JPH0121605B2 - - Google Patents

Info

Publication number
JPH0121605B2
JPH0121605B2 JP56188771A JP18877181A JPH0121605B2 JP H0121605 B2 JPH0121605 B2 JP H0121605B2 JP 56188771 A JP56188771 A JP 56188771A JP 18877181 A JP18877181 A JP 18877181A JP H0121605 B2 JPH0121605 B2 JP H0121605B2
Authority
JP
Japan
Prior art keywords
temperature
resistance
magnetoresistive element
parallel
potentiometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56188771A
Other languages
Japanese (ja)
Other versions
JPS5890702A (en
Inventor
Kazuto Mishima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIDORI SOKKI KK
Original Assignee
MIDORI SOKKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIDORI SOKKI KK filed Critical MIDORI SOKKI KK
Priority to JP56188771A priority Critical patent/JPS5890702A/en
Publication of JPS5890702A publication Critical patent/JPS5890702A/en
Publication of JPH0121605B2 publication Critical patent/JPH0121605B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Adjustable Resistors (AREA)
  • Hall/Mr Elements (AREA)

Description

【発明の詳細な説明】 本発明は、交叉する磁束量に応じて抵抗値を変
化させる磁気抵抗素子を用いたポテンシヨメータ
すなわち無接触型ポテンシヨメータに関するもの
で、さらに詳言すれば、雰囲気温度の変化にもか
かわらず正確な測定値を出力する無接触型ポテン
シヨメータを提供することを目的としたものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a potentiometer using a magnetoresistive element that changes the resistance value according to the amount of intersecting magnetic flux, that is, a non-contact potentiometer. The object is to provide a non-contact potentiometer that outputs accurate measured values despite changes in temperature.

交叉する磁束量に応じて抵抗値を変化させる磁
気抵抗素子を用いた無接触型ポテンシヨメータ
は、その可動部分における摺動抵抗が極めて小さ
いことから微小変位を検出、測定するのに極めて
有利であり、水平計、傾斜計その他精密機器の検
出部分に広く利用されるようになつている。
A non-contact potentiometer that uses a magnetoresistive element that changes its resistance according to the amount of intersecting magnetic flux has extremely low sliding resistance in its moving parts, making it extremely advantageous for detecting and measuring minute displacements. It is now widely used in the detection parts of level meters, inclinometers, and other precision instruments.

このように、無接触型ポテンシヨメータは、優
れた測定能力をもつものなのであるが、現在の磁
気抵抗素子の製造技術では、全く等しい抵抗温度
特性をもつ磁気抵抗素子を得ることはほとんど不
可能であるため、この磁気抵抗素子を用いた無接
触型ポテンシヨメータの雰囲気温度の変化によ
り、測定値に大きな誤差を生ずる不都合があつ
た。
In this way, non-contact potentiometers have excellent measurement capabilities, but with current magnetoresistive element manufacturing technology, it is almost impossible to obtain magnetoresistive elements with exactly the same resistance-temperature characteristics. Therefore, there is a problem in that a change in the ambient temperature of a non-contact potentiometer using this magnetoresistive element causes a large error in the measured value.

すなわち、磁気抵抗素子を用いた無接触型ポテ
ンシヨメータは、原理的には、第1図に示す如
く、直流定電圧源Eの両電極間に第1の磁気抵抗
素子MR1と第2の磁気抵抗素子MR2との直列回
路を挿入し、両磁気抵抗素子MR1,MR2を往復
動可能に組付けられた永久磁石Mgに対向して配
置し、第1の磁気抵抗素子MR1の両端子a,b
を出力端子として構成されている。
That is, in principle, a contactless potentiometer using a magnetoresistive element has a first magnetoresistive element MR 1 and a second magnetoresistive element between both electrodes of a DC constant voltage source E, as shown in FIG. A series circuit with magnetoresistive element MR 2 is inserted , and both magnetoresistive elements MR 1 and MR 2 are arranged facing a permanent magnet Mg assembled so as to be able to reciprocate. Both terminals a, b
is configured as an output terminal.

