JPH0121566B2 - - Google Patents

Info

Publication number
JPH0121566B2
JPH0121566B2 JP53125541A JP12554178A JPH0121566B2 JP H0121566 B2 JPH0121566 B2 JP H0121566B2 JP 53125541 A JP53125541 A JP 53125541A JP 12554178 A JP12554178 A JP 12554178A JP H0121566 B2 JPH0121566 B2 JP H0121566B2
Authority
JP
Japan
Prior art keywords
liquid
unsaturated polyester
base material
impregnated
room temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53125541A
Other languages
Japanese (ja)
Other versions
JPS5553013A (en
Inventor
Yasuo Fushiki
Masayuki Ooizumi
Minoru Itsushiki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP12554178A priority Critical patent/JPS5553013A/en
Publication of JPS5553013A publication Critical patent/JPS5553013A/en
Publication of JPH0121566B2 publication Critical patent/JPH0121566B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Insulating Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は電気用銅張り積層板の製造方法に関す
る。 電気用積層板とは各種電子部品の基板として用
いられる積層絶縁板あるいは銅張り積層板に用い
られる積層板等を意味し、その形状はおおむね厚
みが0.3〜5mm程度のものである。 従来これらは紙を基材としたフエノール樹脂、
ガラスクロスを基材としたエポキシ樹脂等によつ
て製造されているのが一般的である。また、常温
で固体であつたり結晶性を有する不飽和ポリエス
テル樹脂のワニスを用い、非粘着性のプリプレグ
を形成し、積層し、加圧プレスによつて製造する
方法も提案されているが、原料高等から十分に実
用化されていない。一方、室温で液状である共重
合性単量体を架橋剤として用い、かつ室温で液状
であるような不飽和ポリエステル樹脂を用いる場
合は非粘着性のプリプレグを形成できず、加え
て、プレス加圧加工時流動性が大きく加圧成形が
困難である等の理由によつて、室温で液状である
不飽和ポリエステル樹脂液を用いた場合はかかる
従来方法においては製造することが困難であり、
従つて全く実用化されていないのが現状である。 しかしながら、かかる常温で液状の不飽和ポリ
エステル樹脂を用いる場合は、たとえば基材への
含浸工程において溶剤を必要とせず、かつ硬化反
応過程においてもなんらの易揮発性成分の除去を
必要としないという点で優れており、従つて、コ
スト的にも有利な製品を製造できる可能性があ
り、新規な製造方法が望まれていた。 本発明者らはかかる観点に鑑みて鋭意研究を行
つた結果、室温において液状である不飽和ポリエ
ステル樹脂液をそのまま基材に含浸し、次いで積
層し、続いて無圧の条件下で硬化せしめることに
よつて、性状にすぐれた製品を製造できることを
見い出し本発明に到達した。すなわち本発明は、
室温において液状である共重合性単量体を架橋剤
として用いた室温で液状であり、硬化用重合開始
剤として脂肪族のパーオキサイド類が配合されて
いる不飽和ポリエステル樹脂液を片面より基材に
含浸し、該含浸基材を積層し、少なくとも片面に
銅箔をラミネートし、次いで無圧の条件下で硬化
せしめることを特徴とする電気用銅張り積層板の
製造方法を内容とする。 室温において液状である不飽和ポリエステル樹
脂液とはグリコール類、飽和二塩基酸類、不飽和
二塩基酸類等を原料として合成される不飽和ポリ
エステル鎖と、室温において液状である共重合性
単量体によつて構成される。本発明においては、
グリコール類として、エチレングリコール、プロ
ピレングリコール、ジエチレングリコール等、飽
和二塩基酸として、無水フタル酸、イソフタル
酸、テレフタル酸等、不飽和二塩基酸として、無
水マレイン酸、フマル酸等であつて、共重合性単
量体としてはスチレン、α−メチルスチレン、ビ
ニルトルエン、ジビニルベンゼン等であり、いわ
ゆる一般に良く知られた不飽和ポリエステルで良
い。 本発明においては、プロピレングリコール、イ
ソフタル酸およびフマル酸によつて合成される不
飽和ポリエステル鎖を用いるのが、製品の耐熱性
や寸法安定性においてより有利である。共重合性
単量体は単独成分を用いても良く、あるいは併用
しても良い。スチレンとこの単官能性誘導体およ
びジビニルベンゼンのごとき多官能性炭化水素系
単量体を併用するのが、製品の寸法安定性等にお
いてより優れている。 また、樹脂液の粘度を0.1〜15ポイズ、より望
ましくは0.5〜7ポイズに調整するのが本発明の
望ましい実施態様である。粘度は基材への樹脂液
の含浸性に関連がある。 本発明における基材とは、リンター紙やクラフ
ト紙等の紙、ガラス布、あるいは無機および有機
繊維からなる不織布等シート状基材をいうが、本
発明においてはこれらシート状基材に、たとえば
カーテンフロー方式あるいはスクイズローラー方
式等によつて片面より含浸させるのが肝要であ
る。なお、基材は含浸前に適度に乾燥するのが好
ましい。樹脂液の含浸した基材は必要枚数積層さ
れる。所定の樹脂量より多量に含浸させた樹脂含
浸基材を積層しつつ、ロールやブレード状物を用
いて過剰な樹脂液を排除するのが本発明における
好ましい積層方法である。 本発明においては、上記積層物を無圧の条件下
で硬化させることによつて達成できる。無圧と
は、人為的な加圧操作を伴わない、通常の大気圧
下で行うことを意味する。厳密に言えば後述する
ごとく、フイルム状被覆体をラミネートする場合
などは、該被覆体の重量圧を受ける。しかし、か
かる重量圧は現実的には0.01Kg/cm2を越えるよう
なことはなく、通常は0.01Kg/cm2〜0.001Kg/cm2
以下であり、このような微圧は本発明において樹
脂の流動、流出等の成形条件を損ねず、なんら本
発明を制限しない。 本発明においては基材に含浸された樹脂液が十
分に硬化し、加温によつても流動性を示さない状
態になるまで無圧の条件を保つことが肝要であ
り、不必要な加圧は製品内部に歪を発生される場
合があり、寸法安定性等しばしば好ましくない結
果を与える。しかし、十分に硬化した後は必要に
応じ、アフターキユア等の工程を加える際等は若
干の圧力を加えても良く、本発明はこの時点での
加圧を制限しない。 硬化は共重合単量体による不飽和ポリエステル
鎖の架橋反応によつて進行する。反応はラジカル
重合であり、従つて重合開始剤の配合を必要と
し、かつ空気を遮断する必要がある。空気の遮断
は例えばフイルム状被覆体を硬化前積層体にラミ
ネートすることによつて容易に達成できる。この
目的にセロフアンあるいはポリエステルフイルム
(たとえばマイラー)等が好適である。該フイル
ム状被覆体の片面もしくは両面を銅箔、特に電解
銅箔とすることによつて、片面銅張りおよび両面
銅張り板を製造できる。 重合開始剤としては有機過酸化物が一般的であ
る。不飽和ポリエステル樹脂の硬化用有機過酸化
物は多数のものが公知であるが、本発明における
ごとく常温で液状である樹脂を用い、かつ無圧成
形による新規な電気用積層板の製造においては重
合開始剤の選択が重要である。特に、本発明にお
いては有機過酸化物の分解生成物が製品の中に残
存する。 銅張り積層板は通常その加工工程で100℃〜260
℃程度の各種温度で加熱される場合が多く、かか
る加工工程で上記分解生成物が揮発し、場合によ
つて臭気を発生する。この臭気は作業環境を損
ね、好ましくない。本発明者らの研究によれば、
有機過酸化物として、脂肪族系のパーオキサイド
類、特に好ましくは脂肪族系のパーオキシエステ
ル類から選ばれたものを、単独もしくは併用して
用いる時に著しく臭の軽減した電気用積層板を製
造できる。 脂肪族系のパーオキサイドとは、一般式が、 ROOH、RmM(OOH)n、ROOR′、RmM
(OOR)n、RnMOOMRn、R(CO3H)n、
RSO2OOH、
