JPH01215943A - High corrosion-resistant zirconium alloy - Google Patents

High corrosion-resistant zirconium alloy

Info

Publication number
JPH01215943A
JPH01215943A JP4121588A JP4121588A JPH01215943A JP H01215943 A JPH01215943 A JP H01215943A JP 4121588 A JP4121588 A JP 4121588A JP 4121588 A JP4121588 A JP 4121588A JP H01215943 A JPH01215943 A JP H01215943A
Authority
JP
Japan
Prior art keywords
alloy
corrosion resistance
corrosion
zirconium alloy
kinds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4121588A
Other languages
Japanese (ja)
Inventor
Hiroyuki Anada
博之 穴田
Yoshiaki Shida
志田 善明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4121588A priority Critical patent/JPH01215943A/en
Publication of JPH01215943A publication Critical patent/JPH01215943A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the title alloy with excellent corrosion resistance for a long period of time by incorporating specific amounts of one or more kinds among Ru, Rh, Pb, Pt and Au to a Zr alloy contg. Sn, Fe and Cr. CONSTITUTION:The compsn. of a Zr alloy is formed with, by weight, 0.5-1.7% Sn, 0.05-0.5% Fe and 0.05-0.3% Cr, furthermore with total 0.001-1.0% of one or more kinds selected from Ru, Rh, Pd, Pt and Au and the balance consisting of Zr with inevitable impurities. If required, one or two kinds of 0.01-0.1% Ni and 0.005-0.5% Nb are incorporated to the alloy having said compsn. The Zr alloy has high corrosion resistance and is suitable for the member such as a fuel coating material for a nuclear reactor which is used in the environment where the contact with the water of high temp. and high pressure or water vapor is required.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、高耐食性を有するジルコニウム合金、特に
原子炉におけるような高温高圧の水または水蒸気中で使
用するのに好適なジルコニウム合金に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) This invention relates to a zirconium alloy having high corrosion resistance, particularly a zirconium alloy suitable for use in high temperature, high pressure water or steam, such as in a nuclear reactor.

(従来の技術) ジルコニウム合金は、その適当な機械的性質と小さい熱
中性子吸収断面積および良好な耐食性の故に、沸騰水型
原子炉(BWR)および加圧水型原子炉(PWII)の
燃料被覆管、炉心構造材料等に使用されている。かかる
用途にこれまで使用されてきた代表的な合金としては、
ジルカロイ−2(JIS ZrTN8020)およびジ
ルカロイ−4(JIS ZrTN804D)がある。
BACKGROUND OF THE INVENTION Due to its suitable mechanical properties, small thermal neutron absorption cross section and good corrosion resistance, zirconium alloys are used in boiling water reactors (BWRs) and pressurized water reactors (PWII) fuel cladding, Used as core structural material, etc. Typical alloys that have been used for such purposes include:
There are Zircaloy-2 (JIS ZrTN8020) and Zircaloy-4 (JIS ZrTN804D).

現在の実用炉の運転条件では、上記の既存ジルコニウム
合金は十分にその機能を発揮しており格別の問題はない
。しかし、燃料の燃焼度を高める目的で、燃料被覆管等
の炉内使用期間を更に延長することが計画されており、
そのためにジルコニウム合金の高性能化、特に耐食性の
一層の向上が要望されている。
Under the current operating conditions of practical reactors, the existing zirconium alloys described above fully exhibit their functions and there are no particular problems. However, in order to increase the burn-up of the fuel, it is planned to further extend the period of use of fuel cladding tubes, etc.
For this reason, there is a demand for higher performance of zirconium alloys, particularly for further improvement in corrosion resistance.

すなわち、ジルコニウム合金の腐食の問題は、原子炉内
で長期間中性子照射をうけること、および高温高圧の冷
却水に接することに起因する。ジルコニウムの酸化膜は
、腐食初期は黒色で均一な膜厚を有し、次第に均一な腐
食膜の厚みが増加していく。
That is, the problem of corrosion of zirconium alloys is caused by being exposed to neutron irradiation for a long period of time in a nuclear reactor and coming into contact with high-temperature, high-pressure cooling water. The zirconium oxide film is black and has a uniform thickness at the initial stage of corrosion, and the thickness of the uniform corrosion film gradually increases.