このような構成となつたポテンシヨメータの出
力特性は、雰囲気温度Tを一定に保つて両磁気抵
抗素子MR1,MR2に対して永久磁石Mgを変位さ
せると、第2図に示す如き出力特性を描き、ポテ
ンシヨメータとして有効に使用できる検出可能な
変位量範囲は、直線性の良い点イから点ロまでの
範囲に設定される。
The output characteristics of a potentiometer with such a configuration are as shown in Fig. 2 when the permanent magnet Mg is displaced relative to both magnetoresistive elements MR 1 and MR 2 while keeping the ambient temperature T constant. The detectable displacement range that can be used effectively as a potentiometer is set in the range from point A to point B with good linearity.

今、両磁気抵抗素子MR1,MR2の抵抗温度特
性が全く等しいとすると、第2図に示された有効
範囲の下限点イ、上限点ロ、そして中点ハの温度
変化特性は、第3図の如くになり、中点ハの特性
曲線Cは温度軸に対して平行となり、下限点イの
特性曲線d1および上限点ロの特性曲線d2は、使用
された磁気抵抗素子MR1,MR2の温度特性に応
じて決定されるほぼ直線cに関して線対称となつ
た曲線となる。
Now, assuming that the resistance-temperature characteristics of both magnetoresistive elements MR 1 and MR 2 are completely equal, the temperature change characteristics at the lower limit point A, upper limit point B, and middle point C of the effective range shown in FIG. As shown in Figure 3, the characteristic curve C at the middle point C is parallel to the temperature axis, and the characteristic curve d 1 at the lower limit point A and the characteristic curve d 2 at the upper limit point B are the characteristics of the magnetoresistive element MR 1 used. , MR 2 is a curve that is approximately line symmetrical with respect to the straight line c determined according to the temperature characteristics.

すなわち、第3図に示された温度特性曲線か
ら、使用されるポテンシヨメータは、高温域での
その測定可能な永久磁石Mgの変位量が減少する
とはいえ、中点ハの特性曲線Cが温度軸と平行な
ので、測定値中に温度誤差が入らず、正確な測定
を達成することができる。
That is, from the temperature characteristic curve shown in Fig. 3, although the measurable displacement of the permanent magnet Mg of the potentiometer used decreases in the high temperature range, Since it is parallel to the temperature axis, there are no temperature errors in the measured values, and accurate measurements can be achieved.

しかしながら、前記した如く、全く等しい抵抗
温度特性をもつ磁気抵抗素子MR1とMR2とを選
出することは、ほとんど不可能であるため、実際
には、この抵抗温度特性の類似した磁気抵抗素子
MR1とMR2とを組合せて使用している。
However, as mentioned above, it is almost impossible to select magnetoresistive elements MR 1 and MR 2 that have exactly the same resistance-temperature characteristics.
A combination of MR 1 and MR 2 is used.

このように、抵抗温度特性の異なる2つて磁気
抵抗素子MR1,MR2を使用すると、第1図に示
したポテンシヨメータの出力温度特性は、例えば
第4図の如くになり、中点ハの特性曲線cが温度
軸に対して傾斜してしまい、この特性曲線cの温
度軸に対する傾斜分だけ測定値中に誤差を含むこ
とになる。
In this way, when two magnetoresistive elements MR 1 and MR 2 with different resistance-temperature characteristics are used, the output temperature characteristic of the potentiometer shown in FIG. 1 becomes as shown in FIG. 4, for example, and the midpoint is The characteristic curve c will be inclined with respect to the temperature axis, and the measured value will include an error corresponding to the inclination of the characteristic curve c with respect to the temperature axis.

上記した如く、従来の磁気抵抗素子を用いたポ
テンシヨメータは、雰囲気温度の変化により、温
度誤差を生じるものとなつているので、常に設定
された一定温度雰囲気内で使用されなければなら
ず、このため温度管理が面倒であつたり、一定温
度に保持するための機構が面倒となる欠点をもつ
ていた。
As mentioned above, potentiometers using conventional magnetoresistive elements produce temperature errors due to changes in ambient temperature, so they must always be used within a set constant temperature atmosphere. For this reason, temperature control is troublesome, and the mechanism for maintaining the temperature at a constant temperature is troublesome.

また、このように使用できる雰囲気温度が一定
値に制限されているため、携帯用の機器に取付け
ることができないばかりか、その設置場所に応じ
て、機器の零点を調整、設定する必要があり、こ
のため利用範囲が極めて限定されると共に取扱い
が面倒で専門的な技術を要するものとなつてい
た。
In addition, since the ambient temperature that can be used is limited to a certain value, not only can it not be installed on portable equipment, but it is also necessary to adjust and set the zero point of the equipment depending on the installation location. For this reason, the scope of use is extremely limited, and handling is troublesome and requires specialized skills.

