split electrode structure on one side is prepared, and fine cracks 40 are formed on the split electrode side by the above process.
It was layered with a PP film (thickness: 5 μm) and wound to obtain a wound capacitor. On the other hand, by the same process, a double-sided vapor-deposited PET film (thickness: 5 μm) piece 42 with fine cracks 41 formed on only one side as shown in FIG. 12 was prepared.
A multilayer capacitor was obtained by alternately stacking PP films (5 μm thick). Table 4 below shows the results of studies using films with various vapor-deposited resistance values for both wound and laminated capacitors.

【表】 この結果より、蒸着膜の厚さと分割幅を適切に
設定するとコンデンサの自己保安機能が得られる
のがわかる。 実施例 4 第4図および第5図の誘電体構成および電極構
成のコンデンサを作成する過程で、分割電極がメ
タリコン電極と接触する電極端部にシリコーン油
(50cst)を薄く塗布し、巻回形および積層形のコ
ンデンサを作成して、メタリコン処理をし、エポ
キシ樹脂で外装してからコンデンサの特性を調べ
た。ここでは、種々の膜抵抗値を持つた分割電極
構成のコンデンサについて検討した。その特性を
次の第5表に示す。
[Table] From this result, it can be seen that the self-safety function of the capacitor can be obtained by appropriately setting the thickness of the deposited film and the division width. Example 4 In the process of creating a capacitor with the dielectric structure and electrode structure shown in FIGS. 4 and 5, a thin layer of silicone oil (50cst) was applied to the end of the electrode where the split electrode contacts the metallicon electrode, and a wound shape was formed. Then, we created a multilayer capacitor, treated it with metallicon, packaged it with epoxy resin, and then investigated its characteristics. Here, we investigated capacitors with split electrode configurations with various membrane resistance values. Its properties are shown in Table 5 below.