上記の腐食対策として、製造初期工程においてβ相温度
域に加熱して焼入れするβ処理が行われており、BWR
、PWRについても、上述のように現在、格別の問題は
ないのである。
As a countermeasure against the above-mentioned corrosion, β treatment is performed in the initial manufacturing process to heat and harden the BWR to the β phase temperature range.
, PWR, as mentioned above, there are currently no particular problems.

(発明が解決しようとする課題) しかし、この処理による耐食性向上だけでは、これから
計画・実施されようとする使用期間の延長に対しては不
十分であることが明らかになってきた。
(Problems to be Solved by the Invention) However, it has become clear that improving corrosion resistance through this treatment alone is insufficient to extend the period of use that will be planned and implemented in the future.

そこで本発明の目的は、原子炉の運転期間の延長に基づ
く被覆管の長期間の高温高圧水(若しくは水蒸気)によ
る管外表面の均一腐食に対して十分な耐食性を有するジ
ルコニウム合金を提供することにある。
Therefore, an object of the present invention is to provide a zirconium alloy that has sufficient corrosion resistance against uniform corrosion of the outer surface of the cladding tube caused by long-term high-temperature, high-pressure water (or steam) due to the extension of the operating period of a nuclear reactor. It is in.

(課題を解決するだめの手段) 本発明者らはジルカロイ−2およびジルカロイ−4合金
に白金族元素を添加すれば、高温高圧水中の全面腐食が
一層改善されることを知見し、本発明を完成した。
(Another Means to Solve the Problem) The present inventors have discovered that adding platinum group elements to Zircaloy-2 and Zircaloy-4 alloys further improves general corrosion in high-temperature, high-pressure water, and has developed the present invention. completed.

なお、それらの合金元素が耐食性向上に果たす役割は不
明であるが、Ru、 Rh、 Pd、、Pt、および八
Uについては次のような効果が考えられる。すなわち、
これらの元素はZrに比べ非常に酸化されにくい。した
がって均一腐食進行に伴い、酸化膜にとりこまれず母材
界面に濃化される。濃化層が酸素の内部拡散を抑制する
ことで均一腐食進行を遅らせると考えられる。
Although it is unclear what role these alloying elements play in improving corrosion resistance, Ru, Rh, Pd, Pt, and 8U are thought to have the following effects. That is,
These elements are much less likely to be oxidized than Zr. Therefore, as the corrosion progresses uniformly, it is not incorporated into the oxide film and is concentrated at the base metal interface. It is thought that the enriched layer slows down the progress of uniform corrosion by suppressing the internal diffusion of oxygen.

ここに、本発明の要旨は、重量%で、Sn : 0.5
〜1.7%、Fe : 0.05〜0.5%、Cr: 
0.05〜0.3%、さらにRu、 Rh、 Pd、 
Pt、 AuO中から1種または2種以上の合計が0.
001〜1.0%を含有し、残部がZrと不可避の不純
物からなる高耐食性ジルコニウム合金であり、さらに所
望によりこの合金にNi:0.01〜0.1%および/
またはNb : 0.005〜0.5%を加えた合金で
ある。
Here, the gist of the present invention is that in weight %, Sn: 0.5
~1.7%, Fe: 0.05~0.5%, Cr:
0.05-0.3%, further Ru, Rh, Pd,
The total amount of one or more of Pt and AuO is 0.
This is a highly corrosion-resistant zirconium alloy containing 0.01 to 1.0% of Ni and the remainder consisting of Zr and unavoidable impurities.If desired, this alloy may also contain 0.01 to 0.1% of Ni and
Or, it is an alloy to which Nb: 0.005 to 0.5% is added.

(作用) 以下、本発明の合金において、含有成分の種類とその含
有量を上記のように選んだ理由を作用効果とともに説明
する。
(Function) Hereinafter, in the alloy of the present invention, the reasons for selecting the types of components and their contents as described above will be explained together with the functions and effects.