本発明は、上記した従来例における不都合、欠
点を解消すべく創案されたもので、以下本発明の
一実施例を第5図および第6図に従つて説明す
る。
The present invention was devised to eliminate the disadvantages and shortcomings of the conventional example described above, and one embodiment of the present invention will be described below with reference to FIGS. 5 and 6.

本発明によるポテンシヨメータは、直流定電圧
源Eの両電極間に、第1の並列抵抗P1を並列接
続した第1の磁気抵抗素子MR1と第1の直列抵
抗Q1との直列回路と、第2の並列抵抗P2を並列
接続した第2の磁気抵抗素子MR2と第2の直列
抵抗Q2との直列回路とを直列に接続して挿入し、
前記第1および第2の磁気抵抗素子MR1,MR2
を往復動可能に設けられた永久磁石Mgに対向配
置して構成されており、両磁気抵抗素子MR1
MR2の温度特性に従つて、第1の直列回路の両
端子である出力端子a,b間の出力Vabの中点ハ
の温度係数が零となるように各抵抗P1,P2,Q1
Q2の数値関係を設定する。
The potentiometer according to the present invention includes a series circuit of a first magnetoresistive element MR 1 and a first series resistance Q 1 in which a first parallel resistance P 1 is connected in parallel between both electrodes of a DC constant voltage source E. and a series circuit of a second magnetoresistive element MR 2 in which a second parallel resistance P 2 is connected in parallel and a second series resistance Q 2 are connected in series and inserted,
The first and second magnetoresistive elements MR 1 , MR 2
are arranged opposite to a permanent magnet Mg which is provided so as to be able to reciprocate, and both magnetoresistive elements MR 1 ,
According to the temperature characteristics of MR 2 , each resistor P 1 , P 2 , Q 1 ,
Set the numerical relationship for Q2 .

すなわち、各抵抗P1,P2,Q1,Q2の数値関係
を、両磁気抵抗素子MR1,MR2だけで構成され
る、第1図図示の如き基本構成の場合の温度特性
のデータをもとに計算し、第1の直列回路と第2
の直列回路との磁力―温度特性を一致させるので
ある。
In other words, the numerical relationship between the resistors P 1 , P 2 , Q 1 , and Q 2 is expressed as temperature characteristic data in the case of the basic configuration shown in Figure 1, which is composed only of both magnetoresistive elements MR 1 and MR 2 . Calculate based on the first series circuit and the second series circuit.
This is to match the magnetic force-temperature characteristics with the series circuit.

より詳しく説明する。磁気抵抗素子MRの抵抗
温度特性は、横軸に温度軸を、縦軸を25℃の常温
時の抵抗値に対する他の温度時の抵抗値の比率を
とつた温度―抵抗比率特性を示す第7図のa曲線
となる。このような抵抗温度特性を持つ磁気抵抗
素子MRに抵抗P(常温での抵抗値が磁気抵抗素
子MRよりも大きいことが望ましい)を並列に接
続すると、雰囲気温度が低い範囲では、磁気抵抗
素子MRの抵抗値が大きくなるので、この磁気抵
抗素子MRと並列抵抗Pとの比が小さくなり、こ
れにより合成された抵抗温度特性は第7図のb曲
線となり、特性の変化率が小さくなる。同様に、
磁気抵抗素子MRに抵抗Q(常温での抵抗値が磁
気抵抗素子MRよりも小さいことが望ましい)を
直列に接続すると、雰囲気温度が高い範囲では、
磁気抵抗素子MRの抵抗値が小さくなるので、こ
の磁気抵抗素子MRと直列抵抗Qとの比が小さく
なり、これにより合成された抵抗温度特性は第7
図のc曲線となり、特性の変化率が小さくなる。
Let me explain in more detail. The resistance-temperature characteristics of the magnetoresistive element MR are shown in the seventh graph, which shows the temperature-resistance ratio characteristic, where the horizontal axis is the temperature axis, and the vertical axis is the ratio of the resistance value at other temperatures to the resistance value at room temperature of 25°C. This is the a curve in the figure. When a resistor P (preferably the resistance value at room temperature is larger than that of the magnetoresistive element MR) is connected in parallel to the magnetoresistive element MR having such resistance-temperature characteristics, in a range of low ambient temperature, the magnetoresistive element MR Since the resistance value of magnetoresistive element MR becomes larger, the ratio of this magnetoresistive element MR to parallel resistance P becomes smaller, so that the combined resistance temperature characteristic becomes curve b in FIG. 7, and the rate of change of the characteristic becomes smaller. Similarly,
When a resistor Q (preferably the resistance value at room temperature is smaller than that of the magnetoresistive element MR) is connected in series with the magnetoresistive element MR, in a high ambient temperature range,
Since the resistance value of the magnetoresistive element MR becomes smaller, the ratio between the magnetoresistive element MR and the series resistance Q becomes smaller, and the resultant resistance temperature characteristic becomes the seventh
The curve becomes curve c in the figure, and the rate of change in characteristics becomes smaller.