The present invention relates to a method for manufacturing an electrical copper-clad laminate. The electrical laminate refers to a laminate used for laminated insulating boards or copper-clad laminates used as substrates for various electronic components, and has a thickness of approximately 0.3 to 5 mm. Conventionally, these were paper-based phenolic resins,
It is generally manufactured from epoxy resin or the like using glass cloth as a base material. In addition, a method has been proposed in which a non-adhesive prepreg is formed using an unsaturated polyester resin varnish that is solid at room temperature and has crystallinity, and is then laminated and manufactured by pressure pressing. It has not been fully put into practical use since high school. On the other hand, when a copolymerizable monomer that is liquid at room temperature is used as a crosslinking agent and an unsaturated polyester resin that is liquid at room temperature is used, a non-adhesive prepreg cannot be formed, and in addition, it is not possible to form a non-adhesive prepreg. If an unsaturated polyester resin liquid that is liquid at room temperature is used, it is difficult to manufacture it by such conventional methods because it has high fluidity during pressure processing and is difficult to pressure mold.
Therefore, the current situation is that it has not been put into practical use at all. However, when using such an unsaturated polyester resin that is liquid at room temperature, for example, a solvent is not required in the step of impregnating the base material, and there is no need to remove any easily volatile components during the curing reaction process. Therefore, a new manufacturing method has been desired since it has the possibility of manufacturing a product that is excellent in terms of cost and is also advantageous in terms of cost. The inventors of the present invention have conducted extensive research in view of this point of view, and have found that a base material is directly impregnated with an unsaturated polyester resin liquid that is liquid at room temperature, then laminated, and then cured under no pressure conditions. The present invention was achieved by discovering that a product with excellent properties could be manufactured by using the above method. That is, the present invention
A copolymerizable monomer that is liquid at room temperature is used as a crosslinking agent. An unsaturated polyester resin liquid that is liquid at room temperature and contains aliphatic peroxides as a curing polymerization initiator is applied to the base material from one side. The method of manufacturing a copper-clad laminate for electrical use is characterized in that the impregnated base material is impregnated with a copper foil, the impregnated base material is laminated, a copper foil is laminated on at least one side, and the copper foil is then cured under pressureless conditions. Unsaturated polyester resin liquid, which is liquid at room temperature, is composed of unsaturated polyester chains synthesized from glycols, saturated dibasic acids, unsaturated dibasic acids, etc., and copolymerizable monomers, which are liquid at room temperature. It is composed of In the present invention,
Glycols include ethylene glycol, propylene glycol, diethylene glycol, etc. Saturated dibasic acids include phthalic anhydride, isophthalic acid, terephthalic acid, etc. Unsaturated dibasic acids include maleic anhydride, fumaric acid, etc., and are copolymerized. Examples of the monomer include styrene, α-methylstyrene, vinyltoluene, divinylbenzene, etc., and generally well-known unsaturated polyesters may be used. In the present invention, it is more advantageous to use an unsaturated polyester chain synthesized from propylene glycol, isophthalic acid and fumaric acid in terms of the heat resistance and dimensional stability of the product. The copolymerizable monomers may be used alone or in combination. The combined use of styrene, its monofunctional derivative, and a polyfunctional hydrocarbon monomer such as divinylbenzene is superior in terms of product dimensional stability and the like. Further, it