Sn: Zrの耐食性は、不純物の窒素により劣化する。Sn: The corrosion resistance of Zr deteriorates due to impurity nitrogen.

Snはこの窒素の悪影響を除去するため添加されている
。しかし、最近のスポンジZrの窒素レベルは数10p
pmに抑えられており、製造工程での窒素吸収も最小限
になるよう配慮されているので、従来のジルカロイのS
n含有量より低い範囲にしてよい。
Sn is added to remove the adverse effects of nitrogen. However, the nitrogen level of recent sponge Zr is several tens of points.
PM and nitrogen absorption during the manufacturing process is also minimized, making it possible to reduce the amount of nitrogen absorbed by conventional Zircaloy.
It may be in a range lower than the n content.

多量の添加はむしろ耐食性を劣化させるので、含有量の
上限は1.7%にする。一方、耐食性効果は0.5%以
上で現われるとともにジルコニウム合金の強度を向上さ
せる成分であるから、その効果を狙って下限を0.5%
とする。
Since addition of a large amount actually deteriorates corrosion resistance, the upper limit of the content is set at 1.7%. On the other hand, since the corrosion resistance effect appears at 0.5% or more and it is a component that improves the strength of zirconium alloy, the lower limit was set at 0.5% to achieve this effect.
shall be.

Fe: Feも耐食性の改善に有効である。この効果が現れる0
、05%を下限とし、冷間加工性に悪影響を生しるおそ
れのある多量添加を避けるため、上限を0.5%とする
Fe: Fe is also effective in improving corrosion resistance. This effect appears 0
The lower limit is set to 0.05%, and the upper limit is set to 0.5% to avoid adding a large amount that may have an adverse effect on cold workability.

Cr: Crの作用効果はFeとほぼ同じである。耐食性向上の
効果を得るためには0.05%の含有量が必要である。
Cr: The effects of Cr are almost the same as those of Fe. In order to obtain the effect of improving corrosion resistance, a content of 0.05% is required.

Crは熱処理の過程で金属間化合物を析出させやすいの
で上限は0.3%とする。
Since Cr tends to precipitate intermetallic compounds during heat treatment, the upper limit is set to 0.3%.

Ni: Niは0.01%から耐食性の向上の効果を発揮するの
で下限を0.01%とする。一方、Niは腐食時に発生
する水素を合金中に取り込み、水素脆性を起こす一因と
なる。従って、0.1%以下の範囲で含有させることと
する。
Ni: Since Ni exhibits the effect of improving corrosion resistance from 0.01%, the lower limit is set to 0.01%. On the other hand, Ni incorporates hydrogen generated during corrosion into the alloy, contributing to hydrogen embrittlement. Therefore, it is decided to contain it in a range of 0.1% or less.

Nb: Nbは耐食性の向上に効果があり、同時にジルコニウム
合金の水素吸収を抑制する効果をもつ。
Nb: Nb is effective in improving corrosion resistance, and at the same time has the effect of suppressing hydrogen absorption in the zirconium alloy.

これらの効果が顕著に現れるのは含有量o、oi%以上
からである。しかし、0.5%を超えると耐均一腐食性
を劣化させるため0.5%を上限とする。
These effects become noticeable when the content is o, oi% or higher. However, if it exceeds 0.5%, uniform corrosion resistance deteriorates, so the upper limit is set at 0.5%.

Ru、、Rh、 Pd、 Pt、およびAu:これら停
元素IU合計0.001%以上の含有量でジルコニウム
合金の耐食性を改善する。しかしいずれも高価な元素で
あるとともに多量に添加すると腐食時に発生する水素を
合金中に取込み、水素脆性を引き起す一因となるため上
限を1.0%とする。
Ru, Rh, Pd, Pt, and Au: The corrosion resistance of the zirconium alloy is improved by a total IU content of 0.001% or more of these stop elements. However, both are expensive elements and if added in large amounts, hydrogen generated during corrosion will be incorporated into the alloy, causing hydrogen embrittlement, so the upper limit is set at 1.0%.