この原理を利用して、磁気抵抗素子MRと並列
抵抗Pと直列抵抗Qとの組合せ回路において、並
列抵抗Pと直列抵抗Qの抵抗値を調整することに
より、この組合せ回路の合成の抵抗温度特性を、
低温から高温にわたつて任意に変化設定すること
ができる。
Utilizing this principle, in a combination circuit of magnetoresistive element MR, parallel resistance P, and series resistance Q, by adjusting the resistance values of parallel resistance P and series resistance Q, the resistance temperature characteristic of the composite circuit of this combination circuit is of,
It can be set to change arbitrarily from low temperature to high temperature.

それゆえ、両並列抵抗P1,P2および両直列
抵抗Q1,Q2の抵抗値を調整設定することによ
り、第1の直列回路と第2の直列回路の合成の抵
抗温度特性を一致させることができ、このように
両直列回路の合成の抵抗温度特性を合致させるこ
とによつて、両合成の抵抗温度特性は相殺される
ので、出力の温度特性は出力の中点ハにおいて温
度軸に平行となるのである。
Therefore, by adjusting and setting the resistance values of both parallel resistors P1 and P2 and both series resistors Q1 and Q2, it is possible to match the combined resistance temperature characteristics of the first series circuit and the second series circuit, By matching the combined resistance-temperature characteristics of both series circuits in this way, the combined resistance-temperature characteristics of both circuits are canceled out, and the output temperature characteristics become parallel to the temperature axis at the output midpoint C. be.

このように、本発明は、中点ハの特性曲線cを
温度軸に対して平行にすることができるので、雰
囲気温度の変化にもかかわらず、検出値中に温度
誤差を含むことが全くなく、温度変化にもかかわ
らず正確な測定を達成することができる。
In this way, the present invention makes it possible to make the characteristic curve c at the midpoint C parallel to the temperature axis, so that there is no temperature error included in the detected value despite changes in the ambient temperature. , accurate measurements can be achieved despite temperature changes.

また、使用される磁気抵抗素子MR1,MR2
温度特性に従つて計算され決定された抵抗P1
P2および抵抗Q1とQ2との抵抗値比率を変化させ
ることなく、この抵抗P1,P2またはQ1,Q2の値
を大きくもしくは小さく設定することにより、特
性曲線cが温度軸に平行である姿勢を保持したま
ま両特性曲線d1,d2の変位点を低温域から高温域
に自由に移動させることができるので、この変位
点を低温域に位置させた場合には、この低温域で
検出できる変位量の大きいポテンシヨメータとす
ることができ、反対に変位点を高温域に位置させ
た場合には、この高温域で検出できる変位量の大
きいポテンシヨメータとすることができる。
In addition, the resistance P 1 , which is calculated and determined according to the temperature characteristics of the magnetoresistive elements MR 1 and MR 2 used, is
By setting the values of the resistors P 1 and P 2 or Q 1 and Q 2 to be large or small without changing the resistance value ratio of P 2 and the resistances Q 1 and Q 2 , the characteristic curve c can be adjusted along the temperature axis. The displacement point of both characteristic curves d 1 and d 2 can be freely moved from the low temperature region to the high temperature region while maintaining the attitude parallel to , so if this displacement point is located in the low temperature region, It is possible to use a potentiometer with a large amount of displacement that can be detected in this low temperature range.On the other hand, if the displacement point is located in a high temperature area, a potentiometer that can detect a large amount of displacement in this high temperature area can be used. Can be done.