is a desirable embodiment of the present invention that the viscosity of the resin liquid is adjusted to 0.1 to 15 poise, more preferably 0.5 to 7 poise. The viscosity is related to the ability of the resin liquid to impregnate the base material. In the present invention, the base material refers to a sheet-like base material such as paper such as linter paper or kraft paper, glass cloth, or non-woven fabric made of inorganic and organic fibers. It is important to impregnate from one side using a flow method or a squeeze roller method. In addition, it is preferable to dry the base material appropriately before impregnating it. A required number of substrates impregnated with resin liquid are laminated. A preferred lamination method in the present invention is to laminate resin-impregnated substrates impregnated with more than a predetermined amount of resin and remove excess resin liquid using a roll or blade-like object. In the present invention, this can be achieved by curing the laminate under no pressure conditions. No-pressure means that the process is carried out under normal atmospheric pressure without any artificial pressurization. Strictly speaking, as will be described later, when a film-like covering is laminated, the pressure of the weight of the covering is applied. However, in reality, such weight pressure never exceeds 0.01Kg/cm 2 , and usually ranges from 0.01Kg/cm 2 to 0.001Kg/cm 2
In the present invention, such a slight pressure does not impair molding conditions such as flow and outflow of the resin, and does not limit the present invention in any way. In the present invention, it is important to maintain pressure-free conditions until the resin liquid impregnated into the base material is sufficiently cured and does not show fluidity even when heated, so unnecessary pressure is avoided. may cause distortion inside the product, often resulting in unfavorable results such as dimensional stability. However, after sufficient curing, a slight pressure may be applied as necessary when performing an after-cure process, and the present invention does not limit the application of pressure at this point. Curing proceeds through a crosslinking reaction of unsaturated polyester chains with copolymerized monomers. The reaction is radical polymerization, and therefore requires the incorporation of a polymerization initiator and the need to block air. Air blocking can be easily achieved, for example, by laminating a film-like covering to the pre-cured laminate. Cellophane or polyester film (for example, Mylar) is suitable for this purpose. By using copper foil, particularly electrolytic copper foil, on one or both sides of the film-like covering, single-sided copper-clad boards and double-sided copper-clad boards can be manufactured. Organic peroxides are commonly used as polymerization initiators. Many organic peroxides for curing unsaturated polyester resins are known, but in the present invention, when a resin that is liquid at room temperature is used and a new electrical laminate is manufactured by pressureless molding, polymerization is necessary. The choice of initiator is important. In particular, in the present invention, decomposition products of organic peroxides remain in the product. Copper-clad laminates are usually heated to temperatures between 100℃ and 260℃ during the processing process.
It is often heated at various temperatures on the order of 0.degree. C., and the decomposition products mentioned above volatilize during such processing steps, sometimes producing odor. This odor impairs the working environment and is undesirable. According to the research of the present inventors,
To produce an electrical laminate with significantly reduced odor when an organic peroxide selected from aliphatic peroxides, particularly preferably aliphatic peroxyesters, is used alone or in combination. can. Aliphatic peroxides have the general formula: ROOH, RmM(OOH)n, ROOR′, RmM
(OOR)n, RnMOOMRn, R(CO 3 H)n,
RSO 2 OOH,