【表】 第1表と第5表を比較すれば容易にわかるよう
に、シリコーン油処理をすることにより、メタリ
コン電極と蒸着膜の接触を弱くすることができ、
分割電極のヒユーズ電流を下げて自己保安機能が
働くようになることがわかる。またシリコーン油
処理に限らず、メタリコン処理したコンデンサ素
子の熱処理温度を考慮する等の方法でも同一の効
果が得られる。 分割電極のヒユーズ電流が10mA未満になる
と、コンデンサが稼動中に容量が減少する現象が
出てくるため、コンデンサとして適当でない。ま
た実施例に示した方法により、分割電極のヒユー
ズ電流を10mAから1Aの間に設定することによ
り自己保安機能付きのコンデンサが得られるが、
実施例で示した方法をそれぞれ単独で用いる方法
の他に、複数種類併用して用いることも可能であ
る。上記の実施例では乾式コンデンサの場合を示
したが、油浸形の湿式コンデンサの場合でも同一
の効果がある。また誘電体フイルムとして、
PETフイルムに蒸着処理をしたフイルムについ
ての例を示したが、これはPPフイルムであつて
もその他、紙やポリエチレンフイルムやポリスチ
レンフイルム等、他の誘電体フイルムであつても
よい。さらには片面を分割電極構造にした例で示
したが、これは両面を分割電極にしたものでも可
能であり、また分割電極の対向電極が2μmから
20μm程度のアルミ箔電極であつてもよいし、ま
た実施例のように両面蒸着の誘電体フイルムでな
くても、片面蒸着の誘電体フイルムを重ねて構成
してもよい。また蒸着材料も実施例のアルミニウ
ムの他に、亜鉛、錫、銅、鉛、インジウム等、他
の材料であつてもよいし、巻回形コンデンサに関
しても、巻芯に巻いた構造のものでも、巻芯のな
い扁平形のものでもよい。さらに巻芯に関して
は、プラスチツク等の堅い巻芯の他にスポンジ、
紙等のやわらかい巻芯を使うことも可能である。
また実施例2では蒸着膜空白部で電流パス(ヒユ
ーズとして働らく部分)を1カ所に集中した例で
示したが、これは必ずしも1カ所に集中する必要
はなく第13図のように複数カ所に分散しても同
一の効果が得られる。図において、43は蒸着膜
空白部、44はヒユーズ部である。 以上のように本発明によれば、コンデンサが破
壊した場合でも、発煙や発火のない安全なコンデ
ンサを安価に提供できるものであり、その産業性
は大なるものである。
[Table] As can be easily seen by comparing Tables 1 and 5, silicone oil treatment can weaken the contact between the metallicon electrode and the deposited film.
It can be seen that the self-safety function works by lowering the fuse current of the split electrode. Furthermore, the same effect can be obtained not only by silicone oil treatment but also by methods such as taking into account the heat treatment temperature of capacitor elements treated with metallicon. If the fuse current of the split electrode is less than 10 mA, the capacitance will decrease during operation, making it unsuitable for use as a capacitor. Furthermore, by the method shown in the example, a capacitor with a self-safety function can be obtained by setting the fuse current of the split electrode between 10 mA and 1 A.
In addition to using the methods shown in the examples alone, it is also possible to use multiple methods in combination. Although the above embodiment shows the case of a dry type capacitor, the same effect can be obtained in the case of an oil-immersed wet type capacitor. Also, as a dielectric film,
An example of a film obtained by vapor deposition on a PET film has been shown, but this may be a PP film or other dielectric films such as paper, polyethylene film, polystyrene film, etc. Furthermore, although we have shown an example in which one side has a split electrode structure, this is also possible with split electrodes on both sides.
It may be an aluminum foil electrode with a thickness of about 20 μm, or it may be constructed by stacking dielectric films deposited on one side instead of using dielectric films deposited on both sides as in the embodiment. In addition to the aluminum used in the examples, the vapor deposition material may also be other materials such as zinc, tin, copper, lead, indium, etc., and for wound type capacitors, it may have a structure wound around a core. A flat type without a core may also be used. Furthermore, regarding the winding core, in addition to hard cores such as plastic, sponge,
It is also possible to use a soft core such as paper.
In addition, in Example 2, an example was shown in which the current path (portion that functions as a fuse) was concentrated in one place in the blank part of the vapor deposited film, but this does not necessarily have to be concentrated in one place, but in the case of multiple places as shown in FIG. The same effect can be obtained even if it is dispersed. In the figure, 43 is a vapor deposited film blank area, and 44 is a fuse part. As described above, according to the present invention, even if the capacitor breaks down, a safe capacitor that does not emit smoke or catch fire can be provided at a low cost, and its industrial efficiency is great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は積層形コンデンサの斜視図、第2図は
分割電極構成の巻回形コンデンサの斜視図、第3
図は本発明における一つの分割電極の平面図、第
4図aは従来の蒸着フイルムの平面図、第4図b
は第4図aのX―X′線における断面図、第5図
aは従来の積層形コンデンサの一つの電極片を示
す斜視図、第5図bは同積層形コンデンサの一部
の断面図、第6図は本発明における蒸着フイルム
の一実施例の平面図、第7図は本発明における積
層形コンデンサの1つの電極片の一実施例を示す
斜視図、第8図は本発明における蒸着フイルムの
他の実施例の平面図、第9図は金属ローラの側面
図、第10図は金属ローラで蒸着フイルムにクラ
ツクをつける装置の一部の断面図、第11図は本
発明における蒸着フイルムのさらに他の実施例の
平面図、第12図は本発明における積層形コンデ
ンサの一つの電極片の他の実施例を示す斜視図、
第13図は本発明における蒸着フイルムのさらに
他の実施例の平面図である。 9,23,28,28′……蒸着電極、10…
…メタリコン電極、11,27,31,44……
ヒユーズ部、12……マージン部、24,29…
…誘電体フイルム、26,34……分割線、2
5,30,43……蒸着膜空白部、32……低抵
抗値蒸着膜、33……高抵抗値蒸着膜、35……
メタリコン接触部、38,39,42……両面蒸
着誘電体フイルム、40,41……クラツク。
Figure 1 is a perspective view of a multilayer capacitor, Figure 2 is a perspective view of a wound capacitor with a split electrode configuration, and Figure 3 is a perspective view of a wound capacitor with a split electrode configuration.
The figure is a plan view of one divided electrode in the present invention, FIG. 4a is a plan view of a conventional vapor-deposited film, and FIG. 4b
is a cross-sectional view taken along the line X-X' in FIG. 4a, FIG. 5a is a perspective view showing one electrode piece of a conventional multilayer capacitor, and FIG. 5b is a cross-sectional view of a part of the same multilayer capacitor. , FIG. 6 is a plan view of an embodiment of a vapor-deposited film in the present invention, FIG. 7 is a perspective view showing an embodiment of one electrode piece of a multilayer capacitor in the present invention, and FIG. 8 is a plan view of an embodiment of a vapor-deposited film in the present invention. FIG. 9 is a plan view of another embodiment of the film, FIG. 9 is a side view of a metal roller, FIG. 10 is a cross-sectional view of a part of an apparatus for cracking a vapor deposited film with a metal roller, and FIG. 11 is a vapor deposited film according to the present invention. FIG. 12 is a perspective view showing another embodiment of one electrode piece of the multilayer capacitor according to the present invention;
FIG. 13 is a plan view of still another embodiment of the vapor-deposited film of the present invention. 9, 23, 28, 28'... Vapor deposition electrode, 10...
...Metallic electrode, 11, 27, 31, 44...
Fuse part, 12... Margin part, 24, 29...
...Dielectric film, 26, 34...Parting line, 2
5, 30, 43... Vapor deposited film blank area, 32... Low resistance value vapor deposited film, 33... High resistance value vapor deposited film, 35...
Metallicon contact portion, 38, 39, 42...Double-sided vapor deposited dielectric film, 40, 41...Crack.