またこれらの元素は、はぼ均等な作用効果を有するため
2種以上選択して含有させてもよく、その含有量の範囲
も合計量で1種のみ単独添加の場合と同等である。
In addition, since these elements have substantially equal effects, two or more of these elements may be selected and contained, and the range of their content is the same as in the case where only one element is added alone in total amount.

以下、本発明を実施例によって更に詳しく説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

(実施例) 添加成分の含有量を変えた多数の合金を溶製し、耐食性
に及ぼず影響を調べた。試験の基本条件は下記のとおり
である。
(Example) A large number of alloys with varying contents of additive components were melted and the effects on corrosion resistance were investigated. The basic conditions of the test are as follows.

1、試験材(板厚0.6 mm )の製作■ β処理 
:  1050℃×30分、水冷■ 熱間加ヱ:650
℃ ■ 最終冷間加工: 加工度85% ■ 歪取り焼鈍 =460°cxl、5時間(冷却速度
0.1°C/秒) ii、試験片 サイズ:  20 mm” X30mm’ Xo、6 
mmTに加工し#1000のペーパーで研磨して、5 
Vol、%HF−45Vo1.%HNO350VO1,
%H,Oで酸洗。
1. Production of test material (plate thickness 0.6 mm) ■ β treatment
: 1050℃ x 30 minutes, water cooling■ Hot heating: 650
°C ■ Final cold working: 85% workability ■ Strain relief annealing = 460°cxl, 5 hours (cooling rate 0.1°C/sec) ii, specimen size: 20 mm" X30 mm' Xo, 6
Processed to mmT and polished with #1000 paper, 5
Vol, %HF-45Vol1. %HNO350VO1,
Pickling with %H,O.

iii 、腐食試験 水蒸気オートクレーブを用いて、410℃×105kg
f/cm2X 3500時間の試験をし、単位面積当た
りの腐食増量を調べた。
iii. Corrosion test using steam autoclave, 410℃ x 105kg
A test was conducted at f/cm2X for 3,500 hours to examine the corrosion increase per unit area.

第1表に溶製した本発明合金、従来合金および比較合金
の分析結果と腐食試験結果を示す。
Table 1 shows the analysis results and corrosion test results of the inventive alloy, conventional alloy, and comparative alloy.

第1表から、本発明合金は優れた耐全面腐食性を有する
ことがわかる。なお原子炉中ではノジュラー腐食(白点
状腐食)が問題になることがあるが、本発明合金はこの
種の腐食にも優れていることが容易に推察される。
From Table 1, it can be seen that the alloy of the present invention has excellent general corrosion resistance. Although nodular corrosion (white spot corrosion) may be a problem in a nuclear reactor, it is easily inferred that the alloy of the present invention is also excellent in this type of corrosion.

(発明の効果) 実施例の試験結果にも明らかなとおり、長期の腐食試験
における本発明合金の耐食性は極めて優れている。従っ
て、この合金は、例えば、原子炉の燃料被覆材のごとく
、高温・高圧水もしくは水蒸気にふれる環境で使用され
る部材用として、機器の寿命の延長に寄与するところが
大きい。
(Effects of the Invention) As is clear from the test results of Examples, the corrosion resistance of the alloy of the present invention in long-term corrosion tests is extremely excellent. Therefore, this alloy greatly contributes to extending the life of equipment, for example, when used as a fuel cladding material for a nuclear reactor, which is used in an environment where it comes into contact with high-temperature, high-pressure water or steam.