【式】【formula】

【式】【formula】

【式】【formula】

【式】 RSO2OOSO2R′、R(CO3R′)n、
[Formula] RSO 2 OOSO 2 R', R(CO 3 R')n,

【式】【formula】

【式】【formula】

【式】RSO2OOR′、[Formula] RSO 2 OOR′,

【式】 (ここでR、R′、R″R″は脂肪族炭化水素、Mは
メタルあるいはメタロイドである。) で表現されるものをいい、具体的には、例えばジ
−t−ブチルパーオキサイド、2,5−ジメチル
−2,5−ジ(t−ブチルパーオキシ)ヘキサ
ン、アセチルパーオキサイド、イソブチリルパー
オキサイド、t−ブチルパーオキシ−2−エチル
ヘキサノエート等である。 臭は人の感覚的なもので若干の個人差があり、
評価方法については充分考慮する必要がある。本
発明者らは、多人数による臭覚試験、ガスクロマ
トグラフによる臭の成分の分析等を採用し、詳細
な解析を行つている。 脂肪族系のパーオキシエステル類とは一般式
が、 R(CO3R′)n、
[Formula] (Here, R, R', R″R″ are aliphatic hydrocarbons, M is a metal or metalloid.) Specifically, for example, di-t-butylper oxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexane, acetyl peroxide, isobutyryl peroxide, t-butylperoxy-2-ethylhexanoate, and the like. Odor is something that people experience and there are slight differences between individuals.
It is necessary to give sufficient consideration to the evaluation method. The present inventors conducted a detailed analysis by employing multi-person odor tests, analysis of odor components using gas chromatography, and the like. The general formula of aliphatic peroxyesters is R(CO 3 R′)n,