Claims (1)

【特許請求の範囲】 1 対向する2極の電極のうち少なくとも1極が
蒸着電極でしかも複数個の分割電極構造となつて
おり、その分割電極のそれぞれのヒユーズ電流値
が10mA〜1Aの範囲にあることを特徴とするコ
ンデンサ。 2 分割電極のヒユーズ電流値が分割電極上のメ
タリコン接触部に沿つた蒸着膜空白部により設定
されていることを特徴とする特許請求の範囲第1
項記載のコンデンサ。 3 蒸着膜空白部により形成される電流パスが1
カ所に集中されていることを特徴とする特許請求
の範囲第2項記載のコンデンサ。 4 蒸着膜空白部により形成される電流パスが複
数カ所に分散されていることを特徴とする特許請
求の範囲第2項記載のコンデンサ。 5 分割電極のヒユーズ電流値が少なくともヒユ
ーズ部に膜厚の薄い蒸着膜部分を形成することに
より設定されていることを特徴とする特許請求の
範囲第1項記載のコンデンサ。 6 分割電極のヒユーズ電流値が少なくともヒユ
ーズ部に一連の微細なクラツクまたは傷を形成す
ることにより設定されていることを特徴とする特
許請求の範囲第1項記載のコンデンサ。 7 分割電極のヒユーズ電流値が少なくともヒユ
ーズ部にシリコーン油を塗布してメタリコン電極
との接触をある一定の強さにすることにより設定
されていることを特徴とする特許請求の範囲第1
項記載のコンデンサ。 8 分割電極のヒユーズ部が位置的に対向電極の
マージン部と重なる位置にあることを特徴とする
特許請求の範囲第1項から第7項のいずれかに記
載のコンデンサ。 9 分割電極が巻回形コンデンサ上に設定されて
いることを特徴とする特許請求の範囲第1項から
第8項のいずれかに記載のコンデンサ。 10 巻回形コンデンサが巻芯のない扁平なコン
デンサであることを特徴とする特許請求の範囲第
9項記載のコンデンサ。 11 分割電極が積層形コンデンサとすることに
より構成されていることを特徴とする特許請求の
範囲第1項から第8項のいずれかに記載のコンデ
ンサ。
[Claims] 1. At least one of the two opposing electrodes is a vapor deposition electrode, and has a plurality of divided electrode structures, and each of the divided electrodes has a fuse current value in the range of 10 mA to 1 A. A capacitor characterized by: 2. Claim 1, characterized in that the fuse current value of the divided electrode is set by the vapor deposited film blank area along the metallicon contact portion on the divided electrode.
Capacitors listed in section. 3 The current path formed by the vacuum space of the deposited film is 1.
A capacitor according to claim 2, characterized in that the capacitor is concentrated in one place. 4. The capacitor according to claim 2, wherein the current path formed by the vapor-deposited film blank portion is distributed at a plurality of locations. 5. The capacitor according to claim 1, wherein the fuse current value of the divided electrode is set by forming a thin vapor deposited film portion at least in the fuse portion. 6. The capacitor according to claim 1, wherein the fuse current value of the divided electrode is set by forming a series of fine cracks or flaws at least in the fuse portion. 7. Claim 1, characterized in that the fuse current value of the split electrode is set by applying silicone oil to at least the fuse portion to maintain a certain level of contact with the metallicon electrode.
Capacitors listed in section. 8. The capacitor according to any one of claims 1 to 7, wherein the fuse portion of the divided electrode is located at a position overlapping the margin portion of the counter electrode. 9. The capacitor according to any one of claims 1 to 8, wherein the divided electrode is set on the wound capacitor. 10. The capacitor according to claim 9, wherein the wound capacitor is a flat capacitor without a winding core. 11. The capacitor according to any one of claims 1 to 8, characterized in that the divided electrodes are constructed as a multilayer capacitor.
JP57105968A 1982-06-18 1982-06-18 Condenser Granted JPS58222517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57105968A JPS58222517A (en) 1982-06-18 1982-06-18 Condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57105968A JPS58222517A (en) 1982-06-18 1982-06-18 Condenser