このように本発明は、使用される2つの磁気抵
抗素子MR1,MR2の温度特性が異なつたもので
あつても、ポテンシヨメータとしての出力Vabの
中点ハの特性曲線cを温度軸と平行なものとする
ことができるので、ポテンシヨメータとして温度
誤差のない検出値を得ることができることにな
る。
In this way, the present invention allows the characteristic curve c at the midpoint C of the output Vab as a potentiometer to be set on the temperature axis even if the temperature characteristics of the two magnetoresistive elements MR 1 and MR 2 used are different. Since the potentiometer can be made parallel to the current value, it is possible to obtain a detected value without temperature error as a potentiometer.

また、特性曲線cの設定は、単に各抵抗P1
P2,Q1,Q2の値の設定だけで良いので、簡単で
かつ正確に達成することができる。
Moreover, the setting of the characteristic curve c is simply done by each resistance P 1 ,
Since it is only necessary to set the values of P 2 , Q 1 , and Q 2 , this can be achieved easily and accurately.

さらに、各抵抗P1,P2,Q1,Q2の値の設定に
よつて、そのポテンシヨメータを使用される温度
環境条件に適合した能力のものとすることができ
る。
Furthermore, by setting the values of each of the resistors P 1 , P 2 , Q 1 , and Q 2 , the potentiometer can be made to have a capability that is compatible with the temperature and environmental conditions in which it is used.

以上の説明から明らかな如く、本発明は、温度
特性の異なる磁気抵抗素子を使用しても温度誤差
のない正確な検出値を得ることができ、またその
設定も特性曲線cを温度軸と平行にするように各
抵抗P1,P2,Q1,Q2の値を設定するだけで良い
ので、その設定作業が極めて容易であり、さらに
ポテンシヨメータの使用される温度環境条件に適
合してその検出能力範囲を設定することができる
等多くの優れた作用効果を有するものである。
As is clear from the above description, the present invention can obtain accurate detected values without temperature errors even when using magnetoresistive elements with different temperature characteristics, and the setting is such that the characteristic curve c is parallel to the temperature axis. It is extremely easy to set the values of each resistor P 1 , P 2 , Q 1 , and Q 2 so that the values match the temperature and environmental conditions in which the potentiometer is used. It has many excellent effects, such as being able to set the detection capability range.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、2個の磁気抵抗素子を使用した無接
触型ポテンシヨメータの基本的な回路図である。
第2図は、第1図に示されたポテンシヨメータの
永久磁石の変位に伴う出力変化曲線を示すもので
ある。第3図は、第1図に示されたポテンシヨメ
ータの理想的な上限点、下限点、そして中点の温
度特性曲線を示すものである。第4図は異なる温
度特性をもつ磁気抵抗素子を用いて第1図図示回
路を構成した場合の出力の上限点、下限点、そし
て中点の温度特性曲線である。第5図は本発明の
一実施例を示す回路図である。第6図は、本発明
による出力の上限点、下限点、そして中点の温度
特性曲線の一例を示す線図である。第7図は、磁
気抵抗素子および磁気抵抗素子と並列抵抗と直列
抵抗とから構成される直列回路の合成抵抗温度特
性を示す線図である。 符号の説明 E…直流定電圧源、MR1,MR2
…磁気抵抗素子、Mg…永久磁石、P1,P2,Q1
Q2…抵抗。
FIG. 1 is a basic circuit diagram of a non-contact potentiometer using two magnetoresistive elements.
FIG. 2 shows an output change curve with displacement of the permanent magnet of the potentiometer shown in FIG. FIG. 3 shows ideal temperature characteristic curves at the upper limit, lower limit, and midpoint of the potentiometer shown in FIG. FIG. 4 shows temperature characteristic curves at the upper limit, lower limit, and midpoint of the output when the circuit shown in FIG. 1 is constructed using magnetoresistive elements having different temperature characteristics. FIG. 5 is a circuit diagram showing one embodiment of the present invention. FIG. 6 is a diagram showing an example of a temperature characteristic curve at the upper limit, lower limit, and middle point of the output according to the present invention. FIG. 7 is a diagram showing the combined resistance temperature characteristics of a series circuit composed of a magnetoresistive element, a magnetoresistive element, a parallel resistance, and a series resistance. Explanation of symbols E…DC constant voltage source, MR 1 , MR 2
...magnetic resistance element, Mg...permanent magnet, P 1 , P 2 , Q 1 ,
Q 2 ...Resistance.