【式】【formula】

【式】【formula】

【式】RSO2OOR′ (ここでR、R′は脂肪族炭化水素、nはRの構
造よつて決まる1〜4までの整数である。) で表される、たとえばt−ブチルパーオキシアセ
テート、t−ブチルパーオキシイソブチレート、
t−ブチルパーオキシ−2−エチルヘキサノエー
ト、t−ブチルパーオキシラウレートなどを言
う。 脂肪族系のパーオキサイドあるいはパーオキシ
エステル類が好ましいのは、加温時に発生する揮
発性成分の中に、芳香族系の触媒分解生成物が存
在しないことによると考察される。芳香族系の有
機過酸化物を用いると、芳香族系の分解生成物が
揮発し、臭気の原因となるので、芳香族系成分を
含まない脂環族系をも包含する脂肪族系のパーオ
キサイドが良好な結果を示す。 樹脂液の硬化に関する温度と時間の条件は、採
用する有機過酸化物によつても変化するが、本発
明においては、無圧の条件下で成形するが故に初
期の階段での液状共重合性単量体の気化による発
泡を排除する目的で、硬化は100℃以下の温度か
ら開始するのが好ましく、最終的には50〜150℃
の温度範囲が好適である。 銅張り積層板においては、耐熱性、加熱あるい
は吸湿下での寸法安定性、打ち抜き加工特性、積
層板と銅箔の接着強度、電気絶縁特性等、高度な
特性が要求される。従つて、これらの改良を目的
として、不飽和ポリエステル樹脂液に、各種の添
加剤、混合物、あるいは充填剤等が配合されるこ
とはいつこうにかまわず、なんら本発明を制限す
るものではない。 以下実施例により本発明をさらに詳記する。 参考例 用いた樹脂、配合、性状を第1表に示す。
[Formula] RSO 2 OOR' (where R and R' are aliphatic hydrocarbons, and n is an integer from 1 to 4 determined by the structure of R.), for example, t-butyl peroxyacetate. , t-butyl peroxyisobutyrate,
These include t-butylperoxy-2-ethylhexanoate and t-butylperoxylaurate. The reason why aliphatic peroxides or peroxy esters are preferred is considered to be because aromatic catalytic decomposition products are not present among the volatile components generated during heating. If aromatic organic peroxides are used, aromatic decomposition products will volatilize and cause odor. Oxide shows good results. The temperature and time conditions for curing the resin liquid vary depending on the organic peroxide used, but in the present invention, since the molding is carried out under pressureless conditions, the liquid copolymerizability in the initial stage is reduced. In order to eliminate foaming due to monomer vaporization, curing is preferably started at a temperature below 100°C, with a final temperature of 50-150°C.
A temperature range of is suitable. Copper-clad laminates are required to have advanced properties such as heat resistance, dimensional stability under heating or moisture absorption, punching properties, adhesive strength between the laminate and copper foil, and electrical insulation properties. Therefore, for the purpose of these improvements, various additives, mixtures, fillers, etc. may be added to the unsaturated polyester resin liquid at any time, and this does not limit the present invention in any way. The present invention will be described in further detail with reference to Examples below. Reference Example The resins used, their formulations, and properties are shown in Table 1.