Publications (2)

Publication Number Publication Date
JPS58222517A JPS58222517A (en) 1983-12-24
JPH0121613B2 true JPH0121613B2 (en) 1989-04-21

Family

ID=14421576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57105968A Granted JPS58222517A (en) 1982-06-18 1982-06-18 Condenser

Country Status (1)

Country Link
JP (1) JPS58222517A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5977215U (en) * 1982-11-17 1984-05-25 株式会社不二研究所 capacitor
JPH0770418B2 (en) * 1988-11-18 1995-07-31 松下電器産業株式会社 Metallized film capacitors
JPH0334513A (en) * 1989-06-30 1991-02-14 Matsushita Electric Ind Co Ltd Film capacitor
JP2017059612A (en) * 2015-09-15 2017-03-23 パナソニックIpマネジメント株式会社 Metalization film capacitor
JP2020025051A (en) * 2018-08-08 2020-02-13 日新電機株式会社 Metalized film and film capacitor

Also Published As

Publication number Publication date
JPS58222517A (en) 1983-12-24

Similar Documents

Publication Publication Date Title
US6111743A (en) Metallized capacitor having increased dielectric breakdown voltage and method for making the same
KR980700671A (en) METALLIZED FILM FOR ELECTRICAL CAPACITORS
JPH0121613B2 (en)
WO2016181646A1 (en) Metallized film capacitor
JP3454043B2 (en) Metallized film capacitors
JP2939494B2 (en) Metallized film capacitors
JPH08288171A (en) Metallized film capacitor
US3198934A (en) Wound-paper capacttors and manufacturing method and apparatus
JP3126490B2 (en) Metallized film capacitors
US5157583A (en) Series wound capacitive structure
JP2606394B2 (en) Metallized film capacitors
JPH06302468A (en) Film capacitor
JP2820414B2 (en) Film capacitor
GB723693A (en) Improvements in or relating to electrical capacitors
US2512874A (en) Coated electrical condenser
JPH02226708A (en) Manufacture of capacitor composed of dielectric film and conductive foil layer
JPH0232771B2 (en)
JP3284384B2 (en) High voltage condenser
US3906600A (en) Method of making metallized resistor-capacitor unit with improved insulation between leads
JPH0758658B2 (en) Capacitor with self-protection function
JPH0687453B2 (en) Capacitor
JPS61174710A (en) Manufacture of laminate type film capacitor
JPH0230822Y2 (en)
JP2737896B2 (en) Metallized substrate for capacitors with security function
JP2629414B2 (en) All film capacitors