Claims (1)

【特許請求の範囲】[Claims] 1 交叉する磁束量に応じて抵抗値を変化させる
磁気抵抗素子を用いたポテンシヨメータであつ
て、直流電圧源の両電極間に、第1の並列抵抗を
並列接続した第1の磁気抵抗素子と第1の直列抵
抗との第1の直列回路と、第2の並列抵抗を並列
接続した第2の磁気抵抗素子と第2の直列抵抗と
の第2の直列回路との直列回路を挿入し、前記両
磁気抵抗素子を往復動可能に配置された永久磁石
に対向して配置して成り、前記第1の直列回路の
両端子間に出力される出力の中点の温度係数が零
となるよう前記各抵抗の値を設定して成る磁気抵
抗素子を用いたポテンシヨメータ。
1. A potentiometer using a magnetoresistive element that changes the resistance value according to the amount of intersecting magnetic flux, the first magnetoresistive element having a first parallel resistance connected in parallel between both electrodes of a DC voltage source. and a first series resistor, and a second series circuit of a second series resistor and a second magnetoresistive element in which a second parallel resistor is connected in parallel. , wherein both the magnetic resistance elements are arranged opposite to a permanent magnet arranged to be able to reciprocate, and the temperature coefficient at the midpoint of the output output between both terminals of the first series circuit is zero. A potentiometer using a magnetoresistive element, which is configured to set the values of each of the resistances as described above.
JP56188771A 1981-11-25 1981-11-25 Potentiometer using magnetic reluctance element Granted JPS5890702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56188771A JPS5890702A (en) 1981-11-25 1981-11-25 Potentiometer using magnetic reluctance element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56188771A JPS5890702A (en) 1981-11-25 1981-11-25 Potentiometer using magnetic reluctance element

Publications (2)

Publication Number Publication Date
JPS5890702A JPS5890702A (en) 1983-05-30
JPH0121605B2 true JPH0121605B2 (en) 1989-04-21

Family

ID=16229484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56188771A Granted JPS5890702A (en) 1981-11-25 1981-11-25 Potentiometer using magnetic reluctance element

Country Status (1)

Country Link
JP (1) JPS5890702A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4848087A (en) * 1971-10-20 1973-07-07
JPS5246703A (en) * 1975-10-09 1977-04-13 Matsushita Electric Ind Co Ltd Keyboard equipment
JPS5423264U (en) * 1977-07-19 1979-02-15
JPS5634310U (en) * 1979-08-24 1981-04-03

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4848087A (en) * 1971-10-20 1973-07-07
JPS5246703A (en) * 1975-10-09 1977-04-13 Matsushita Electric Ind Co Ltd Keyboard equipment
JPS5423264U (en) * 1977-07-19 1979-02-15
JPS5634310U (en) * 1979-08-24 1981-04-03

Also Published As

Publication number Publication date
JPS5890702A (en) 1983-05-30

Similar Documents

Publication Publication Date Title
US5187475A (en) Apparatus for determining the position of an object
US5351003A (en) Temperature compensated magnetoresistive position sensor
JPH08503778A (en) Magnetic field sensor comprising magnetic reversal conductor and one or more magnetoresistive resistors
ATE434192T1 (en) THIN FILM MAGNETIC FIELD SENSOR
US3379973A (en) Impedance measuring circuit having the unknown impedance in the feedback path of an amplifier
US3052124A (en) Linearizing circuit for resistance thermometer
US3906796A (en) Electronic temperature measuring apparatus
US3805616A (en) Temperature measuring apparatus
ATE65601T1 (en) NON-CONTACT ANGLE SENSOR.
JPH0121605B2 (en)
JP2001091298A (en) Noncontact magnetic type measuring device
US3472073A (en) Linearized thermocouple measuring circuit
US6141881A (en) Electronic analogue compass
JPH0358446B2 (en)
JPS63212803A (en) Measuring device for displacement
KR100666314B1 (en) Method for calibrating the ratio accuracy of resistance bridges by triangular comparison method
Zair et al. An ac Bridge Circuit for Low Temperature Thermometry
JPS6356713B2 (en)
USRE27103E (en) Bridge circuit for determining the inverse of resistance
KR910006516B1 (en) Improved magnetic resister sensor for encoder
JPS6361961A (en) Current detector
CA1325531C (en) Parameter measuring apparatus
US3478570A (en) Electrical clinical thermometer
JPH04271425A (en) Contactless position detector
JPS5868616A (en) Position sensor