【表】 第1表に示した樹脂液を市販のクラフト紙(巴
川製紙製、MKP−150)にカーテンフロー方式に
より片面より含浸し、この樹脂含浸紙を2枚重ね
てロール間を通過させ過剰な樹脂液を排除し、積
層し同時に厚さが25μmのセロフアンを両面にラ
ミネートした。このものを水平に保持したまま、
60℃の温度で加温を開始し、30分を要して100℃
まで昇温し、厚さが520μmの電気用積層板を得
た。このものをさらに85℃×10時間の条件でアフ
ターキユアした。このものは、220℃×30分にお
いて異常のない耐熱性を有し、またNEMA規格
におけるXPCを十分に満足するものであつた。
また、このものは180℃×30分、220℃×30分の加
熱条件下で、低臭気性の判定を得た。 実施例 参考例における樹脂含浸紙6枚を参考例と同等
にして積層し、同時に片面にセロフアン、他面に
厚さが35μmの市販の電解銅箔(福田金属製、CF
−T5)をラミネートし、参考例と同等にして厚
さが1.6mmである片面銅張り積層板を得た。 このものは260℃×10秒のハンダ耐熱性を有し、
JIS C−6481による銅箔のハクリ強度が1.0Kg/
cmであつて、また、NEMA規格XPCを十分に満
足するものであつた。 比較例 実施例において、加圧プレスによつて、50Kg/
cm2の圧力をかけつつ硬化を試みたが、樹脂液の流
動や流出が激しく製造できなかつた。
[Table] Commercially available kraft paper (MKP-150, manufactured by Tomoekawa Paper Industries) was impregnated from one side with the resin liquid shown in Table 1 using the curtain flow method, and two sheets of this resin-impregnated paper were stacked and passed between rolls to excess. The resin liquid was removed, and at the same time, cellophane with a thickness of 25 μm was laminated on both sides. While holding this thing horizontally,
Start heating at 60℃ and reach 100℃ in 30 minutes
An electrical laminate with a thickness of 520 μm was obtained. This product was further after-cured at 85°C for 10 hours. This product had heat resistance without abnormality at 220°C for 30 minutes and fully satisfied the XPC in the NEMA standard.
Furthermore, this product was evaluated as having low odor under heating conditions of 180°C x 30 minutes and 220°C x 30 minutes. Example Six sheets of resin-impregnated paper in the reference example were laminated in the same manner as in the reference example, and at the same time cellophane was used on one side and a commercially available electrolytic copper foil (manufactured by Fukuda Metals, CF) with a thickness of 35 μm was used on the other side.
-T5) was laminated to obtain a single-sided copper-clad laminate with a thickness of 1.6 mm, which was the same as the reference example. This product has soldering heat resistance of 260℃ x 10 seconds.
Peeling strength of copper foil according to JIS C-6481 is 1.0Kg/
cm, and fully satisfied the NEMA standard XPC. Comparative Example In the example, 50Kg/
Attempts were made to cure the resin while applying a pressure of cm 2 , but the resin fluid flowed and flowed out so much that production was not possible.

Claims (1)

【特許請求の範囲】 1 室温で液状である共重合性単量体を架橋剤と
して用いた室温で液状であり、硬化用重合開始剤
が配合されている不飽和ポリエステル樹脂液を基
材に含浸し、該含浸基材を積層し、積層物の少な
くとも片面に銅箔をラミネートした後、次いで、
実質無圧の条件下で硬化させることよりなる電気
用銅張り積層板の製造方法において、前記硬化用
重合開始剤として脂肪族系のパーオキサイド類を
使用し、かつ各基材へ前記不飽和ポリエステル樹
脂液を片面より含浸させることを特徴とする電気
用銅張り積層板の製造方法。 2 硬化用重合開始剤である脂肪族系のパーオキ
サイド類が脂肪族系のパーオキシエステル類であ
る特許請求の範囲第1項記載の電気用銅張り積層
板の製造方法。
[Claims] 1. A base material is impregnated with an unsaturated polyester resin liquid that is liquid at room temperature and contains a curing polymerization initiator using a copolymerizable monomer that is liquid at room temperature as a crosslinking agent. After laminating the impregnated base materials and laminating copper foil on at least one side of the laminate, then,
In a method for producing an electrical copper-clad laminate, which comprises curing under substantially no pressure conditions, an aliphatic peroxide is used as the curing polymerization initiator, and the unsaturated polyester is applied to each base material. A method for manufacturing an electrical copper-clad laminate, characterized by impregnating one side with a resin liquid. 2. The method for producing an electrical copper-clad laminate according to claim 1, wherein the aliphatic peroxide as the curing polymerization initiator is an aliphatic peroxyester.
JP12554178A 1978-10-11 1978-10-11 Method of manufacturing electric laminated plate Granted JPS5553013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12554178A JPS5553013A (en) 1978-10-11 1978-10-11 Method of manufacturing electric laminated plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12554178A JPS5553013A (en) 1978-10-11 1978-10-11 Method of manufacturing electric laminated plate