Claims (3)

【特許請求の範囲】[Claims] (1)重量%で、Sn:0.5〜1.7%、Fe:0.
05〜0.5%、Cr:0.05〜0.3%、さらにR
u、Rh、Pd、Pt、Auの中から1種または2種以
上の合計が0.001〜1.0%を含有し、残部がZr
と不可避の不純物からなる高耐食性ジルコニウム合金。
(1) In weight%, Sn: 0.5 to 1.7%, Fe: 0.
05 to 0.5%, Cr: 0.05 to 0.3%, and further R
The total amount of one or more of u, Rh, Pd, Pt, and Au is 0.001 to 1.0%, and the remainder is Zr.
A highly corrosion-resistant zirconium alloy consisting of unavoidable impurities.
(2)請求項(1)記載の合金にさらにNi:0.01
〜0.1%を加えた合金。
(2) The alloy according to claim (1) further contains Ni: 0.01
Alloy with ~0.1% addition.
(3)請求項(1)または(2)記載の合金にさらにN
b:0.005〜0.5%を加えた合金。
(3) The alloy according to claim (1) or (2) further contains N.
b: Alloy containing 0.005 to 0.5%.
JP4121588A 1988-02-24 1988-02-24 High corrosion-resistant zirconium alloy Pending JPH01215943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4121588A JPH01215943A (en) 1988-02-24 1988-02-24 High corrosion-resistant zirconium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4121588A JPH01215943A (en) 1988-02-24 1988-02-24 High corrosion-resistant zirconium alloy

Publications (1)

Publication Number Publication Date
JPH01215943A true JPH01215943A (en) 1989-08-29

Family

ID=12602176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4121588A Pending JPH01215943A (en) 1988-02-24 1988-02-24 High corrosion-resistant zirconium alloy

Country Status (1)

Country Link
JP (1) JPH01215943A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103074521A (en) * 2013-01-16 2013-05-01 上海大学 Palladium-containing zirconium alloy for fuel cladding in nuclear power station
CN112481522A (en) * 2020-04-13 2021-03-12 国核锆铪理化检测有限公司 Zirconium alloy, preparation method of zirconium alloy and zirconium alloy section

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103074521A (en) * 2013-01-16 2013-05-01 上海大学 Palladium-containing zirconium alloy for fuel cladding in nuclear power station
CN112481522A (en) * 2020-04-13 2021-03-12 国核锆铪理化检测有限公司 Zirconium alloy, preparation method of zirconium alloy and zirconium alloy section

Similar Documents

Publication Publication Date Title
US5254308A (en) Zirconium alloy with improved post-irradiation properties
US5211774A (en) Zirconium alloy with superior ductility
KR100261666B1 (en) Composition of zirconium alloy having low corrosion rate and high strength
EP0532830A2 (en) Zirconium alloy with superior ductility
US5278882A (en) Zirconium alloy with superior corrosion resistance
US4876064A (en) Corrosion resistant zirconium alloys containing bismuth
JPH04232220A (en) Corrosion-resistant zirconium alloy with improved extensibility
KR100261665B1 (en) Composition of zirconium alloy having high corrosion resistance and high strength
JPH11101887A (en) Zirconium alloy for use in aqueous environment subject to high fluence, corrosion-resistant nuclear reactor component, structural nuclear fuel assembly parts, and nuclear reactor fuel rod cladding consisting of the alloy
JP3057074B2 (en) Zirconium alloy composition for nuclear fuel cladding
JPH01301830A (en) High corrosion-resistant zirconium alloy
JPH0660364B2 (en) Corrosion resistant zirconium alloy containing bismuth
US4863685A (en) Corrosion resistant zirconium alloys
JPH01215943A (en) High corrosion-resistant zirconium alloy
JPS63213629A (en) Zirconium based alloy
JPH0867954A (en) Production of high corrosion resistant zirconium alloy
JPH09508672A (en) Zirconium alloy containing tungsten and nickel
JPH01191756A (en) Corrosion-resistant zirconium alloy
JPH04128687A (en) Covering tube for nuclear fuel and its manufacture
JPH04224648A (en) High corrosion resistant and high strength zirconium alloy
JPH02159336A (en) Nodular corrosion-resistant zirconium alloy
JP2600057B2 (en) Cladding tube, spacer, and channel box for highly corrosion resistant nuclear fuel, fuel assembly thereof, and method of manufacturing the same
JPS6126738A (en) Zirconium alloy
JPH0762197B2 (en) Zirconium alloy for nuclear reactor
EP0287888B1 (en) Corrosion resistant zirconium alloys