Publications (2)

Publication Number Publication Date
JPS5553013A JPS5553013A (en) 1980-04-18
JPH0121566B2 true JPH0121566B2 (en) 1989-04-21

Family

ID=14912741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12554178A Granted JPS5553013A (en) 1978-10-11 1978-10-11 Method of manufacturing electric laminated plate

Country Status (1)

Country Link
JP (1) JPS5553013A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56166054A (en) * 1980-05-26 1981-12-19 Kanegafuchi Chemical Ind Continuous manufacture of laminated board for electricity or metallic foil plated laminated board
JPS5749294A (en) * 1980-09-08 1982-03-23 Kanegafuchi Chemical Ind Method of producing continuously electric laminated board
JPS5757622A (en) * 1980-09-25 1982-04-06 Kanegafuchi Chem Ind Co Ltd Hardening method of unsaturated polyester resin system laminated plate
JPS5757621A (en) * 1980-09-25 1982-04-06 Kanegafuchi Chem Ind Co Ltd Continuous hardening method of unsaturated polyester resin system laminated plate
JPS6032655A (en) * 1983-08-02 1985-02-19 鐘淵化学工業株式会社 One-surface metallic foil lined laminated board having improved warpage characteristic and manufacture thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2596162A (en) * 1945-03-01 1952-05-13 Marco Chemicals Inc Method of polymerizing fiber-reinforced resinous materials and product

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2596162A (en) * 1945-03-01 1952-05-13 Marco Chemicals Inc Method of polymerizing fiber-reinforced resinous materials and product

Also Published As

Publication number Publication date
JPS5553013A (en) 1980-04-18

Similar Documents

Publication Publication Date Title
JP4234346B2 (en) Thermosetting resin and laminate
US4420509A (en) Copper-clad polyester-glass fiber laminates
JPH0147297B2 (en)
JPS6042566B2 (en) Method for continuously manufacturing electrical laminated insulation boards or metal foil clad laminates
JPS6250303B2 (en)
JPH0121566B2 (en)
JPS6217532B2 (en)
WO1980002010A1 (en) Method of and device for continuously fabricating laminate
JPS62248632A (en) Metal-lined flexible laminated board
JPS62235335A (en) Production of metal foil-clad laminated board
JPS6335422B2 (en)
JPS62121759A (en) Polyphenylene oxide resin composition and sheet composed of said resin composition
JPS6130904B2 (en)
JPH0344574B2 (en)
JPH0152183B2 (en)
JPS61287739A (en) Laminated board
JPH0673920B2 (en) Continuous manufacturing method of hard laminate for electric use
JPS6354543B2 (en)
JP4774662B2 (en) Laminate resin composition and laminate
JP3302176B2 (en) Resin composition for laminated board and laminated board using the same
JPS5998844A (en) Continuous manufacture of laminated insulating board for electricity or metallic foil lined laminated board
JPS6365507B2 (en)
JPH08151554A (en) Production of adhesive sheet
JPH02218196A (en) Semi-cured resin copper-clad laminated sheet
JPS61293847A (en) Fiber reinforced resin sheet